Abstract
The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between \([0.3,2]\%\) for the covered mass range of \(M\in [0.1,16]\,M_\odot\), \(75\%\) of which are stars burning hydrogen in their core and the other \(25\%\) covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars.
Similar content being viewed by others
Notes
More than 4360, as of October 9, 2020. Source: exoplanet.eu.
Noticeable exceptions are the most massive globular clusters (\(>10^6\,M_\odot\)), such as \(\omega\) Centauri, which display spreads in age and [Fe/H] (e.g., Villanova et al. 2007).
A regularly updated catalogue of binary CSPNe is maintained by David Jones and can be found at http://www.drdjones.net/bcspn/.
See, however the recent redetermination of masses by Reindl et al. (2020).
In detail, (n, \(\ell\)) determines a multiplet of \(2\ell +1\) modes that are degenerate in frequency for spherical stars. When the symmetry is broken, e.g., by rotation, the different components of the multiplet show up in the oscillation spectrum, with each component identified by the azimuthal number \(m = -\ell , -\ell +1,\ldots ,\ell -1, \ell\).
References
Abbott BP, et al [LIGO Scientific Collaboration, Virgo Collaboration] (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(6):061102. https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]
Abbott BP, et al [LIGO Scientific Collaboration, Virgo Collaboration] (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]
Abbott BP, et al [LIGO Scientific Collaboration, Virgo Collaboration] (2019a) Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo. ApJL 882(2):L24. https://doi.org/10.3847/2041-8213/ab3800. arXiv:1811.12940 [astro-ph.HE]
Abbott BP, Abbott R, Abbott TD, [LIGO Scientific Collaboration, Virgo Collaboration] (2019b) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9(3):031040. https://doi.org/10.1103/PhysRevX.9.031040. arXiv:1811.12907 [astro-ph.HE]
Aerts C (2021) Probing the interior physics of stars through asteroseismology. Rev Mod Phys 93(1):015001. https://doi.org/10.1103/RevModPhys.93.015001
Aerts C, De Cat P (2003) \(\beta\) Cep stars from a spectroscopic point of view. Space Sci Rev 105(1):453–492. https://doi.org/10.1023/A:1023983704925
Aerts C, Christensen-Dalsgaard J, Kurtz DW (2010) Asteroseismology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5803-5
Aerts C, Simón-Díaz S, Groot PJ, Degroote P (2014) On the use of the Fourier transform to determine the projected rotational velocity of line-profile variable B stars. A&A 569:A118. https://doi.org/10.1051/0004-6361/201424012. arXiv:1407.6611 [astro-ph.SR]
Aerts C, Molenberghs G, Michielsen M, Pedersen MG, Björklund R, Johnston C, Mombarg JSG, Bowman DM, Buysschaert B, Pápics PI, Sekaran S, Sundqvist JO, Tkachenko A, Truyaert K, Van Reeth T, Vermeyen E (2018) Forward asteroseismic modeling of stars with a convective core from gravity-mode oscillations: parameter estimation and stellar model selection. ApJS 237:15. https://doi.org/10.3847/1538-4365/aaccfb. arXiv:1806.06869 [astro-ph.SR]
Aerts C, Mathis S, Rogers TM (2019) Angular momentum transport in stellar interiors. ARA&A 57:35–78. https://doi.org/10.1146/annurev-astro-091918-104359. arXiv:1809.07779 [astro-ph.SR]
Afşar M, Ibanoǧlu C (2008) Two-colour photometry of the binary planetary nebula nuclei UU Sagitte and V477 Lyrae: oversized secondaries in post-common-envelope binaries. MNRAS 391(2):802–814. https://doi.org/10.1111/j.1365-2966.2008.13927.x. arXiv:0810.0949 [astro-ph]
Aizenman M, Smeyers P, Weigert A (1977) Avoided crossing of modes of non-radial stellar oscillations. A&A 58:41
Albrecht S, Winn JN, Torres G, Fabrycky DC, Setiawan J, Gillon M, Jehin E, Triaud A, Queloz D, Snellen I, Eggleton P (2014) The BANANA Project. V. Misaligned and precessing stellar rotation axes in CV Velorum. ApJ 785(2):83. https://doi.org/10.1088/0004-637X/785/2/83. arXiv:1403.0583 [astro-ph.SR]
Althaus LG, Panei JA, Miller Bertolami MM, García-Berro E, Córsico AH, Romero AD, Kepler SO, Rohrmann RD (2009) New evolutionary sequences for hot H-deficient white dwarfs on the basis of a full account of progenitor evolution. ApJ 704(2):1605–1615. https://doi.org/10.1088/0004-637X/704/2/1605. arXiv:0909.2689 [astro-ph.SR]
Althaus LG, Córsico AH, Isern J, García-Berro E (2010) Evolutionary and pulsational properties of white dwarf stars. Astron Astrophys Rev 18(4):471–566. https://doi.org/10.1007/s00159-010-0033-1. arXiv:1007.2659 [astro-ph.SR]
Andersen J (1991) Accurate masses and radii of normal stars. Astron Astrophys Rev 3(2):91–126. https://doi.org/10.1007/BF00873538
Anderson RI, Saio H, Ekström S, Georgy C, Meynet G (2016) On the effect of rotation on populations of classical Cepheids. II. Pulsation analysis for metallicities 0.014, 0.006, and 0.002. A&A 591:A8. https://doi.org/10.1051/0004-6361/201528031. arXiv:1604.05691 [astro-ph.SR]
Andrews SM, Terrell M, Tripathi A, Ansdell M, Williams JP, Wilner DJ (2018) Scaling relations associated with millimeter continuum sizes in protoplanetary disks. ApJ 865:157. https://doi.org/10.3847/1538-4357/aadd9f. arXiv:1808.10510 [astro-ph.EP]
Angelou GC, Stancliffe RJ, Church RP, Lattanzio JC, Smith GH (2012) The role of thermohaline mixing in intermediate- and low-metallicity globular clusters. ApJ 749(2):128. https://doi.org/10.1088/0004-637X/749/2/128. arXiv:1202.2859 [astro-ph.SR]
Angelou GC, Bellinger EP, Hekker S, Basu S (2017) On the statistical properties of the lower main sequence. ApJ 839(2):116. https://doi.org/10.3847/1538-4357/aa6a54. arXiv:1703.10165 [astro-ph.SR]
Angelou GC, Bellinger EP, Hekker S, Mints A, Elsworth Y, Basu S, Weiss A (2020) Convective boundary mixing in low- and intermediate-mass stars—I. Core properties from pressure-mode asteroseismology. MNRAS 493(4):4987–5004. https://doi.org/10.1093/mnras/staa390. arXiv:2002.02546 [astro-ph.SR]
Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS, Driebe T et al (2013) A massive pulsar in a compact relativistic binary. Science 340:448. https://doi.org/10.1126/science.1233232. arXiv:1304.6875 [astro-ph.HE]
Appourchaux T, Antia HM, Ball W, Creevey O, Lebreton Y, Verma K, Vorontsov S, Campante TL, Davies GR, Gaulme P, Régulo C, Horch E, Howell S, Everett M, Ciardi D, Fossati L, Miglio A, Montalbán J, Chaplin WJ, García RA, Gizon L (2015) A seismic and gravitationally bound double star observed by Kepler. A&A 582:A25
Askar A, Arca Sedda M, Giersz M (2018) MOCCA-SURVEY Database I: galactic globular clusters harbouring a black hole subsystem. MNRAS 478:1844–1854. https://doi.org/10.1093/mnras/sty1186. arXiv:1802.05284
Asplund M (2005) New light on stellar abundance analyses: departures from LTE and homogeneity. ARA&A 43(1):481–530. https://doi.org/10.1146/annurev.astro.42.053102.134001
Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47:481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948 [astro-ph.SR]
Astraatmadja TL, Bailer-Jones CAL (2016) Estimating distances from parallaxes. II. Performance of Bayesian distance estimators on a Gaia-like catalogue. ApJ 832(2):137. https://doi.org/10.3847/0004-637X/832/2/137. arXiv:1609.03424 [astro-ph.IM]
Athay RG (1977) The solar chromosphere and corona: quiet Sun (book review). ApJL 19:29
Aubourg E, Bareyre P, Brehin S, Gros M, Lachieze-Rey M, Laurent B, Lesquoy E, Magneville C, Milsztajn A, Moscoso L, Queinnec F, Rich J, Spiro M, Vigroux L, Zylberajch S, Ansari R, Cavalier F, Moniez M, Beaulieu JP, Ferlet R, Grison P, Vidal-Madjar A, Guibert J, Moreau O, Tajahmady F, Maurice E, Prevot L, Gry C (1993) The EROS search for dark halo objects. Messenger 72:20–27
Ausseloos M, Aerts C, Lefever K, Davis J, Harmanec P (2006) High-precision elements of double-lined spectroscopic binaries from combined interferometry and spectroscopy. Application to the \(\beta\) Cephei star \(\beta\) Centauri. A&A 455(1):259–269. https://doi.org/10.1051/0004-6361:20064829. arXiv:astro-ph/0605220
Auvergne M, Bodin P, Boisnard L et al (2009) The CoRoT satellite in flight: description and performance. A&A 506(1):411–424. https://doi.org/10.1051/0004-6361/200810860. arXiv:0901.2206 [astro-ph.SR]
Baglin A, Auvergne M, Boisnard L, Lam-Trong T, Barge P, Catala C, Deleuil M, Michel E, Weiss W (2006) CoRoT: a high precision photometer for stellar evolution and exoplanet finding. In: 36th COSPAR scientific assembly, p 3749
Bagnuolo J, William G, Gies DR (1991) Tomographic separation of composite spectra: the components of the O-star spectroscopic binary AO Cassiopeiae. ApJ 376:266. https://doi.org/10.1086/170276
Bahcall JN, Pinsonneault MH, Basu S (2001) Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. ApJ 555:990–1012. https://doi.org/10.1086/321493.astro-ph/0010346
Bailer-Jones CAL (2011) Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry. MNRAS 411(1):435–452. https://doi.org/10.1111/j.1365-2966.2010.17699.x. arXiv:1009.2766 [astro-ph.IM]
Ball WH, Gizon L (2014) A new correction of stellar oscillation frequencies for near-surface effects. A&A 568:A123. https://doi.org/10.1051/0004-6361/201424325. arXiv:1408.0986 [astro-ph.SR]
Baraffe I, Chabrier G (2010) Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars. A&A 521:A44. https://doi.org/10.1051/0004-6361/201014979. arXiv:1008.4288 [astro-ph.EP]
Baraffe I, Chabrier G, Allard F, Hauschildt PH (2002) Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages. A&A 382:563–572. https://doi.org/10.1051/0004-6361:20011638. arXiv:astro-ph/0111385
Baraffe I, Homeier D, Allard F, Chabrier G (2015) New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. A&A 577:A42. https://doi.org/10.1051/0004-6361/201425481. arXiv:1503.04107 [astro-ph.SR]
Baroch D, Morales JC, Ribas I, Tal-Or L, Zechmeister M, Reiners A, Caballero JA, Quirrenbach A, Amado PJ, Dreizler S et al (2018) The CARMENES search for exoplanets around M dwarfs. Nine new double-line spectroscopic binary stars. A&A 619:A32. https://doi.org/10.1051/0004-6361/201833440. arXiv:1808.06895 [astro-ph.SR]
Bass G, Orosz JA, Welsh WF, Windmiller G, Ames Gregg T, Fetherolf T, Wade RA, Quinn SN (2012) Kepler studies of low-mass eclipsing binaries. I. Parameters of the long-period binary KIC 6131659. ApJ 761:157. https://doi.org/10.1088/0004-637X/761/2/157. arXiv:1211.1068 [astro-ph.SR]
Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. MNRAS 398(1):L11–L15. https://doi.org/10.1111/j.1745-3933.2009.00696.x. arXiv:0906.1590 [astro-ph.GA]
Bastian N, Covey KR, Meyer MR (2010a) A universal stellar initial mass function? A critical look at variations. ARA&A 48:339–389. https://doi.org/10.1146/annurev-astro-082708-101642. arXiv:1001.2965 [astro-ph.GA]
Bastian N, Covey KR, Meyer MR (2010b) A universal stellar initial mass function? A critical look at variations. ARA&A 48:339–389. https://doi.org/10.1146/annurev-astro-082708-101642. arXiv:1001.2965 [astro-ph.GA]
Bastian N, Kamann S, Cabrera-Ziri I, Georgy C, Ekström S, Charbonnel C, de Juan Ovelar M, Usher C (2018) Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. MNRAS 480(3):3739–3746. https://doi.org/10.1093/mnras/sty2100. arXiv:1807.10779 [astro-ph.SR]
Bastien FA, Stassun KG, Basri G, Pepper J (2013) An observational correlation between stellar brightness variations and surface gravity. Nature 500:427–430. https://doi.org/10.1038/nature12419. arXiv:1308.4728 [astro-ph.SR]
Bastien FA, Stassun KG, Basri G, Pepper J (2016) A granulation, “flicker”-based measure of stellar surface gravity. ApJ 818:43. https://doi.org/10.3847/0004-637X/818/1/43. arXiv:1512.03454 [astro-ph.SR]
Basu S (2003) Stellar inversions. Ap&SS 284(1):153–164. https://doi.org/10.1023/A:1023223115165
Basu S, Chaplin WJ (2017) Asteroseismic data analysis: foundations and techniques. Princeton University Press, Princeton
Basu S, Verner GA, Chaplin WJ, Elsworth Y (2012) Effect of uncertainties in stellar model parameters on estimated masses and radii of single stars. ApJ 746(1):76. https://doi.org/10.1088/0004-637X/746/1/76. arXiv:1111.6976 [astro-ph.SR]
Bazot M (2020) Uncertainties and biases in modelling 16 Cygni A and B. A&A 635:A26. https://doi.org/10.1051/0004-6361/201935565. arXiv:2002.11070 [astro-ph.SR]
Bazot M, Creevey O, Christensen-Dalsgaard J, Meléndez J (2018) Modelling the solar twin 18 Scorpii. A&A 619:A172
Beasor ER, Davies B, Smith N, van Loon JT, Gehrz RD, Figer DF (2020) A new mass-loss rate prescription for red supergiants. MNRAS 492(4):5994–6006. https://doi.org/10.1093/mnras/staa255. arXiv:2001.07222 [astro-ph.SR]
Beck PG, Bedding TR, Mosser B, Stello D, Garcia RA, Kallinger T, Hekker S, Elsworth Y, Frandsen S, Carrier F, De Ridder J, Aerts C, White TR, Huber D, Dupret MA, Montalbán J, Miglio A, Noels A, Chaplin WJ, Kjeldsen H, Christensen-Dalsgaard J, Gilliland RL, Brown TM, Kawaler SD, Mathur S, Jenkins JM (2011) Kepler detected gravity-mode period spacings in a red giant star. Science 332(6026):205. https://doi.org/10.1126/science.1201939
Beck PG, Montalban J, Kallinger T, De Ridder J, Aerts C, García RA, Hekker S, Dupret MA, Mosser B, Eggenberger P, Stello D, Elsworth Y, Frandsen S, Carrier F, Hillen M, Gruberbauer M, Christensen-Dalsgaard J, Miglio A, Valentini M, Bedding TR, Kjeldsen H, Girouard FR, Hall JR, Ibrahim KA (2012) Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes. Nature 481(7379):55–57. https://doi.org/10.1038/nature10612. arXiv:1112.2825 [astro-ph.SR]
Beck PG, Hambleton K, Vos J, Kallinger T, Bloemen S, Tkachenko A, García RA, Østensen RH, Aerts C, Kurtz DW, De Ridder J, Hekker S, Pavlovski K, Mathur S, De Smedt K, Derekas A, Corsaro E, Mosser B, Van Winckel H, Huber D, Degroote P, Davies GR, Prša A, Debosscher J, Elsworth Y, Nemeth P, Siess L, Schmid VS, Pápics PI, de Vries BL, van Marle AJ, Marcos-Arenal P, Lobel A (2014) Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry. A sample study and the analysis of KIC 5006817. A&A 564:A36. https://doi.org/10.1051/0004-6361/201322477. arXiv:1312.4500 [astro-ph.SR]
Beck PG, Kallinger T, Pavlovski K, Palacios A, Tkachenko A, Mathis S, García RA, Corsaro E, Johnston C, Mosser B, Ceillier T, do Nascimento JD, Raskin G (2018a) Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015? A&A 612:A22. https://doi.org/10.1051/0004-6361/201731269. arXiv:1712.05208 [astro-ph.SR]
Beck PG, Mathis S, Gallet F, Charbonnel C, Benbakoura M, García RA, do Nascimento JD (2018b) Testing tidal theory for evolved stars by using red giant binaries observed by Kepler. MNRAS 479(1):L123–L128. https://doi.org/10.1093/mnrasl/sly114. arXiv:1806.07208 [astro-ph.SR]
Bedding TR (2011) Solar-like oscillations: an observational perspective. In: Pallé PL (ed) Asteroseismology, Canary Islands Winter School of Astrophysics, vol XXII. Cambridge University Press, Cambridge. arXiv:11071723
Belkacem K, Goupil MJ, Dupret MA, Samadi R, Baudin F, Noels A, Mosser B (2011) The underlying physical meaning of the \(\nu\)\(_{max}\)–\(\nu\)\(_{c}\) relation. A&A 530:A142. https://doi.org/10.1051/0004-6361/201116490. arXiv:1104.0630 [astro-ph.SR]
Belkacem K, Samadi R, Mosser B, Goupil MJ, Ludwig HG (2013) On the seismic scaling relations \(\Delta \nu\)-\(\rho\) and \(\nu _{max}\)-\(\nu\)\(_{c}\). In: Shibahashi H, Lynas-Gray AE (eds) Progress in physics of the Sun and stars: A new era in helio- and asteroseismology, ASP Conference Series, vol 479. Astronomical Society of the Pacific, San Francisco, p 61
Bellinger EP, Angelou GC, Hekker S, Basu S, Ball WH, Guggenberger E (2016) Fundamental parameters of main-sequence stars in an instant with machine learning. ApJ 830:31. https://doi.org/10.3847/0004-637X/830/1/31. arXiv:1607.02137 [astro-ph.SR]
Bellinger EP, Basu S, Hekker S, Ball WH (2017) Model-independent measurement of internal stellar structure in 16 Cygni A and B. ApJ 851(2):80. https://doi.org/10.3847/1538-4357/aa9848. arXiv:1710.11487 [astro-ph.SR]
Benbakoura M, Gaulme P, McKeever J, Sekaran S, Beck PG, Spada F, Jackiewicz J, Mathis S, Mathur S, Tkachenko A, García RA (2021) Spectroscopic and seismic analysis of red giants in eclipsing binaries discovered by Kepler. A&A 648:A113. https://doi.org/10.1051/0004-6361/202037783arXiv:2101.05351 [astro-ph.SR]
Benedict GF, Henry TJ, Franz OG, McArthur BE, Wasserman LH, Jao WC, Cargile PA, Dieterich SB, Bradley AJ, Nelan EP, Whipple AL (2016) The solar neighborhood. XXXVII: the mass-luminosity relation for main-sequence M dwarfs. AJ 152:141. https://doi.org/10.3847/0004-6256/152/5/141. arXiv:1608.04775 [astro-ph.SR]
Bennett DP, Akerlof C, Alcock C, Allsman R, Axelrod T, Cook KH, Freeman K, Griest K, Marshall S, Park HS, Perlmutter S, Peterson B, Quinn P, Rodgers A, Stubbs CW, Sutherland W (1993) The first data from the MACHO experiment. In: Akerlof CW, Srednicki MA (eds) Texas/PASCOS ’92: relativistic astrophysics and particle cosmology, vol 688, p 612. https://doi.org/10.1111/j.1749-6632.1993.tb43945.x. arXiv:astro-ph/9304014
Bergemann M, Lind K, Collet R, Magic Z, Asplund M (2012) Non-LTE line formation of Fe in late-type stars—I. Standard stars with 1D and \({\langle }\)3D\({\rangle }\) model atmospheres. MNRAS 427(1):27–49. https://doi.org/10.1111/j.1365-2966.2012.21687.x. arXiv:1207.2455 [astro-ph.SR]
Bergemann M, Serenelli A, Schönrich R, Ruchti G, Korn A, Hekker S, Kovalev M, Mashonkina L, Gilmore G, Randich S, Asplund M, Rix HW, Casey AR, Jofré P, Pancino E, Recio-Blanco A, de Laverny P, Smiljanic R, Tautvaisiene G, Bayo A, Lewis J, Koposov S, Hourihane A, Worley C, Morbidelli L, Franciosini E, Sacco G, Magrini L, Damiani F, Bestenlehner JM (2016) The Gaia-ESO Survey: hydrogen lines in red giants directly trace stellar mass. A&A 594:A120. https://doi.org/10.1051/0004-6361/201528010. arXiv:1606.05661 [astro-ph.SR]
Bergeron P, Saffer RA, Liebert J (1992) A spectroscopic determination of the mass distribution of DA white dwarfs. ApJ 394:228. https://doi.org/10.1086/171575
Bergeron P, Leggett SK, Ruiz MT (2001) Photometric and spectroscopic analysis of cool white dwarfs with trigonometric parallax measurements. ApJS 133(2):413–449. https://doi.org/10.1086/320356. arXiv:astro-ph/0011286
Bestenlehner JM, Vink JS, Gräfener G, Najarro F, Evans CJ, Bastian N, Bonanos AZ, Bressert E, Crowther PA, Doran E, Friedrich K, Hénault-Brunet V, Herrero A, de Koter A, Langer N, Lennon DJ, Maíz Apellániz J, Sana H, Soszynski I, Taylor WD (2011) The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136. A&A 530:L14. https://doi.org/10.1051/0004-6361/201117043. arXiv:1105.1775 [astro-ph.SR]
Bestenlehner JM, Crowther PA, Caballero-Nieves SM, Schneider FRN, Simón-Díaz S, Brands SA, de Koter A, Gräfener G, Herrero A, Langer N, Lennon DJ, Maíz Apellániz J, Puls J, Vink JS (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS—II. Physical properties of the most massive stars in R136. MNRAS 499(2):1918–1936. https://doi.org/10.1093/mnras/staa2801. arXiv:2009.05136 [astro-ph.SR]
Blandford RD, Königl A (1979) Relativistic jets as compact radio sources. ApJ 232:34–48. https://doi.org/10.1086/157262
Boden AF, Koresko CD, van Belle GT, Colavita MM, Dumont PJ, Gubler J, Kulkarni SR, Lane BF, Mobley D, Shao M, Wallace JK, [The PTI Collaboration], Henry GW (1999) The visual orbit of \(\iota\) Pegasi. ApJ 515(1):356–364. https://doi.org/10.1086/307030. arXiv:astro-ph/9811029
Boden AF, Torres G, Hummel CA (2005) Testing stellar models with an improved physical orbit for 12 Bootis. ApJ 627(1):464–476. https://doi.org/10.1086/430058. arXiv:astro-ph/0502250
Bond HE, Gilliland RL, Schaefer GH, Demarque P, Girard TM, Holberg JB, Gudehus D, Mason BD, Kozhurina-Platais V, Burleigh MR, Barstow MA, Nelan EP (2015) Hubble Space Telescope astrometry of the Procyon system. ApJ 813(2):106. https://doi.org/10.1088/0004-637X/813/2/106. arXiv:1510.00485 [astro-ph.SR]
Bond HE, Bergeron P, Bédard A (2017a) Astrophysical implications of a new dynamical mass for the nearby white dwarf 40 Eridani B. ApJ 848(1):16. https://doi.org/10.3847/1538-4357/aa8a63. arXiv:1709.00478 [astro-ph.SR]
Bond HE, Schaefer GH, Gilliland RL, Holberg JB, Mason BD, Lindenblad IW, Seitz-McLeese M, Arnett WD, Demarque P, Spada F, Young PA, Barstow MA, Burleigh MR, Gudehus D (2017b) The Sirius system and its astrophysical puzzles: Hubble Space Telescope and ground-based astrometry. ApJ 840(2):70. https://doi.org/10.3847/1538-4357/aa6af8. arXiv:1703.10625 [astro-ph.SR]
Bond HE, Schaefer GH, Gilliland RL, Holberg JB, Mason BD, Lindenblad IW, Seitz-McLeese M, Arnett WD, Demarque P, Spada F, Young PA, Barstow MA, Burleigh MR, Gudehus D (2017c) The Sirius system and its astrophysical puzzles: Hubble Space Telescope and ground-based astrometry. ApJ 840(2):70. https://doi.org/10.3847/1538-4357/aa6af8. arXiv:1703.10625 [astro-ph.SR]
Bond HE, Schaefer GH, Gilliland RL, VandenBerg DA (2020) Hubble Space Telescope astrometry of the metal-poor visual binary \(\mu\) Cassiopeiae: dynamical masses, helium content, and age. ApJ 904(2):112. https://doi.org/10.3847/1538-4357/abc172. arXiv:2010.06609 [astro-ph.SR]
Bono G, Castellani V, Marconi M (2002) Theoretical models for bump Cepheids. ApJL 565(2):L83–L86. https://doi.org/10.1086/339420. arXiv:astro-ph/0201106
Borucki WJ, Koch D, Basri G, Batalha N, Brown T, Caldwell D, Caldwell J, Christensen-Dalsgaard J, Cochran WD, DeVore E et al (2010) Kepler planet-detection mission: introduction and first results. Science 327(5968):977. https://doi.org/10.1126/science.1185402
Bouchy F, Deleuil M, Guillot T, Aigrain S, Carone L, Cochran WD, Almenara JM, Alonso R, Auvergne M, Baglin A et al (2011) Transiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: a brown-dwarf transiting companion. A&A 525:A68. https://doi.org/10.1051/0004-6361/201015276. arXiv:1010.0179 [astro-ph.EP]
Bowman DM, Burssens S, Pedersen MG, Johnston C, Aerts C, Buysschaert B, Michielsen M, Tkachenko A, Rogers TM, Edelmann PVF, Ratnasingam RP, Simón-Díaz S, Castro N, Moravveji E, Pope BJS, White TR, De Cat P (2019a) Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat Astron 3:760–765. https://doi.org/10.1038/s41550-019-0768-1. arXiv:1905.02120 [astro-ph.SR]
Bowman DM, Johnston C, Tkachenko A, Mkrtichian DE, Gunsriwiwat K, Aerts C (2019b) Discovery of tidally perturbed pulsations in the eclipsing binary U Gru: a crucial system for tidal asteroseismology. ApJL 883(1):L26. https://doi.org/10.3847/2041-8213/ab3fb2. arXiv:1908.08468 [astro-ph.SR]
Brandi E, Mikołajewska J, Quiroga C, Belczyński K, Ferrer OE, García LG, Pereira CB (2005) The spectroscopic orbits and other parameters of the symbiotic binary FN Sgr. A&A 440(1):239–248. https://doi.org/10.1051/0004-6361:20042552
Breen PG, Heggie DC (2013) Dynamical evolution of black hole subsystems in idealized star clusters. MNRAS 432:2779–2797. https://doi.org/10.1093/mnras/stt628. arXiv:1304.3401 [astro-ph.GA]
Bressan A, Marigo P, Girardi L, Salasnich B, Dal Cero C, Rubele S, Nanni A (2012) PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. MNRAS 427(1):127–145. https://doi.org/10.1111/j.1365-2966.2012.21948.x. arXiv:1208.4498 [astro-ph.SR]
Brogaard K, Bruntt H, Grundahl F, Clausen JV, Frandsen S, Vandenberg DA, Bedin LR (2011) Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. I. Measurements, methods, and first results. A&A 525:A2. https://doi.org/10.1051/0004-6361/201015503. arXiv:1009.5537 [astro-ph.SR]
Brogaard K, VandenBerg DA, Bedin LR, Milone AP, Thygesen A, Grundahl F (2017) The age of 47 Tuc from self-consistent isochrone fits to colour-magnitude diagrams and the eclipsing member V69. MNRAS 468(1):645–661. https://doi.org/10.1093/mnras/stx378. arXiv:1702.03421 [astro-ph.SR]
Brogaard K, Hansen CJ, Miglio A, Slumstrup D, Frandsen S, Jessen-Hansen J, Lund MN, Bossini D, Thygesen A, Davies GR, Chaplin WJ, Arentoft T, Bruntt H, Grundahl F, Handberg R (2018) Establishing the accuracy of asteroseismic mass and radius estimates of giant stars—I. Three eclipsing systems at [Fe/H] \(\sim\) -0.3 and the need for a large high-precision sample. MNRAS 476(3):3729–3743. https://doi.org/10.1093/mnras/sty268. arXiv:1801.08167 [astro-ph.SR]
Brott I, de Mink SE, Cantiello M, Langer N, de Koter A, Evans CJ, Hunter I, Trundle C, Vink JS (2011) Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. A&A 530:A115. https://doi.org/10.1051/0004-6361/201016113. arXiv:1102.0530 [astro-ph.SR]
Bugnet L, García RA, Davies GR, Mathur S, Corsaro E, Hall OJ, Rendle BM (2018) FliPer: a global measure of power density to estimate surface gravities of main-sequence solar-like stars and red giants. A&A 620:A38. https://doi.org/10.1051/0004-6361/201833106. arXiv:1809.05105 [astro-ph.SR]
Bugnet L, García RA, Mathur S, Davies GR, Hall OJ, Lund MN, Rendle BM (2019) FliPer class: in search of solar-like pulsators among TESS targets. A&A 624:A79. https://doi.org/10.1051/0004-6361/201834780. arXiv:1902.09854 [astro-ph.SR]
Buldgen G, Reese DR, Dupret MA, Samadi R (2015) Stellar acoustic radii, mean densities, and ages from seismic inversion techniques. A&A 574:A42. https://doi.org/10.1051/0004-6361/201424613. arXiv:1411.2416 [astro-ph.SR]
Buldgen G, Rendle B, Sonoi T, Davies GR, Miglio A, Salmon SJAJ, Reese DR, Bossini D, Eggenberger P, Noels A, Scuflaire R (2019) Mean density inversions for red giants and red clump stars. MNRAS 482(2):2305–2319. https://doi.org/10.1093/mnras/sty2346. arXiv:1808.08391 [astro-ph.SR]
Burkert A, Ida S (2007) The separation/period gap in the distribution of extrasolar planets around stars with masses \(( M \geq 1.2 M_{\odot} )\). ApJ 660(1):845–849. https://doi.org/10.1086/512538. arXiv:astro-ph/0608347
Burkholder V, Massey P, Morrell N (1997) The “mass discrepancy” for massive stars: tests of models using spectroscopic binaries. ApJ 490(1):328–342. https://doi.org/10.1086/304852
Burnett B, Binney J (2010) Stellar distances from spectroscopic observations: a new technique. MNRAS 407:339–354. https://doi.org/10.1111/j.1365-2966.2010.16896.x. arXiv:1004.4367 [astro-ph.IM]
Burssens S, Bowman DM, Aerts C, Pedersen MG, Moravveji E, Buysschaert B (2019) New \(\beta\) Cep pulsators discovered with K2 space photometry. MNRAS 489(1):1304–1320. https://doi.org/10.1093/mnras/stz2165. arXiv:1908.02836 [astro-ph.SR]
Campante TL, Veras D, North TSH, Miglio A, Morel T, Johnson JA, Chaplin WJ, Davies GR, Huber D, Kuszlewicz JS et al (2017) Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771. MNRAS 469(2):1360–1368. https://doi.org/10.1093/mnras/stx876. arXiv:1704.01794 [astro-ph.SR]
Campbell B, Walker GAH (1979) Precision radial velocities with an absorption cell. PASP 91:540–545. https://doi.org/10.1086/130535
Caputo F, Bono G, Fiorentino G, Marconi M, Musella I (2005) Pulsation and evolutionary masses of classical Cepheids. I. Milky Way variables. ApJ 629(2):1021–1033. https://doi.org/10.1086/431641. arXiv:astro-ph/0505149
Cardelli JA, Clayton GC, Mathis JS (1989) The relationship between infrared, optical, and ultraviolet extinction. ApJ 345:245. https://doi.org/10.1086/167900
Cargile PA, Stassun KG, Mathieu RD (2008) Discovery of Par 1802 as a low-mass, pre-main-sequence eclipsing binary in the Orion star-forming region. ApJ 674:329–335. https://doi.org/10.1086/524346. arXiv:0709.3356
Carlos M, Meléndez J, Spina L, dos Santos LA, Bedell M, Ramirez I, Asplund M, Bean JL, Yong D, Yana Galarza J, Alves-Brito A (2019) The Li-age correlation: the Sun is unusually Li deficient for its age. MNRAS 485(3):4052–4059. https://doi.org/10.1093/mnras/stz681. arXiv:1903.02735 [astro-ph.SR]
Carlos M, Meléndez J, do Nascimento JD, Castro M (2020) Li abundances for solar twins in the open cluster M67. MNRAS 492(1):245–249. https://doi.org/10.1093/mnras/stz3504. arXiv:2001.01850 [astro-ph.SR]
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Catanzaro G, Leone F, Bellazzini M, Claudi R, D’Orazi V, Momany Y, Ortolani S, Pancino E, Piotto G, Recio-Blanco A, Sabbi E (2009) Na-O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. A&A 505:117–138. https://doi.org/10.1051/0004-6361/200912096. arXiv:0909.2938
Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010) Properties of stellar generations in globular clusters and relations with global parameters. A&A 516:A55. https://doi.org/10.1051/0004-6361/200913451. arXiv:1003.1723
Carter JA, Fabrycky DC, Ragozzine D, Holman MJ, Quinn SN, Latham DW, Buchhave LA, Van Cleve J, Cochran WD, Cote MT et al (2011) KOI-126: a triply eclipsing hierarchical triple with two low-mass stars. Science 331:562. https://doi.org/10.1126/science.1201274. arXiv:1102.0562 [astro-ph.SR]
Casali G, Magrini L, Tognelli E, Jackson R, Jeffries RD, Lagarde N, Tautvaišien\(\dot{\text{e}}\) G, Masseron T, Degl’Innocenti S, Prada Moroni PG, Kordopatis G, Pancino E, Randich S, Feltzing S, Sahlholdt C, Spina L, Friel E, Roccatagliata V, Sanna N, Bragaglia A, Drazdauskas A, Mikolaitis Š, Minkevičiūt\(\dot{\text{ e }}\) R, Stonkut\(\dot{\text{ e }}\) E, Chorniy Y, Bagdonas V, Jimenez-Esteban F, Martell S, Van der Swaelmen M, Gilmore G, Vallenari A, Bensby T, Koposov SE, Korn A, Worley C, Smiljanic R, Bergemann M, Carraro G, Damiani F, Prisinzano L, Bonito R, Franciosini E, Gonneau A, Hourihane A, Jofré P, Lewis J, Morbidelli L, Sacco G, Sousa SG, Zaggia S, Lanzafame AC, Heiter U, Frasca A, Bayo A, (2019) The Gaia-ESO survey: calibrating a relationship between age and the [C/N] abundance ratio with open clusters. A&A 629:A62. https://doi.org/10.1051/0004-6361/201935282. arXiv:1907.07350 [astro-ph.GA]
Casares J, Jonker PG (2014) Mass measurements of stellar and intermediate-mass black holes. Space Sci Rev 183:223–252. https://doi.org/10.1007/s11214-013-0030-6. arXiv:1311.5118 [astro-ph.HE]
Cassisi S, Salaris M (2011) A classical Cepheid in a large magellanic cloud eclipsing binary: evidence of shortcomings in current stellar evolutionary models? ApJL 728(2):L43. https://doi.org/10.1088/2041-8205/728/2/L43. arXiv:1101.0394 [astro-ph.SR]
Castro N, Fossati L, Langer N, Simón-Díaz S, Schneider FRN, Izzard RG (2014) The spectroscopic Hertzsprung–Russell diagram of Galactic massive stars. A&A 570:L13. https://doi.org/10.1051/0004-6361/201425028. arXiv:1410.3499 [astro-ph.SR]
Castro M, Duarte T, Pace G, do Nascimento JD (2016) Mass effect on the lithium abundance evolution of open clusters: Hyades, NGC 752, and M 67. A&A 590:A94. https://doi.org/10.1051/0004-6361/201527583. arXiv:1603.08809 [astro-ph.SR]
Catalán S, Isern J, García-Berro E, Ribas I (2008) The initial-final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. MNRAS 387(4):1693–1706. https://doi.org/10.1111/j.1365-2966.2008.13356.x. arXiv:0804.3034 [astro-ph]
Chabrier G, Gallardo J, Baraffe I (2007) Evolution of low-mass star and brown dwarf eclipsing binaries. A&A 472:L17–L20. https://doi.org/10.1051/0004-6361:20077702. arXiv:0707.1792
Chaplin WJ, Miglio A (2013) Asteroseismology of solar-type and red-giant stars. ARA&A 51(1):353–392. https://doi.org/10.1146/annurev-astro-082812-140938. arXiv:1303.1957 [astro-ph.SR]
Chaplin WJ, Basu S, Huber D, Serenelli A, Casagrande L, Silva Aguirre V, Ball WH, Creevey OL, Gizon L, Handberg R, Karoff C, Lutz R, Marques JP, Miglio A, Stello D, Suran MD, Pricopi D, Metcalfe TS, Monteiro MJPFG, Molenda-Zakowicz J, Appourchaux T, Christensen-Dalsgaard J, Elsworth Y, García RA, Houdek G, Kjeldsen H, Bonanno A, Campante TL, Corsaro E, Gaulme P, Hekker S, Mathur S, Mosser B, Régulo C, Salabert D (2014) Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler mission. ApJS 210(1):1. https://doi.org/10.1088/0067-0049/210/1/1. arXiv:1310.4001 [astro-ph.SR]
Chaplin WJ, Serenelli AM, Miglio A et al (2020) Age dating of an early Milky Way merger via asteroseismology of the naked-eye star \(\nu\) Indi. Nat Astron 4:382–389. https://doi.org/10.1038/s41550-019-0975-9. arXiv:2001.04653 [astro-ph.GA]
Charbonnel C (1994) Clues for non-standard mixing on the red giant branch from 12C/13C and 12C/14N ratios in evolved stars. A&A 282:811–820
Charbonnel C, Lagarde N (2010) Thermohaline instability and rotation-induced mixing. I. Low- and intermediate-mass solar metallicity stars up to the end of the AGB. A&A 522:A10. https://doi.org/10.1051/0004-6361/201014432. arXiv:1006.5359 [astro-ph.SR]
Charbonnel C, Talon S (2005) Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309(5744):2189–2191. https://doi.org/10.1126/science.1116849. arXiv:astro-ph/0511265
Charbonnel C, Zahn JP (2007) Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants. A&A 467(1):L15–L18. https://doi.org/10.1051/0004-6361:20077274. arXiv:astro-ph/0703302
Chiavassa A, Pasquato E, Jorissen A, Sacuto S, Babusiaux C, Freytag B, Ludwig HG, Cruzalèbes P, Rabbia Y, Spang A, Chesneau O (2011) Radiative hydrodynamic simulations of red supergiant stars. III. Spectro-photocentric variability, photometric variability, and consequences on Gaia measurements. A&A 528:A120. https://doi.org/10.1051/0004-6361/201015768. arXiv:1012.5234 [astro-ph.SR]
Chiosi C, Wood P, Bertelli G, Bressan A (1992) On the instability strip of the Cepheid stars. ApJ 387:320. https://doi.org/10.1086/171084
Choi J, Dotter A, Conroy C, Cantiello M, Paxton B, Johnson BD (2016) Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. ApJ 823:102. https://doi.org/10.3847/0004-637X/823/2/102. arXiv:1604.08592 [astro-ph.SR]
Chomiuk L, Strader J, Maccarone TJ, Miller-Jones JCA, Heinke C, Noyola E, Seth AC, Ransom S (2013) A radio-selected black hole X-ray binary candidate in the Milky Way globular cluster M62. ApJ 777:69. https://doi.org/10.1088/0004-637X/777/1/69. arXiv:1306.6624 [astro-ph.HE]
Chontos A, Huber D, Latham DW, Bieryla A, Van Eylen V, Bedding TR, Berger T, Buchhave LA, Campante TL, Chaplin WJ et al (2019) The curious case of KOI 4: confirming Kepler’s first exoplanet detection. AJ 157(5):192. https://doi.org/10.3847/1538-3881/ab0e8e. arXiv:1903.01591 [astro-ph.EP]
Christensen-Dalsgaard J (2014) Asteroseismology of red giants. In: Pallé PL, Esteban C (eds) Asteroseismology, 22nd Canary Islands Winter School of Astrophysics. Cambridge University Press, Cambridge, p 194
Christensen-Dalsgaard J, Frandsen S (1983) Stellar 5 min oscillations. Sol Phys 82(1–2):469–486. https://doi.org/10.1007/BF00145588
Christensen-Dalsgaard J, Schou J, Thompson MJ (1990) A comparison of methods for inverting helioseismic data. MNRAS 242:353–369. https://doi.org/10.1093/mnras/242.3.353
Christensen-Dalsgaard J, Monteiro MJPFG, Rempel M, Thompson MJ (2011) A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. MNRAS 414:1158–1174. https://doi.org/10.1111/j.1365-2966.2011.18460.x
Christensen-Dalsgaard J, Silva Aguirre V, Cassisi S, Miller Bertolami M, Serenelli A, Stello D, Weiss A, Angelou G, Jiang C, Lebreton Y, Spada F, Bellinger EP, Deheuvels S, Ouazzani RM, Pietrinferni A, Mosumgaard JR, Townsend RHD, Battich T, Bossini D, Constantino T, Eggenberger P, Hekker S, Mazumdar A, Miglio A, Nielsen KB, Salaris M (2020) The Aarhus red giants challenge. II. Stellar oscillations in the red giant branch phase. A&A 635:A165. https://doi.org/10.1051/0004-6361/201936766. arXiv:2002.02816 [astro-ph.SR]
Christy RF (1968) The theory of Cepheid variability. Q J R Astron Soc 9:13
Claret A, Torres G (2016) The dependence of convective core overshooting on stellar mass. A&A 592:A15. https://doi.org/10.1051/0004-6361/201628779
Clausen JV, Torres G, Bruntt H, Andersen J, Nordström B, Stefanik RP, Latham DW, Southworth J (2008) Absolute dimensions of eclipsing binaries. XXVI.. Setting a new standard: Masses, radii, and abundances for the F-type systems AD Bootis VZ Hydrae, and WZ Ophiuchi. A&A 487(3):1095–1117. https://doi.org/10.1051/0004-6361:200809671. arXiv:0806.3218 [astro-ph]
Clausen JV, Bruntt H, Claret A, Larsen A, Andersen J, Nordström B, Giménez A (2009) Absolute dimensions of solar-type eclipsing binaries. II. V636 Centauri: A 1.05 \(M_{\odot }\) primary with an active, cool, oversize 0.85 \(M_{\odot }\) secondary. A&A 502(1):253–265. https://doi.org/10.1051/0004-6361/200912362. arXiv:0905.3077 [astro-ph.SR]
Clausen JV, Frandsen S, Bruntt H, Olsen EH, Helt BE, Gregersen K, Juncher D, Krogstrup P (2010a) Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: prospects for calibration of convective core overshoot. A&A 516:A42. https://doi.org/10.1051/0004-6361/201014266. arXiv:1004.1903 [astro-ph.SR]
Clausen JV, Olsen EH, Helt BE, Claret A (2010b) Absolute dimensions of eclipsing binaries. XXVII. V1130 Tauri: a metal-weak F-type system, perhaps with preference for Y = 0.23-0.24. A&A 510:A91. https://doi.org/10.1051/0004-6361/200913700. arXiv:0912.3108 [astro-ph.SR]
Coelho HR, Chaplin WJ, Basu S, Serenelli A, Miglio A, Reese DR (2015) A test of the asteroseismic \(\nu\)\(_{max}\) scaling relation for solar-like oscillations in main-sequence and subgiant stars. MNRAS 451(3):3011–3020. https://doi.org/10.1093/mnras/stv1175. arXiv:1505.06087 [astro-ph.SR]
Coppola G, Marconi M, Stetson PB, Bono G, Braga VF, Ripepi V, Dall’Ora M, Musella I, Buonanno R, Fabrizio M, Ferraro I, Fiorentino G, Iannicola G, Monelli M, Nonino M, Thévenin F, Walker AR (2015) The Carina Project IX: on hydrogen and helium burning variables. ApJ 814(1):71. https://doi.org/10.1088/0004-637X/814/1/71. arXiv:1509.02687 [astro-ph.SR]
Corsaro E, De Ridder J (2014) DIAMONDS: a new Bayesian nested sampling tool. Application to peak bagging of solar-like oscillations. A&A 571:A71. https://doi.org/10.1051/0004-6361/201424181. arXiv:1408.2515 [astro-ph.IM]
Corsaro E, De Ridder J, García RA (2015) Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler. A&A 579:A83. https://doi.org/10.1051/0004-6361/201525895. arXiv:1503.08821 [astro-ph.SR]
Corsaro E, Mathur S, García RA, Gaulme P, Pinsonneault M, Stassun K, Stello D, Tayar J, Trampedach R, Jiang C, Nitschelm C, Salabert D (2017) Metallicity effect on stellar granulation detected from oscillating red giants in open clusters. A&A 605:A3. https://doi.org/10.1051/0004-6361/201731094. arXiv:1707.07474 [astro-ph.SR]
Córsico AH (2020) White-dwarf asteroseismology with the Kepler space telescope. Front Astron Space Sci 7:47. https://doi.org/10.3389/fspas.2020.00047. arXiv:2006.04955 [astro-ph.SR]
Córsico AH, Althaus LG, Miller Bertolami MM, Kepler SO (2019) Pulsating white dwarfs: new insights. Astron Astrophys Rev 27(1):7. https://doi.org/10.1007/s00159-019-0118-4. arXiv:1907.00115 [astro-ph.SR]
Costa G, Girardi L, Bressan A, Marigo P, Rodrigues TS, Chen Y, Lanza A, Goudfrooij P (2019) Mixing by overshooting and rotation in intermediate-mass stars. MNRAS 485(4):4641–4657. https://doi.org/10.1093/mnras/stz728. arXiv:1903.04368 [astro-ph.SR]
Cox AN (1980) The masses of Cepheids. ARA&A 18:15–41. https://doi.org/10.1146/annurev.aa.18.090180.000311
Creevey OL, Benedict GF, Brown TM, Alonso R, Cargile P, Mandushev G, Charbonneau D, McArthur BE, Cochran W, O’Donovan FT et al (2005) A new detached M dwarf eclipsing binary. ApJ 625:L127–L130. https://doi.org/10.1086/431278. arXiv:astro-ph/0504490
Cukanovaite E, Tremblay PE, Freytag B, Ludwig HG, Bergeron P (2018) Pure-helium 3D model atmospheres of white dwarfs. MNRAS 481(2):1522–1537. https://doi.org/10.1093/mnras/sty2383. arXiv:1809.00590 [astro-ph.SR]
Cummings JD, Kalirai JS, Choi J, Georgy C, Tremblay PE, Ramirez-Ruiz E (2019) A novel approach to constrain rotational mixing and convective-core overshoot in stars using the initial-final mass relation. ApJL 871(1):L18. https://doi.org/10.3847/2041-8213/aafc2d. arXiv:1901.02904 [astro-ph.SR]
Cunha MS, Metcalfe TS (2007) Asteroseismic signatures of small convective cores. ApJ 666:413
Cunha MS, Aerts C, Christensen-Dalsgaard J, Baglin A, Bigot L, Brown TM, Catala C, Creevey OL, Domiciano de Souza A, Eggenberger P, Garcia PJV, Grundahl F, Kervella P, Kurtz DW, Mathias P, Miglio A, Monteiro MJPFG, Perrin G, Pijpers FP, Pourbaix D, Quirrenbach A, Rousselet-Perraut K, Teixeira TC, Thévenin F, Thompson MJ (2007) Asteroseismology and interferometry. Astron Astrophys Rev 14(3–4):217–360. https://doi.org/10.1007/s00159-007-0007-0. arXiv:0709.4613 [astro-ph]
Czekala I, Andrews SM, Jensen ELN, Stassun KG, Torres G, Wilner DJ (2015) A disk-based dynamical mass estimate for the young binary AK Sco. ApJ 806:154. https://doi.org/10.1088/0004-637X/806/2/154. arXiv:1505.01850 [astro-ph.SR]
Czekala I, Andrews SM, Torres G, Jensen ELN, Stassun KG, Wilner DJ, Latham DW (2016) A disk-based dynamical constraint on the mass of the young binary DQ Tau. ApJ 818:156. https://doi.org/10.3847/0004-637X/818/2/156. arXiv:1601.03806 [astro-ph.SR]
Czekala I, Andrews SM, Torres G, Rodriguez JE, Jensen ELN, Stassun KG, Latham DW, Wilner DJ, Gully-Santiago MA, Grankin KN, Lund MB, Kuhn RB, Stevens DJ, Siverd RJ, James D, Gaudi BS, Shappee BJ, Holoien TWS (2017a) The architecture of the GW Ori young triple-star system and its disk: dynamical masses, mutual inclinations, and recurrent eclipses. ApJ 851:132. https://doi.org/10.3847/1538-4357/aa9be7. arXiv:1710.03153 [astro-ph.EP]
Czekala I, Mandel KS, Andrews SM, Dittmann JA, Ghosh SK, Montet BT, Newton ER (2017b) Disentangling time-series spectra with Gaussian processes: applications to radial velocity analysis. ApJ 840(1):49. https://doi.org/10.3847/1538-4357/aa6aab. arXiv:1702.05652 [astro-ph.SR]
Da Costa GS, Freeman KC (1976) The structure and mass function of the globular cluster M3. ApJ 206:128–137. https://doi.org/10.1086/154363
da Silva L, Girardi L, Pasquini L, Setiawan J, von der Lühe O, de Medeiros JR, Hatzes A, Döllinger MP, Weiss A (2006) Basic physical parameters of a selected sample of evolved stars. A&A 458:609–623. https://doi.org/10.1051/0004-6361:20065105. arXiv:astro-ph/0608160
Das P, Sanders JL (2019) MADE: a spectroscopic mass, age, and distance estimator for red giant stars with Bayesian machine learning. MNRAS 484(1):294–304. https://doi.org/10.1093/mnras/sty2776. arXiv:1804.09596 [astro-ph.GA]
David TJ, Stauffer J, Hillenbrand LA, Cody AM, Conroy K, Stassun KG, Pope B, Aigrain S, Gillen E, Collier Cameron A et al (2015) HII 2407: an eclipsing binary revealed by K2 observations of the Pleiades. ApJ 814(1):62. https://doi.org/10.1088/0004-637X/814/1/62. arXiv:1510.06399 [astro-ph.SR]
David TJ, Hillenbrand LA, Cody AM, Carpenter JM, Howard AW (2016) K2 discovery of young eclipsing binaries in Upper Scorpius: direct mass and radius determinations for the lowest mass stars and initial characterization of an eclipsing brown dwarf binary. ApJ 816:21. https://doi.org/10.3847/0004-637X/816/1/21. arXiv:1510.08087 [astro-ph.SR]
Davies B, Beasor ER (2020) The ‘red supergiant problem’: the upper luminosity boundary of Type II supernova progenitors. MNRAS 493(1):468–476. https://doi.org/10.1093/mnras/staa174. arXiv:2001.06020 [astro-ph.SR]
Davies GR, Silva Aguirre V, Bedding TR, Handberg R, Lund MN, Chaplin WJ, Huber D, White TR, Benomar O, Hekker S, Basu S, Campante TL, Christensen-Dalsgaard J, Elsworth Y, Karoff C, Kjeldsen H, Lundkvist MS, Metcalfe TS, Stello D (2016) Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning. MNRAS 456(2):2183–2195. https://doi.org/10.1093/mnras/stv2593
de Boer TJL, Tolstoy E, Saha A, Olsen K, Irwin MJ, Battaglia G, Hill V, Shetrone MD, Fiorentino G, Cole A (2011) Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy. A&A 528:A119. https://doi.org/10.1051/0004-6361/201016398. arXiv:1103.0015 [astro-ph.CO]
de Boer TJL, Tolstoy E, Hill V, Saha A, Olsen K, Starkenburg E, Lemasle B, Irwin MJ, Battaglia G (2012) The star formation and chemical evolution history of the Sculptor dwarf spheroidal galaxy. A&A 539:A103. https://doi.org/10.1051/0004-6361/201118378. arXiv:1201.2408 [astro-ph.CO]
De Marco O, Izzard RG (2017) Dawes review 6: the impact of companions on stellar evolution. PASA 34:e001. https://doi.org/10.1017/pasa.2016.52. arXiv:1611.03542 [astro-ph.SR]
De Ridder J, Molenberghs G, Eyer L, Aerts C (2016) Asteroseismic versus Gaia distances: a first comparison. A&A 595:L3. https://doi.org/10.1051/0004-6361/201629799. arXiv:1609.08945 [astro-ph.SR]
Deal M, Alecian G, Lebreton Y, Goupil MJ, Marques JP, LeBlanc F, Morel P, Pichon B (2018) Impacts of radiative accelerations on solar-like oscillating main-sequence stars. A&A 618:A10. https://doi.org/10.1051/0004-6361/201833361. arXiv:1806.10533 [astro-ph.SR]
Deal M, Goupil MJ, Marques JP, Reese DR, Lebreton Y (2020) Chemical mixing in low mass stars. I. Rotation against atomic diffusion including radiative acceleration. A&A 633:A23. https://doi.org/10.1051/0004-6361/201936666. arXiv:1910.14335 [astro-ph.SR]
Decin L, Cox NLJ, Royer P, Van Marle AJ, Vandenbussche B, Ladjal D, Kerschbaum F, Ottensamer R, Barlow MJ, Blommaert JADL, Gomez HL, Groenewegen MAT, Lim T, Swinyard BM, Waelkens C, Tielens AGGM (2012) The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel. I. Evidence of clumps, multiple arcs, and a linear bar-like structure. A&A 548:A113. https://doi.org/10.1051/0004-6361/201219792. arXiv:1212.4870 [astro-ph.SR]
Degroote P, Aerts C, Baglin A, Miglio A, Briquet M, Noels A, Niemczura E, Montalban J, Bloemen S, Oreiro R, Vučković M, Smolders K, Auvergne M, Baudin F, Catala C, Michel E (2010) Deviations from a uniform period spacing of gravity modes in a massive star. Nature 464(7286):259–261. https://doi.org/10.1038/nature08864
Deheuvels S, Michel E (2011) Constraints on the structure of the core of subgiants via mixed modes: the case of HD 49385. A&A. https://doi.org/10.1051/0004-6361/201117232
Deheuvels S, Doğan G, Goupil MJ, Appourchaux T, Benomar O, Bruntt H, Campante TL, Casagrande L, Ceillier T, Davies GR, De Cat P, Fu JN, García RA, Lobel A, Mosser B, Reese DR, Régulo C, Schou J, Stahn T, Thygesen AO, Yang XH, Chaplin WJ, Christensen-Dalsgaard J, Eggenberger P, Gizon L, Mathis S, Molenda-Zakowicz J, Pinsonneault M (2014) Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants. A&A. https://doi.org/10.1051/0004-6361/201322779
Deheuvels S, Brandão I, Silva Aguirre V, Ballot J, Michel E, Cunha MS, Lebreton Y, Appourchaux T (2016) Measuring the extent of convective cores in low-mass stars using Kepler data: toward a calibration of core overshooting. A&A. https://doi.org/10.1051/0004-6361/201527967
Deleuil M, Deeg HJ, Alonso R, Bouchy F, Rouan D, Auvergne M, Baglin A, Aigrain S, Almenara JM, Barbieri M et al (2008) Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert. A&A 491:889–897. https://doi.org/10.1051/0004-6361:200810625. arXiv:0810.0919
Delfosse X, Forveille T, Ségransan D, Beuzit JL, Udry S, Perrier C, Mayor M (2000) Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. A&A 364:217–224 arXiv:astro-ph/0010586
Delorme P, Collier Cameron A, Hebb L, Rostron J, Lister TA, Norton AJ, Pollacco D, West RG (2011) Stellar rotation in the Hyades and Praesepe: gyrochronology and braking time-scale. MNRAS 413:2218–2234. https://doi.org/10.1111/j.1365-2966.2011.18299.x. arXiv:1101.1222 [astro-ph.SR]
Demarque P, Guenther DB, Li LH, Mazumdar A, Straka CW (2008) YREC: the Yale rotating stellar evolution code. Non-rotating version, seismology applications. Ap&SS 316:31–41. https://doi.org/10.1007/s10509-007-9698-y. arXiv:0710.4003
Dittmann JA, Irwin JM, Charbonneau D, Berta-Thompson ZK, Newton ER, Latham DW, Latham CA, Esquerdo G, Berlind P, Calkins ML (2017) Discovery and precise characterization by the MEarth Project of LP 661–13, an eclipsing binary consisting of two fully convective low-mass stars. ApJ 836:124. https://doi.org/10.3847/1538-4357/836/1/124. arXiv:1609.03591 [astro-ph.SR]
Do Nascimento JJD, Castro M, Meléndez J, Bazot M, Théado S, Porto de Mello GF, de Medeiros JR (2009) Age and mass of solar twins constrained by lithium abundance. A&A 501(2):687–694. https://doi.org/10.1051/0004-6361/200911935. arXiv:0904.3580 [astro-ph.SR]
Dobbie PD, Napiwotzki R, Lodieu N, Burleigh MR, Barstow MA, Jameson RF (2006) On the origin of the ultramassive white dwarf GD50. MNRAS 373(1):L45–L49. https://doi.org/10.1111/j.1745-3933.2006.00240.x. arXiv:astro-ph/0608671
Donati JF, Collier Cameron A (1997) Differential rotation and magnetic polarity patterns on AB Doradus. MNRAS 291(1):1–19. https://doi.org/10.1093/mnras/291.1.1
Dorman B, Rood RT, O’Connell RW (1993) Ultraviolet radiation from evolved stellar populations. I. Models. ApJ 419:596. https://doi.org/10.1086/173511. arXiv:astro-ph/9311022
Doyle LR, Carter JA, Fabrycky DC, Slawson RW, Howell SB, Winn JN, Orosz JA, Přsa A, Welsh WF, Quinn SN et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602. https://doi.org/10.1126/science.1210923. arXiv:1109.3432 [astro-ph.EP]
Drazdauskas A, Tautvaišiene G, Randich S, Bragaglia A, Mikolaitis Š, Janulis R (2016) The extent of mixing in stellar interiors: the open clusters Collinder 261 and Melotte 66. A&A 589:A50. https://doi.org/10.1051/0004-6361/201628138. arXiv:1603.09529 [astro-ph.SR]
Drechsel H, Heber U, Napiwotzki R, Østensen R, Solheim JE, Johannessen F, Schuh SL, Deetjen J, Zola S (2001) HS 0705+6700: A new eclipsing sdB binary. A&A 379:893–904. https://doi.org/10.1051/0004-6361:20011376. arXiv:astro-ph/0110217
Dupree AK, Hartmann L, Avrett EH (1984) Chromospheres and mass loss in metal-deficient giant stars. ApJL 281:L37–L39. https://doi.org/10.1086/184280
Dupree AK, Dotter A, Johnson CI, Marino AF, Milone AP, Bailey IJI, Crane JD, Mateo M, Olszewski EW (2017) NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. ApJL 846(1):L1. https://doi.org/10.3847/2041-8213/aa85dd. arXiv:1708.03386 [astro-ph.GA]
Duvall JTL (1982) A dispersion law for solar oscillations. Nature 300(5889):242–243. https://doi.org/10.1038/300242a0
Dyson FW, Eddington AS, Davidson C (1923) A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Mem R Astron Soc 62:A1
Eddington AS (1926) The internal constitution of the stars. Cambridge University Press, Cambridge
Eggenberger P, Miglio A, Montalban J, Moreira O, Noels A, Meynet G, Maeder A (2010) Effects of rotation on the evolution and asteroseismic properties of red giants. A&A 509:A72. https://doi.org/10.1051/0004-6361/200912897. arXiv:0911.5307 [astro-ph.SR]
Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. MNRAS 468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR]
Eker Z, Soydugan F, Soydugan E, Bilir S, Yaz Gökçe E, Steer I, Tüysüz M, Şenyüz T, Demircan O (2015) Main-sequence effective temperatures from a revised mass-luminosity relation based on accurate properties. AJ 149:131. https://doi.org/10.1088/0004-6256/149/4/131. arXiv:1501.06585 [astro-ph.SR]
Eker Z, Bakış V, Bilir S, Soydugan F, Steer I, Soydugan E, Bakış H, Aliçavuş F, Aslan G, Alpsoy M (2018) Interrelated main-sequence mass-luminosity, mass-radius, and mass-effective temperature relations. MNRAS 479:5491–5511. https://doi.org/10.1093/mnras/sty1834. arXiv:1807.02568 [astro-ph.SR]
El-Badry K, Rix HW, Weisz DR (2018) An empirical measurement of the initial-final mass relation with Gaia white dwarfs. ApJL 860(2):L17. https://doi.org/10.3847/2041-8213/aaca9c. arXiv:1805.05849 [astro-ph.SR]
Eldridge JJ, Tout CA (2004) The progenitors of core-collapse supernovae. MNRAS 353(1):87–97. https://doi.org/10.1111/j.1365-2966.2004.08041.x. arXiv:astro-ph/0405408
Escorza A, Boffin HMJ, Jorissen A, Van Eck S, Siess L, Van Winckel H, Karinkuzhi D, Shetye S, Pourbaix D (2017) Hertzsprung–Russell diagram and mass distribution of barium stars. A&A 608:A100. https://doi.org/10.1051/0004-6361/201731832. arXiv:1710.02029 [astro-ph.SR]
Escorza A, Karinkuzhi D, Jorissen A, Siess L, Van Winckel H, Pourbaix D, Johnston C, Miszalski B, Oomen GM, Abdul-Masih M, Boffin HMJ, North P, Manick R, Shetye S, Mikołajewska J (2019) Barium and related stars, and their white-dwarf companions. II. Main-sequence and subgiant starss. A&A 626:A128. https://doi.org/10.1051/0004-6361/201935390. arXiv:1904.04095 [astro-ph.SR]
Exter KM, Pollacco DL, Maxted PFL, Napiwotzki R, Bell SA (2005) A study of two post-common envelope binary systems. MNRAS 359(1):315–327. https://doi.org/10.1111/j.1365-2966.2005.08898.x
Farrell EJ, Groh JH, Meynet G, Eldridge JJ (2020) The uncertain masses of progenitors of core-collapse supernovae and direct-collapse black holes. MNRAS 494(1):L53–L58. https://doi.org/10.1093/mnrasl/slaa035. arXiv:2001.08711 [astro-ph.SR]
Feiden GA, Chaboyer B (2014) Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars. ApJ 789:53. https://doi.org/10.1088/0004-637X/789/1/53. arXiv:1405.1767 [astro-ph.SR]
Fekel FC, Scarfe CD, Barlow DJ, Hartkopf WI, Mason BD, McAlister HA (2002) The quadruple system \(\mu\) Orionis: three-dimensional orbit and physical parameters. AJ 123(3):1723–1740. https://doi.org/10.1086/339184
Fekel FC, Boden AF, Tomkin J, Torres G (2009) HR 8257: a three-dimensional orbit and basic properties. ApJ 695(2):1527–1536. https://doi.org/10.1088/0004-637X/695/2/1527
Ferguson DH, Liebert J, Haas S, Napiwotzki R, James TA (1999) Masses and other parameters of the post-common envelope binary BE Ursae Majoris. ApJ 518(2):866–872. https://doi.org/10.1086/307289
Feuillet DK, Bovy J, Holtzman J, Girardi L, MacDonald N, Majewski SR, Nidever DL (2016) Determining ages of APOGEE giants with known distances. ApJ 817(1):40. https://doi.org/10.3847/0004-637X/817/1/40. arXiv:1511.04088 [astro-ph.GA]
Fitzpatrick EL (1999) Correcting for the effects of interstellar extinction. PASP 111(755):63–75. https://doi.org/10.1086/316293. arXiv:astro-ph/9809387
Fontaine G, Brassard P, Bergeron P (2001) The potential of white dwarf cosmochronology. PASP 113(782):409–435. https://doi.org/10.1086/319535
Fontaine G, Brassard P, Charpinet S, Green EM, Randall SK, Van Grootel V (2012) A preliminary look at the empirical mass distribution of hot B subdwarf stars. A&A 539:A12. https://doi.org/10.1051/0004-6361/201118220
Foreman-Mackey D, Morton TD, Hogg DW, Agol E, Schölkopf B (2016) The population of long-period transiting exoplanets. AJ 152(6):206. https://doi.org/10.3847/0004-6256/152/6/206. arXiv:1607.08237 [astro-ph.EP]
Fossati L, Bagnulo S, Landstreet J, Wade G, Kochukhov O, Monier R, Weiss W, Gebran M (2008) The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster. A&A 483:891–902. https://doi.org/10.1051/0004-6361:200809467. arXiv:0803.3540
Fragkou V, Parker QA, Zijlstra A, Shaw R, Lykou F (2019a) The central star of planetary nebula PHR 1315–6555 and its host Galactic open cluster AL 1. MNRAS 484(3):3078–3092. https://doi.org/10.1093/mnras/stz108. arXiv:1901.04174 [astro-ph.SR]
Fragkou V, Parker QA, Zijlstra AA, Crause L, Barker H (2019b) A high-mass planetary nebula in a Galactic open cluster. Nat Astron 3:851–857. https://doi.org/10.1038/s41550-019-0796-x. arXiv:1906.10556 [astro-ph.SR]
Frandsen S, Lehmann H, Hekker S, Southworth J, Debosscher J, Beck P, Hartmann M, Pigulski A, Kopacki G, Kołaczkowski Z, Stȩślicki M, Thygesen AO, Brogaard K, Elsworth Y (2013) KIC 8410637: a 408-day period eclipsing binary containing a pulsating giant star. A&A 556:A138. https://doi.org/10.1051/0004-6361/201321817. arXiv:1307.0314 [astro-ph.SR]
Frebel A, Norris J (2015) Near-field cosmology with extremely metal-poor stars. ARA&A 53:631–688. https://doi.org/10.1146/annurev-astro-082214-122423. arXiv:1501.06921 [astro-ph.SR]
Fricke K, Stobie RS, Strittmatter PA (1972) The masses of Cepheid variables. ApJ 171:593. https://doi.org/10.1086/151313
Gafeira R, Patacas C, Fernandes J (2012) Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions. Ap&SS 341:405–410. https://doi.org/10.1007/s10509-012-1125-3. arXiv:1205.5484 [astro-ph.SR]
Gaia Collaboration, Brown AGA, Vallenari A, Prusti T et al (2016a) Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. A&A 595:A2. https://doi.org/10.1051/0004-6361/201629512. arXiv:1609.04172 [astro-ph.IM]
Gaia Collaboration, Prusti T, de Bruijne JHJ, Brown AGA, Vallenari A, Babusiaux C, Bailer-Jones CAL, Bastian U, Biermann M, Evans DW et al (2016b) The Gaia mission. A&A 595:A1. https://doi.org/10.1051/0004-6361/201629272. arXiv:1609.04153 [astro-ph.IM]
Gaia Collaboration, Brown AGA, Vallenari A, Prusti T, de Bruijne JHJ, Babusiaux C, Bailer-Jones CAL, Biermann M, Evans DW, Eyer L et al (2018) Gaia Data Release 2. Summary of the contents and survey properties. A&A 616:A1. https://doi.org/10.1051/0004-6361/201833051. arXiv:1804.09365
Gallenne A, Pietrzyński G, Graczyk D, Konorski P, Kervella P, Mérand A, Gieren W, Anderson RI, Villanova S (2016) The Araucaria project: high-precision orbital parallax and masses of the eclipsing binary TZ Fornacis. A&A 586:A35. https://doi.org/10.1051/0004-6361/201526764. arXiv:1511.07971 [astro-ph.SR]
Gallenne A, Pietrzyński G, Graczyk D, Pilecki B, Storm J, Nardetto N, Taormina M, Gieren W, Tkachenko A, Kervella P, Mérand A, Weber M (2019) The Araucaria project: high-precision orbital parallax and masses of eclipsing binaries from infrared interferometry. A&A 632:A31. https://doi.org/10.1051/0004-6361/201935837. arXiv:1910.03393 [astro-ph.SR]
Gallo E, Fender RP, Miller-Jones JCA, Merloni A, Jonker PG, Heinz S, Maccarone TJ, van der Klis M (2006) A radio-emitting outflow in the quiescent state of A0620-00: implications for modelling low-luminosity black hole binaries. MNRAS 370:1351–1360. https://doi.org/10.1111/j.1365-2966.2006.10560.x. arXiv:astro-ph/0605376
Gandolfi D, Parviainen H, Fridlund M, Hatzes AP, Deeg HJ, Frasca A, Lanza AF, Prada Moroni PG, Tognelli E, McQuillan A, Aigrain S, Alonso R, Antoci V, Cabrera J, Carone L, Csizmadia S, Djupvik AA, Guenther EW, Jessen-Hansen J, Ofir A, Telting J (2013) Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star. A&A 557:A74. https://doi.org/10.1051/0004-6361/201321901. arXiv:1305.3891 [astro-ph.EP]
Gandolfi D, Barragán O, Hatzes AP, Fridlund M, Fossati L, Donati P, Johnson MC, Nowak G, Prieto-Arranz J, Albrecht S et al (2017) The transiting multi-planet system HD 3167: a 5.7 M\(_{{\oplus }}\) super-Earth and an 8.3 M\(_{{\oplus }}\) mini-Neptune. AJ 154(3):123. https://doi.org/10.3847/1538-3881/aa832a. arXiv:1706.02532 [astro-ph.EP]
Gandolfi D, Barragán O, Livingston JH, Fridlund M, Justesen AB, Redfield S, Fossati L, Mathur S, Grziwa S, Cabrera J et al (2018) TESS’s first planet. A super-Earth transiting the naked-eye star \(\pi\) Mensae. A&A 619:L10. https://doi.org/10.1051/0004-6361/201834289. arXiv:1809.07573 [astro-ph.EP]
García RA, Ballot J (2019) Asteroseismology of solar-type stars. Living Rev Sol Phys 16:4. https://doi.org/10.1007/s41116-019-0020-1. arXiv:1906.12262 [astro-ph.SR]
Garcia EV, Stassun KG, Pavlovski K, Hensberge H, Gómez Maqueo Chew Y, Claret A (2014) A strict test of stellar evolution models: the absolute dimensions of the massive benchmark eclipsing binary V578 Mon. AJ 148(3):39. https://doi.org/10.1088/0004-6256/148/3/39. arXiv:1405.0739 [astro-ph.SR]
García-Berro E, Torres S, Althaus LG, Renedo I, Lorén-Aguilar P, Córsico AH, Rohrmann RD, Salaris M, Isern J (2010) A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465(7295):194–196. https://doi.org/10.1038/nature09045. arXiv:1005.2272 [astro-ph.SR]
Gardner T, Monnier JD, Fekel FC, Williamson M, Duncan DK, White TR, Ireland M, Adams FC, Barman T, Baron F, ten Brummelaar T, Che X, Huber D, Kraus S, Roettenbacher RM, Schaefer G, Sturmann J, Sturmann L, Swihart SJ, Zhao M (2018) Precision orbit of \(\delta\) Delphini and prospects for astrometric detection of exoplanets. ApJ 855(1):1. https://doi.org/10.3847/1538-4357/aaac80. arXiv:1802.00468 [astro-ph.SR]
Gaulme P, McKeever J, Jackiewicz J, Rawls ML, Corsaro E, Mosser B, Southworth J, Mahadevan S, Bender C, Deshpande R (2016) Testing the asteroseismic scaling relations for red giants with eclipsing binaries observed by Kepler. ApJ 832(2):121. https://doi.org/10.3847/0004-637X/832/2/121. arXiv:1609.06645 [astro-ph.SR]
Genest-Beaulieu C, Bergeron P (2019) A comprehensive spectroscopic and photometric analysis of DA and DB white dwarfs from SDSS and Gaia. ApJ 871(2):169. https://doi.org/10.3847/1538-4357/aafac6
Gentile Fusillo NP, Tremblay PE, Gänsicke BT, Manser CJ, Cunningham T, Cukanovaite E, Hollands M, Marsh T, Raddi R, Jordan S, Toonen S, Geier S, Barstow M, Cummings JD (2019) A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. MNRAS 482(4):4570–4591. https://doi.org/10.1093/mnras/sty3016. arXiv:1807.03315 [astro-ph.SR]
Georgy C, Ekström S, Eggenberger P, Meynet G, Haemmerlé L, Maeder A, Granada A, Groh JH, Hirschi R, Mowlavi N et al (2013) Grids of stellar models with rotation. III. Models from 0.8 to 120 \(M_{\odot }\) at a metallicity \(Z = 0.002\). A&A 558:A103. https://doi.org/10.1051/0004-6361/201322178. arXiv:1308.2914 [astro-ph.SR]
Ghezzi L, Montet BT, Johnson JA (2018) Retired a stars revisited: an updated giant planet occurrence rate as a function of stellar metallicity and mass. ApJ 860(2):109. https://doi.org/10.3847/1538-4357/aac37c. arXiv:1804.09082 [astro-ph.SR]
Giammichele N, Charpinet S, Fontaine G, Brassard P, Green EM, Van Grootel V, Bergeron P, Zong W, Dupret MA (2018) A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf. Nature 554(7690):73–76. https://doi.org/10.1038/nature25136
Gianninas A, Bergeron P, Ruiz MT (2011) A spectroscopic survey and analysis of bright, hydrogen-rich white dwarfs. ApJ 743(2):138. https://doi.org/10.1088/0004-637X/743/2/138. arXiv:1109.3171 [astro-ph.SR]
Gieles M, Zocchi A (2015) A family of lowered isothermal models. MNRAS 454:576–592. https://doi.org/10.1093/mnras/stv1848. arXiv:1508.02120 [astro-ph.IM]
Gieles M, Balbinot E, Yaaqib RISM, Hénault-Brunet V, Zocchi A, Peuten M, Jonker PG (2018) Mass models of NGC 6624 without an intermediate-mass black hole. MNRAS 473:4832–4839. https://doi.org/10.1093/mnras/stx2694.arXiv:1709.06874
Giersz M, Heggie DC (2011) Monte Carlo simulations of star clusters—VII. The globular cluster 47 Tuc. MNRAS 410:2698–2713. https://doi.org/10.1111/j.1365-2966.2010.17648.x. arXiv:1008.3048 [astro-ph.GA]
Giesers B, Dreizler S, Husser TO, Kamann S, Anglada Escudé G, Brinchmann J, Carollo CM, Roth MM, Weilbacher PM, Wisotzki L (2018) A detached stellar-mass black hole candidate in the globular cluster NGC 3201. MNRAS 475:L15–L19. https://doi.org/10.1093/mnrasl/slx203. arXiv:1801.05642 [astro-ph.SR]
Gillen E, Aigrain S, McQuillan A, Bouvier J, Hodgkin S, Alencar SHP, Terquem C, Southworth J, Gibson NP, Cody A et al (2014) CoRoT 223992193: a new, low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk. A&A 562:A50. https://doi.org/10.1051/0004-6361/201322493. arXiv:1311.3990 [astro-ph.SR]
Gómez Maqueo Chew Y, Stassun KG, Prša A, Stempels E, Hebb L, Barnes R, Heller R, Mathieu RD (2012) Luminosity discrepancy in the equal-mass, pre-main-sequence eclipsing binary Par 1802: non-coevality or tidal heating? ApJ 745:58. https://doi.org/10.1088/0004-637X/745/1/58. arXiv:1111.2322 [astro-ph.SR]
González-Santamaría I, Manteiga M, Manchado A, Ulla A, Dafonte C (2019) Properties of central stars of planetary nebulae with distances in Gaia DR2. A&A 630:A150. https://doi.org/10.1051/0004-6361/201936162. arXiv:1909.04601 [astro-ph.SR]
González-Santamaría I, Manteiga M, Manchado A, Ulla A, Dafonte C (2020) Gaia DR2 distances to planetary Nebulae. Galaxies 8(2):29. https://doi.org/10.3390/galaxies8020029
Gossage S, Conroy C, Dotter A, Choi J, Rosenfield P, Cargile P, Dolphin A (2018) Age determinations of the Hyades, Praesepe, and Pleiades via MESA models with rotation. ApJ 863:67. https://doi.org/10.3847/1538-4357/aad0a0. arXiv:1804.06441 [astro-ph.SR]
Grabhorn RP, Cohn HN, Lugger PM, Murphy BW (1992) Evolving, dynamical models for collapsed-core globular clusters—M15 and NGC 6624. ApJ 392:86–98. https://doi.org/10.1086/171408
Graczyk D, Pietrzyński G, Thompson IB, Gieren W, Pilecki B, Konorski P, Udalski A, Soszyński I, Villanova S, Górski M et al (2014) The Araucaria Project. The distance to the small magellanic cloud from late-type eclipsing binaries. ApJ 780(1):59. https://doi.org/10.1088/0004-637X/780/1/59. arXiv:1311.2340 [astro-ph.CO]
Graczyk D, Smolec R, Pavlovski K, Southworth J, Pietrzyński G, Maxted PFL, Konorski P, Gieren W, Pilecki B, Taormina M et al (2016) A solar twin in the eclipsing binary LL Aquarii. A&A 594:A92. https://doi.org/10.1051/0004-6361/201628918. arXiv:1608.01000 [astro-ph.SR]
Graczyk D, Pietrzyński G, Thompson IB, Gieren W, Pilecki B, Konorski P, Villanova S, Górski M, Suchomska K, Karczmarek P, Stepień K, Storm J, Taormina M, Kołaczkowski Z, Wielgórski P, Narloch W, Zgirski B, Gallenne A, Ostrowski J, Smolec R, Udalski A, Soszyński I, Kervella P, Nardetto N, Szymański MK, Wyrzykowski Ł, Ulaczyk K, Poleski R, Pietrukowicz P, Kozłowski S, Skowron J, Mróz P (2018) The late-type eclipsing binaries in the Large Magellanic Cloud: catalog of fundamental physical parameters. ApJ 860(1):1. https://doi.org/10.3847/1538-4357/aac2bf. arXiv:1805.04952 [astro-ph.SR]
Gräfener G, Vink JS, de Koter A, Langer N (2011) The Eddington factor as the key to understand the winds of the most massive stars. Evidence for a \(\Gamma\)-dependence of Wolf–Rayet type mass loss. A&A 535:A56. https://doi.org/10.1051/0004-6361/201116701. arXiv:1106.5361 [astro-ph.SR]
Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. A&A 354:169–187
Grevesse N, Sauval AJ (1998) Standard solar composition. Space Sci Rev 85:161–174. https://doi.org/10.1023/A:1005161325181
Griffin REM, Marshall KP, Griffin RF, Schroeder KP (1995) Optical spectra of \(\zeta\) Aurigae binary systems. VII. The 1987 and 1989 eclipses of HR 6902. A&A 301:217
Groenewegen MAT, Decin L, Salaris M, De Cat P (2007) The Pleiades eclipsing binary HD 23642 revisited. A&A 463(2):579–587. https://doi.org/10.1051/0004-6361:20066303
Gruberbauer M, Guenther DB, Kallinger T (2012) Toward a new kind of asteroseismic grid fitting. ApJ 749(2):109. https://doi.org/10.1088/0004-637X/749/2/109. arXiv:1202.2330 [astro-ph.SR]
Grundahl F, Fredslund Andersen M, Christensen-Dalsgaard J, Antoci V, Kjeldsen H, Handberg R, Houdek G, Bedding TR, Pallé PL, Jessen-Hansen J, Silva Aguirre V, White TR, Frandsen S, Albrecht S, Andersen MI, Arentoft T, Brogaard K, Chaplin WJ, Harpsøe K, Jørgensen UG, Karovicova I, Karoff C, Kjærgaard Rasmussen P, Lund MN, Sloth Lundkvist M, Skottfelt J, Norup Sørensen A, Tronsgaard R, Weiss E (2017) First results from the Hertzsprung SONG Telescope: asteroseismology of the G5 subgiant star \(\mu\) Herculis. ApJ 836(1):142
Guenther DB (1994) Nonadiabatic nonradial p-mode frequencies of the standard solar model, with and without helium diffusion. ApJ 422:400–411. https://doi.org/10.1086/173735
Guilloteau S, Dutrey A (1998) Physical parameters of the Keplerian protoplanetary disk of DM Tauri. A&A 339:467–476
Gunn JE, Griffin RF (1979) Dynamical studies of globular clusters based on photoelectric radial velocities of individual stars. I—M3. AJ 84:752–773. https://doi.org/10.1086/112477
Guzik JA, Houdek G, Chaplin WJ, Smalley B, Kurtz DW, Gilliland RL, Mullally F, Rowe JF, Bryson ST, Still MD, Antoci V, Appourchaux T, Basu S, Bedding TR, Benomar O, García RA, Huber D, Kjeldsen H, Latham DW, Metcalfe TS, Pápics PI, White TR, Aerts C, Ballot J, Boyajian TS, Briquet M, Bruntt H, Buchhave LA, Campante TL, Catanzaro G, Christensen-Dalsgaard J, Davies GR, Doğan G, Dragomir D, Doyle AP, Elsworth Y, Frasca A, Gaulme P, Gruberbauer M, Handberg R, Hekker S, Karoff C, Lehmann H, Mathias P, Mathur S, Miglio A, Molenda-Zakowicz J, Mosser B, Murphy SJ, Régulo C, Ripepi V, Salabert D, Sousa SG, Stello D, Uytterhoeven K (2016) Detection of solar-like oscillations, observational constraints, and stellar models for \(\theta\) Cyg, the brightest star observed by the Kepler mission. ApJ 831(1):17
Hadrava P (1995) Orbital elements of multiple spectroscopic stars. A&AS 114:393
Halbwachs JL, Arenou F, Pourbaix D, Famaey B, Guillout P, Lebreton Y, Salomon JB, Tal-Or L, Ibata R, Mazeh T (2014) Masses of the components of SB2 binaries observed with Gaia—I. Selection of the sample and mass ratios of 20 new SB2s discovered with Sophie. MNRAS 445(3):2371–2377. https://doi.org/10.1093/mnras/stu1838. arXiv:1409.1384 [astro-ph.SR]
Halbwachs JL, Boffin HMJ, Le Bouquin JB, Kiefer F, Famaey B, Salomon JB, Arenou F, Pourbaix D, Anthonioz F, Grellmann R et al (2016) Masses of the components of SB2s observed with Gaia—II. Masses derived from PIONIER interferometric observations for Gaia validation. MNRAS 455(3):3303–3311. https://doi.org/10.1093/mnras/stv2497. arXiv:1510.07412 [astro-ph.SR]
Halbwachs JL, Kiefer F, Lebreton Y, Boffin HMJ, Arenou F, Le Bouquin JB, Famaey B, Pourbaix D, Guillout P, Salomon JB, Mazeh T (2020) Masses of the components of SB2 binaries observed with Gaia—V. Accurate SB2 orbits for 10 binaries and masses of the components of 5 binaries. MNRAS 496(2):1355–1368. https://doi.org/10.1093/mnras/staa1571. arXiv:2006.01467 [astro-ph.SR]
Hall OJ, Davies GR, Elsworth YP, Miglio A, Bedding TR, Brown AGA, Khan S, Hawkins K, García RA, Chaplin WJ, North TSH (2019) Testing asteroseismology with Gaia DR2: hierarchical models of the Red Clump. MNRAS 486(3):3569–3585. https://doi.org/10.1093/mnras/stz1092. arXiv:1904.07919 [astro-ph.SR]
Handberg R, Brogaard K, Miglio A, Bossini D, Elsworth Y, Slumstrup D, Davies GR, Chaplin WJ (2017) NGC 6819: testing the asteroseismic mass scale, mass loss and evidence for products of non-standard evolution. MNRAS 472(1):979–997. https://doi.org/10.1093/mnras/stx1929. arXiv:1707.08223 [astro-ph.SR]
Handler G, Kurtz DW, Rappaport SA, Saio H, Fuller J, Jones D, Guo Z, Chowdhury S, Sowicka P, Kahraman Aliçavuş F, Streamer M, Murphy SJ, Gagliano R, Jacobs TL, Vanderburg A (2020) Tidally trapped pulsations in a close binary star system discovered by TESS. Nat Astron 4:684–689. https://doi.org/10.1038/s41550-020-1035-1. arXiv:2003.04071 [astro-ph.SR]
Hansen BMS (1999) Cooling models for old white dwarfs. ApJ 520(2):680–695. https://doi.org/10.1086/307476. arXiv:astro-ph/9903025
Hartman JD, Quinn SN, Bakos GÁ, Torres G, Kovács G, Latham DW, Noyes RW, Shporer A, Fulton BJ, Esquerdo GA et al (2018) HAT-TR-318-007: a double-lined M dwarf binary with total secondary eclipses discovered by HATNet and observed by K2. AJ 155:114. https://doi.org/10.3847/1538-3881/aaa844. arXiv:1801.03570 [astro-ph.SR]
Hasselquist S, Holtzman JA, Shetrone M, Tayar J, Weinberg DH, Feuillet D, Cunha K, Pinsonneault MH, Johnson JA, Bird J, Beers TC, Schiavon R, Minchev I, Fernández-Trincado JG, García-Hernández DA, Nitschelm C, Zamora O (2019) APOGEE [C/N] abundances across the Galaxy: migration and infall from red giant ages. ApJ 871(2):181. https://doi.org/10.3847/1538-4357/aaf859. arXiv:1812.05092 [astro-ph.GA]
Heber U (2016) Hot subluminous stars. PASP 128(966):082001. https://doi.org/10.1088/1538-3873/128/966/082001. arXiv:1604.07749 [astro-ph.SR]
Heiter U, Eriksson K (2006) Geometry of giant star model atmospheres: a consistency test. A&A 452(3):1039–1048. https://doi.org/10.1051/0004-6361:20064925. arXiv:astro-ph/0603273
Hekker S (2020) Scaling relations for solar-like oscillations: a review. Front Astron Space Sci 7:3. https://doi.org/10.3389/fspas.2020.00003. arXiv:1907.10457 [astro-ph.SR]
Hekker S, Ball WH (2014) Grid-based seismic modelling at high and low signal-to-noise ratios. HD 181420 and HD 175272. A&A 564:A105. https://doi.org/10.1051/0004-6361/201323121. arXiv:1403.3529 [astro-ph.SR]
Hekker S, Christensen-Dalsgaard J (2017) Giant star seismology. Astron Astrophys Rev 25:1. https://doi.org/10.1007/s00159-017-0101-x. arXiv:1609.07487 [astro-ph.SR]
Hełminiak KG, Konacki M (2011) Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue. II. Two spotted \(M < 1 M_{\odot }\) systems at different evolutionary stages. A&A 526:A29. https://doi.org/10.1051/0004-6361/200913336. arXiv:1009.5610 [astro-ph.SR]
Hełminiak KG, Graczyk D, Konacki M, Pilecki B, Ratajczak M, Pietrzyński G, Sybilski P, Villanova S, Gieren W, Pojmański G et al (2015) Orbital and physical parameters of eclipsing binaries from the ASAS catalogue—VIII. The totally eclipsing double-giant system HD 187669. MNRAS 448(2):1945–1955. https://doi.org/10.1093/mnras/stu2680. arXiv:1412.4834 [astro-ph.SR]
Hełminiak KG, Konacki M, Maehara H, Kambe E, Ukita N, Ratajczak M, Pigulski A, Kozłowski SK (2019) HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field—III. Spectral analysis, updated parameters and new systems. MNRAS 484(1):451–475. https://doi.org/10.1093/mnras/sty3528. arXiv:1901.00407 [astro-ph.SR]
Hénault-Brunet V, Gieles M, Strader J, Peuten M, Balbinot E, Douglas KEK (2020) On the black hole content and initial mass function of 47 Tuc. MNRAS 491(1):113–128. https://doi.org/10.1093/mnras/stz2995. arXiv:1908.08538 [astro-ph.GA]
Hendriks L, Aerts C (2019) Deep learning applied to the asteroseismic modeling of stars with coherent oscillation modes. PASP 131(1004):108001. https://doi.org/10.1088/1538-3873/aaeeec. arXiv:1811.03639 [astro-ph.SR]
Hensberge H, Pavlovski K, Verschueren W (2000) The eclipsing binary V578 Mon in the Rosette nebula: age and distance to NGC 2244 using Fourier disentangled component spectra. A&A 358:553–571
Hermes JJ, Gänsicke BT, Kawaler SD, Greiss S, Tremblay PE, Gentile Fusillo NP, Raddi R, Fanale SM, Bell KJ, Dennihy E, Fuchs JT, Dunlap BH, Clemens JC, Montgomery MH, Winget DE, Chote P, Marsh TR, Redfield S (2017) White dwarf rotation as a function of mass and a dichotomy of mode line widths: Kepler observations of 27 pulsating DA white dwarfs through K2 Campaign 8. ApJS 232(2):23. https://doi.org/10.3847/1538-4365/aa8bb5. arXiv:1709.07004 [astro-ph.SR]
Herrero A, Kudritzki RP, Vilchez JM, Kunze D, Butler K, Haser S (1992) Intrinsic parameters of galactic luminous OB stars. A&A 261:209–234
Herrero A, Puls J, Najarro F (2002) Fundamental parameters of Galactic luminous OB stars VI. Temperatures, masses and WLR of Cyg OB2 supergiants. A&A 396:949–966. https://doi.org/10.1051/0004-6361:20021432. arXiv:astro-ph/0210469
Hertzsprung E (1923) On the relation between mass and absolute brightness of components of double stars. Bull Astron Inst Neth 2:15