Abstract
The recent GAIA DR2 measurements of distances to galactic novae have allowed to re-analyse some properties of nova populations in the Milky Way and in external galaxies on new and more solid empirical bases. In some cases, we have been able to confirm results previously obtained, such as the concept of nova populations into two classes of objects, that is disk and bulge novae and their link with the Tololo spectroscopic classification in Fe II and He/N novae. The recent and robust estimates of nova rates in the Magellanic Clouds galaxies provided by the OGLE team have confirmed the dependence of the normalized nova rate (i.e., the nova rate per unit of luminosity of the host galaxy) with the colors and/or class of luminosity of the parent galaxies. The nova rates in the Milky Way and in external galaxies have been collected from literature and critically discussed. They are the necessary ingredient to asses the contribution of novae to the nucleosynthesis of the respective host galaxies, particularly to explain the origin of the overabundance of lithium observed in young stellar populations. A direct comparison between distances obtained via GAIA DR2 and maximum magnitude vs. rate of decline (MMRD) relationship points out that the MMRD can provide distances with an uncertainty better than 30%. Multiwavelength observations of novae along the whole electromagnetic spectrum, from radio to gamma rays, have revealed that novae undergo a complex evolution characterized by several emission phases and a non-spherical geometry for the nova ejecta.
Similar content being viewed by others
Notes
Out of 37 that constitute his entire work
We derived the GAIA DR2 distance of V1500 Cyg using the parallax provided in the GAIA DR2 database and using the formula given in Bailer-Jones et al. (2018), see also Muraveva et al. (2018). The GAIA DR2 archive is available at https://gea.esac.esa.int/archive/
The GAIA DR2 distance of V1500 Cyg used in this paper, \(d = 1.29 \pm 0.31\), can be derived using the parallex measurement as provided in the GAIA DR2 data archive: https://gea.esac.esa.int/archive/.
see Hyperleda archive: http://leda.univ-lyon1.fr
References
Abbott BP, Abbott R, Abbott TD (2017) Multi-messenger observations of a binary neutron star merger. ApJ 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833
Abdo AA et al.; Fermi LAT Collaboration (2010) Gamma-ray emission concurrent with the Nova in the symbiotic binary V407 Cygni. Science 329(5993):817–821. https://doi.org/10.1126/science.1192537. arXiv:1008.3912
Abia C, Domínguez I, Straniero O, Limongi M, Chieffi A, Isern J (2001) The implications of the new Z = 0 Stellar models and yields on the early metal pollution of the intergalactic medium. ApJ 557(1):126–136. https://doi.org/10.1086/321660. arXiv:astro-ph/0104276
Ackermann M et al.; Fermi-LAT Collaboration (2014) Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345(6196):554–558. https://doi.org/10.1126/science.1253947. arXiv:1408.0735
Alis S, Saygac AT (2014) Investigating the Nova rate connection to galaxy type using archival hubble space telescope images. In: Woudt PA, Ribeiro VARM (eds) Stella Novae: past and future decades, ASP conference series, vol 490. Astronomical Society of the Pacific, San Francisco, p 95
Allen CW (1954) Whole-sky statistics of celestial objects. MNRAS 114:387. https://doi.org/10.1093/mnras/114.4.387
Allen CW (1973) Astrophysical quantities. Athlone Press, London
Amati L (2006) The \(E_{p, i}\)-\(E_{iso}\) correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. MNRAS 372(1):233–245. https://doi.org/10.1111/j.1365-2966.2006.10840.x. arXiv:astro-ph/0601553
Ambartsumian VA (1952) Teoreticheskaia astrofizika, Moscow
Arnould M, Norgaard H (1975) The explosive thermonuclear formation of \(^{7}\)Li and \(^{11}\)B. A&A 42:55
Arp HC (1956) Novae in the Andromeda nebula. AJ 61:15–34. https://doi.org/10.1086/107284
Aydi E, Page KL, Kuin NPM, Darnley MJ, Walter FM, Mróz P, Buckley DAH, Mohamed S, Whitelock P, Woudt P, Williams SC, Orio M, Williams RE, Beardmore AP, Osborne JP, Kniazev A, Ribeiro VARM, Udalski A, Strader J, Chomiuk L (2018) Multiwavelength observations of nova SMCN 2016–10a—one of the brightest novae ever observed. MNRAS 474(2):2679–2705. https://doi.org/10.1093/mnras/stx2678. arXiv:1710.03716
Aydi E, Chomiuk L, Strader J, Swihart SJ, Bahramian A, Harvey EJ, Britt CT, Buckley DAH, Chen P, Dage K, Darnley MJ, Dong S, Hambsch FJ, Holoien TWS, Jha SW, Kochanek CS, Kuin NPM, Li KL, Monard LAG, Mukai K, Page KL, Prieto JL, Richardson ND, Shappee BJ, Shishkovsky L, Sokolovsky KV, Stanek KZ, Thompson T (2019) Flaring, dust formation, and shocks in the very slow Nova ASASSN-17pf (LMCN 2017-11a). arXiv e-prints arXiv:1903.09232,
Aydi E, Sokolovsky KV, Chomiuk L, Steinberg E, Li KL, Vurm I, Metzger BD, Strader J, Mukai K, Pejcha O, Shen KJ, Wade GA, Kuschnig R, Moffat AFJ, Pablo H, Pigulski A, Popowicz A, Weiss W, Zwintz K, Izzo L, Pollard KR, Handler G, Ryder SD, Filipović MD, Alsaberi RZE, Manojlović P, De Oliveira R, Walter FM, Vallely PJ, Buckley DAH, Brown MJI, Harvey EJ, Kawash A, Kniazev A, Kochanek CS, Linford J, Mikolajewska J, Molaro P, Orio M, Page KL, Sokoloski JL (2020) Direct evidence for shock-powered optical emission in a nova. Nature Astron. https://doi.org/10.1038/s41550-020-1070-y
Baade W (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula. ApJ 100:137. https://doi.org/10.1086/144650
Baade W (1957) Galaxies and their stellar population. Observatory 77:165–171
Baade W (1958) The population of the galactic nucleus and the evidence for the presence of an old population pervading the whole disk of our galaxy. Ricerche Astron 5:303
Baade W, Zwicky F (1934) On super-novae. Proc Natl Acad Sci 20(5):254–259. https://doi.org/10.1073/pnas.20.5.254
Bailer-Jones CAL, Rybizki J, Fouesneau M, Mantelet G, Andrae R (2018) Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. AJ 156(2):58. https://doi.org/10.3847/1538-3881/aacb21. arXiv:1804.10121
Balman Ş, Krautter J (2001) The re-analysis of the ROSAT data of Nova Mus 1983 using white dwarf atmosphere emission models. MNRAS 326(4):1441–1447. https://doi.org/10.1111/j.1365-2966.2001.04716.x. arXiv:astro-ph/0106216
Balman Ş, Krautter J, Ögelman H (1998) The X-ray spectral evolution of classical Nova V1974 Cygni 1992: a reanalysis of the ROSAT data. ApJ 499(1):395–406. https://doi.org/10.1086/305600
Bath GT, Shaviv G (1978) The space density, recurrence rate and classification of novae. MNRAS 183:515–522. https://doi.org/10.1093/mnras/183.3.515
Bianchini A (1987) Detection of solar-type cycles in cataclysmic variables. Mem Soc Astron Ital 58:245–251
Bianchini A, Hamzaoglu E, Sabbadin F (1981) The old-nova GK Per (1901). I. Determination of the orbital period. A&A 99:392–393
Bode MF (2002) The evolution of Nova remnants. In: Hernanz M, José J (eds) Classical Nova explosions, AIP conference series, vol 637. American Institute of Physics, pp 497–508. https://doi.org/10.1063/1.1518252. arXiv:astro-ph/0211437
Bode MF, Evans A (2008) Classical Novae, 2nd edn. Cambridge astrophysics series, vol 43. Cambridge University Press, Cambridge
Boffi FR, Branch D (1995) Radio emission from type IA supernovae as a test of symbiotic star progenitor systems. PASP 107:347. https://doi.org/10.1086/133558
Bondi H (1952) On spherically symmetrical accretion. MNRAS 112:195. https://doi.org/10.1093/mnras/112.2.195
Bothun GD (1992) The Bulge/Halo luminosity of M33 and its globular cluster population. AJ 103:104. https://doi.org/10.1086/116044
Bowen IS (1947) Excitation by line coincidence. PASP 59(349):196–198. https://doi.org/10.1086/125951
Bowen IS (1954) Edwin P. Hubble: 1889-1953. Science 119(3085):204. https://doi.org/10.1126/science.119.3085.204
Brown AGA et al.; Gaia Collaboration (2018) Gaia Data Release 2. Summary of the contents and survey properties. A&A 616:A1, https://doi.org/10.1051/0004-6361/201833051, arXiv:1804.09365
Burstein D, Heiles C (1984) Reddening estimates for galaxies in the second reference catalog and the Uppsala general catalog. ApJS 54:33–79. https://doi.org/10.1086/190918
Buscombe W, de Vaucouleurs G (1955) Novae in the magellanic clouds and in the galaxy. Observatory 75:170–175
Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. ApJ 164:111. https://doi.org/10.1086/150821
Cao Y, Kasliwal MM, Neill JD, Kulkarni SR, Lou YQ, Ben-Ami S, Bloom JS, Cenko SB, Law NM, Nugent PE, Ofek EO, Poznanski D, Quimby RM (2012) Classical Novae in Andromeda: light curves from the palomar transient factory and GALEX. ApJ 752(2):133. https://doi.org/10.1088/0004-637X/752/2/133. arXiv:1201.2393
Capaccioli M, Della Valle M, D’Onofrio M, Rosino L (1989) Properties of the Nova population of M31. AJ 97:1622. https://doi.org/10.1086/115104
Capaccioli M, Della Valle M, D’Onofrio M, Rosino L (1990) Distance of the large magellanic cloud through the maximum magnitude versus rate of decline relation for Novae. ApJ 360:63. https://doi.org/10.1086/169096
Cappellaro E, Evans R, Turatto M (1999) A new determination of supernova rates and a comparison with indicators for galactic star formation. A&A 351:459–466 arXiv:astro-ph/9904225
Cappellaro E, Botticella MT, Pignata G, Grado A, Greggio L, Limatola L, Vaccari M, Baruffolo A, Benetti S, Bufano F, Capaccioli M, Cascone E, Covone G, De Cicco D, Falocco S, Della Valle M, Jarvis M, Marchetti L, Napolitano NR, Paolillo M, Pastorello A, Radovich M, Schipani P, Spiro S, Tomasella L, Turatto M (2015) Supernova rates from the SUDARE VST-OmegaCAM search. I. Rates per unit volume. A&A 584:A62. https://doi.org/10.1051/0004-6361/201526712. arXiv:1509.04496
Cassatella A, Benvenuti P, Clavel J, Heck A, Penston M, Selvelli PL, Macchetto F (1979) On the ultraviolet spectrum of Nova Cygni 1978. A&A 74:L18–L19
Cassatella A, Altamore A, González-Riestra R (2002) Classical novae in outburst: the early evolution of the ultraviolet continuum. A&A 384:1023–1029. https://doi.org/10.1051/0004-6361:20020107
Cassatella A, Lamers HJGLM, Rossi C, Altamore A, González-Riestra R (2004) A study of the expanding envelope of Nova V1974 Cyg 1992 based on IUE high resolution spectroscopy. A&A 420:571–588. https://doi.org/10.1051/0004-6361:20034102. arXiv:astro-ph/0403288
Cecchini G, Gratton L (1942) Le stelle nuove. U. Hoepli, Milano
Charbonnel C, Primas F (2005) The lithium content of the galactic Halo stars. A&A 442(3):961–992. https://doi.org/10.1051/0004-6361:20042491. arXiv:astro-ph/0505247
Chen HL, Woods TE, Yungelson LR, Gilfanov M, Han Z (2016) Modelling nova populations in galaxies. MNRAS 458(3):2916–2927. https://doi.org/10.1093/mnras/stw458. arXiv:1602.07849
Chesneau O, Banerjee DPK (2012) Interferometric studies of novae in the infrared. Bull Astron Soc India 40:267 arXiv:1210.2507
Chesneau O, Nardetto N, Millour F, Hummel C, Domiciano de Souza A, Bonneau D, Vannier M, Rantakyrö F, Spang A, Malbet F, Mourard D, Bode MF, O’Brien TJ, Skinner G, Petrov RG, Stee P, Tatulli E, Vakili F (2007) AMBER/VLTI interferometric observations of the recurrent Nova RS Ophiuchii 5.5 days after outburst. A&A 464(1):119–126. https://doi.org/10.1051/0004-6361:20066609. arXiv:astro-ph/0611602
Chesneau O, Meilland A, Banerjee DPK, Le Bouquin JB, McAlister H, Millour F, Ridgway ST, Spang A, ten Brummelaar T, Wittkowski M, Ashok NM, Benisty M, Berger JP, Boyajian T, Farrington C, Goldfinger PJ, Merand A, Nardetto N, Petrov R, Rivinius T, Schaefer G, Touhami Y, Zins G (2011) The 2011 outburst of the recurrent nova T Pyxidis. Evidence for a face-on bipolar ejection. A&A 534:L11. https://doi.org/10.1051/0004-6361/201117792. arXiv:1109.4534
Chesneau O, Lagadec E, Otulakowska-Hypka M, Banerjee DPK, Woodward CE, Harvey E, Spang A, Kervella P, Millour F, Nardetto N, Ashok NM, Barlow MJ, Bode M, Evans A, Lynch DK, O’Brien TJ, Rudy RJ, Russell RW (2012) The expanding dusty bipolar nebula around the nova V1280 Scorpi. A&A 545:A63. https://doi.org/10.1051/0004-6361/201219825. arXiv:1207.5301
Cheung CC, Jean P, Shore SN, Stawarz Ł, Corbet RHD, Knödlseder J, Starrfield S, Wood DL, Desiante R, Longo F, Pivato G, Wood KS (2016) Fermi-LAT gamma-ray detections of classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. ApJ 826(2):142. https://doi.org/10.3847/0004-637X/826/2/142. arXiv:1605.04216
Chevalier RA (1988) The interaction of supernova 1987A with dense circumstellar gas. Nature 332(6164):514–516. https://doi.org/10.1038/332514a0
Chomiuk L, Linford JD, Yang J, O’Brien TJ, Paragi Z, Mioduszewski AJ, Beswick RJ, Cheung CC, Mukai K, Nelson T, Ribeiro VARM, Rupen MP, Sokoloski JL, Weston J, Zheng Y, Bode MF, Eyres S, Roy N, Taylor GB (2014a) Binary orbits as the driver of \(\gamma\)-ray emission and mass ejection in classical novae. Nature 514(7522):339–342. https://doi.org/10.1038/nature13773. arXiv:1410.3473
Chomiuk L, Nelson T, Mukai K, Sokoloski JL, Rupen MP, Page KL, Osborne JP, Kuulkers E, Mioduszewski AJ, Roy N, Weston J, Krauss MI (2014b) The 2011 outburst of recurrent Nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics. ApJ 788(2):130. https://doi.org/10.1088/0004-637X/788/2/130. arXiv:1404.3210
Chomiuk L, Soderberg AM, Chevalier RA, Bruzewski S, Foley RJ, Parrent J, Strader J, Badenes C, Fransson C, Kamble A, Margutti R, Rupen MP, Simon JD (2016) A deep search for prompt radio emission from thermonuclear supernovae with the very large array. ApJ 821(2):119. https://doi.org/10.3847/0004-637X/821/2/119. arXiv:1510.07662
Ciardullo R, Ford HC, Neill JD, Jacoby GH, Shafter AW (1987) The spatial distribution and population of Novae in M31. ApJ 318:520. https://doi.org/10.1086/165388
Ciardullo R, Ford HC, Williams RE, Tamblyn P, Jacoby GH (1990) The Nova rate in the elliptical component of NGC 5128. AJ 99:1079. https://doi.org/10.1086/115397
Ciatti F, Rosino L (1974) Photographic and spectroscopic observations of N Aql 1970, N Cyg 1970, and N Sct 1970. A&AS 16:305–322
Cieslinski D, Diaz MP, Mennickent RE, Pietrzyński G (2003) Identification of new eruptive cataclysmic variables toward the galactic bulge and magellanic clouds using the OGLE-II database. PASP 115(804):193–211. https://doi.org/10.1086/367673
Clayton DD (1979) Sudden grain nucleation and growth in supernova and nova ejecta. Ap&SS 65(1):179–189. https://doi.org/10.1007/BF00643499
Coc A, Uzan JP, Vangioni E (2013) Standard big-bang nucleosynthesis after Planck. arXiv e-prints arXiv:1307.6955,
Coc A, Uzan JP, Vangioni E (2014) Standard big bang nucleosynthesis and primordial CNO abundances after Planck. JCAP 10:050. https://doi.org/10.1088/1475-7516/2014/10/050. arXiv:1403.6694
Coelho EA, Shafter AW, Misselt KA (2008) The rate and spatial distribution of Novae in M101 (NGC 5457). ApJ 686(2):1261–1268. https://doi.org/10.1086/591517. arXiv:0807.0210
Cohen JG (1985) Nova shells. II. Calibration of the distance scale using novae. ApJ 292:90–103. https://doi.org/10.1086/163135
Cohen JG, Rosenthal AJ (1983) Nova shells. ApJ 268:689–697. https://doi.org/10.1086/160990
Conti PS (1968) Lithium destruction and rotational braking. ApJ 152:657. https://doi.org/10.1086/149581
Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 \(M_{\odot }\). ApJ 866(1):21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673
Curtin C, Shafter AW, Pritchet CJ, Neill JD, Kundu A, Maccarone TJ (2015) Exploring the role of globular cluster specific frequency on the nova rates in three virgo elliptical galaxies. ApJ 811(1):34. https://doi.org/10.1088/0004-637X/811/1/34. arXiv:1508.03319
Curtis HD (1917a) Finding list for general catalog numbers. PASP 29(170):180–180. https://doi.org/10.1086/122678
Curtis HD (1917b) Novae in the spiral nebulae and the island universe theory. PASP 29(171):206–207. https://doi.org/10.1086/122632
Curtis HD (1917c) Two Novae in N.G.C. 4321. Harvard Coll Obs Bull 642:1–1
D’Antona F, Matteucci F (1991) Galactic evolution of lithium. A&A 248:62
Darnley MJ, Bode MF, Kerins E, Newsam AM, An J, Baillon P, Novati SC, Carr BJ, Crézé M, Evans NW, Giraud-Héraud Y, Gould A, Hewett P, Jetzer P, Kaplan J, Paulin-Henriksson S, Smartt SJ, Stalin CS, Tsapras Y (2004) Classical novae from the POINT-AGAPE microlensing survey of M31—I. The nova catalogue. MNRAS 353(2):571–588. https://doi.org/10.1111/j.1365-2966.2004.08087.x. arXiv:astro-ph/0403447
Darnley MJ, Bode MF, Kerins E, Newsam AM, An J, Baillon P, Belokurov V, Calchi Novati S, Carr BJ, Crézé M, Evans NW, Giraud-Héraud Y, Gould A, Hewett P, Jetzer P, Kaplan J, Paulin-Henriksson S, Smartt SJ, Tsapras Y, Weston M (2006) Classical novae from the POINT-AGAPE microlensing survey of M31—II. Rate and statistical characteristics of the nova population. MNRAS 369(1):257–271. https://doi.org/10.1111/j.1365-2966.2006.10297.x. arXiv:astro-ph/0509493
Darnley MJ, Ribeiro VARM, Bode MF, Hounsell RA, Williams RP (2012) On the progenitors of galactic novae. ApJ 746(1):61. https://doi.org/10.1088/0004-637X/746/1/61. arXiv:1112.2589
Darnley MJ, Hounsell R, O’Brien TJ, Henze M, Rodríguez-Gil P, Shafter AW, Shara MM, Vaytet NMH, Bode MF, Ciardullo R, Davis BD, Galera-Rosillo R, Harman DJ, Harvey EJ, Healy MW, Ness JU, Ribeiro VARM, Williams SC (2019) A recurrent nova super-remnant in the Andromeda galaxy. Nature 565(7740):460–463. https://doi.org/10.1038/s41586-018-0825-4. arXiv:1712.04872
Darnley MJ, Newsam AM, Chinetti K, Hawkins IDW, Jannetta AL, Kasliwal MM, McGarry JC, Shara MM, Sitaram M, Williams SC (2020) AT 2016dah and AT 2017fyp: the first classical novae discovered within a tidal stream. arXiv e-prints arXiv:2004.09431
De Gennaro Aquino I, Shore SN, Schwarz GJ, Mason E, Starrfield S, Sion EM (2014) The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. III. The ultraviolet development from iron curtain through the post-X-ray turnoff. A&A 562:A28. https://doi.org/10.1051/0004-6361/201322545
De Gennaro Aquino I, Schröder KP, Mittag M, Wolter U, Jack D, Eenens P, González-Pérez JN, Hempelmann A, Schmitt JHMM, Hauschildt PH, Rauw G (2015) High spectral resolution monitoring of Nova V339 Delphini with TIGRE. A&A 581:A134. https://doi.org/10.1051/0004-6361/201525810
de Maupertuis PLM (1732) Discours sur les differentes figures des astres
de Vaucouleurs G (1958) Photoelectric photometry of the Andromeda Nebula in the UBV system. ApJ 128:465. https://doi.org/10.1086/146564
de Vaucouleurs G (1978) The extragalactic distance scale. II. Distances of the nearest galaxies from primary indicators. ApJ 223:730–739. https://doi.org/10.1086/156306
Della Valle M (1988) Distance modulus and rate of novae in M33. In: van den Bergh S, Pritchet CJ (eds) The extragalactic distance scale, ASP conference series, vol 4. Astronomical Society of the Pacific, p 73
Della Valle M (1991) Nova LMC 1991: evidence for a super-bright nova population. A&A 252:L9
Della Valle M, Calvani M (1990) Quasi-periodic outburst activity of novae at minimum. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 48. https://doi.org/10.1007/3-540-53500-4_93
Della Valle M, Duerbeck HW (1993) The space density of classical novae in the galactic disk. A&A 271:175–179
Della Valle M, Gilmozzi R (2002) Rebirth of novae as distance indicators due to efficient large telescopes. Science 296:1275. https://doi.org/10.1126/science.1070939. arXiv:astro-ph/0206067
Della Valle M, Livio M (1994) On the progenitors of type IA supernovae in early-type and late-type galaxies. ApJ 423:L31. https://doi.org/10.1086/187228
Della Valle M, Livio M (1995) The calibration of novae as distance indicators. ApJ 452:704. https://doi.org/10.1086/176342
Della Valle M, Livio M (1996) On the frequency of occurrence of recurrent novae and their role as type IA supernova progenitors. ApJ 473:240. https://doi.org/10.1086/178139
Della Valle M, Livio M (1998) The spectroscopic differences between disk and thick-disk/bulge novae. ApJ 506(2):818–823. https://doi.org/10.1086/306275
Della Valle M, Rosino L (1987) Semiregular variations of Nova V841 Oph (1848) at minimum. Inform Bull Var Stars 2995:1
Della Valle M, Bianchini A, Livio M, Orio M (1992) On the possible existence of two classes of progenitors for classical novae. A&A 266:232–236
Della Valle M, Rosino L, Bianchini A, Livio M (1994) The nova rate in galaxies of different Hubble types. A&A 287:403–409
Della Valle M, Gilmozzi R, Bianchini A, Esenoglu H (1997) Study of nova shells. II. FH Serentis 1970 and QU Vulpeculae 1984, nebular expansion, parallax and luminosity. A&A 325:1151–1156
Della Valle M, Pasquini L, Daou D, Williams RE (2002) The evolution of Nova V382 Velorum 1999. A&A 390:155–166. https://doi.org/10.1051/0004-6361:20020611. arXiv:astro-ph/0205135
Downes RA, Duerbeck HW (2000) Optical imaging of nova shells and the maximum magnitude-rate of decline relationship. AJ 120(4):2007–2037. https://doi.org/10.1086/301551. arXiv:astro-ph/0006458
Doyle TF, Shara MM, Lessing AM, Zurek D (2019) A Hubble Space Telescope survey for novae in the globular clusters of M87. ApJ 874(1):65. https://doi.org/10.3847/1538-4357/ab0490. arXiv:1810.12471
Duerbeck HW (1981) Light curve types, absolute magnitudes, and physical properties of galactic novae. PASP 93:165–175. https://doi.org/10.1086/130799
Duerbeck HW (1984) Constraints for cataclysmic binary evolution as derived from space distributions. Ap&SS 99(80):363. https://doi.org/10.1007/BF00650260
Duerbeck HW (1987) A reference catalogue and atlas of galactic novae. Space Sci Rev 45(1–2):1–14. https://doi.org/10.1007/BF00187826
Duerbeck HW (1990) Galactic distribution and outburst frequency of classical novae. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 34. https://doi.org/10.1007/3-540-53500-4_90
Duerbeck HW (1992) The final decline of novae and the hibernation hypothesis. MNRAS 258:629–638. https://doi.org/10.1093/mnras/258.3.629
Duncan JC (1918) A ninth nova in the Andromeda nebula. PASP 30(176):255. https://doi.org/10.1086/122743
Dunkley J, Komatsu E, Nolta MR, Spergel DN, Larson D, Hinshaw G, Page L, Bennett CL, Gold B, Jarosik N, Weiland JL, Halpern M, Hill RS, Kogut A, Limon M, Meyer SS, Tucker GS, Wollack E, Wright EL (2009) Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data. ApJS 180(2):306–329. https://doi.org/10.1088/0067-0049/180/2/306. arXiv:0803.0586
Ederoclite A, Mason E, Della Valle M, Gilmozzi R, Williams RE, Germany L, Saviane I, Matteucci F, Schaefer BE, Walter F, Rudy RJ, Lynch D, Mazuk S, Venturini CC, Puetter RC, Perry RB, Liller W, Rotter A (2006) Early spectral evolution of Nova Sagittarii 2004 (V5114 Sagittarii). A&A 459(3):875–883. https://doi.org/10.1051/0004-6361:20065741. arXiv:astro-ph/0608598
Eggleton PP (1983) Aproximations to the radii of Roche lobes. ApJ 268:368–369. https://doi.org/10.1086/160960
Ennis D, Becklin EE, Beckwith S, Elias J, Gatley I, Matthews K, Neugebauer G, Willner SP (1977) Infrared observations of Nova Cygni 1975. ApJ 214:478–487. https://doi.org/10.1086/155273
Eyres SPS, Davis RJ, Kenny HT, Bode MF, Dougherty SM, Llyod HM (1996) MERLIN observations of symbiotic novae. In: Taylor AR, Paredes JM (eds) Radio emission from the stars and the sun, ASP conference series, vol 93. Astronomical Society of the Pacific, San Francisco, p 194
Ferrarese L, Livio M, Freedman W, Saha A, Stetson PB, Ford HC, Hill RJ, Madore BF (1996) Discovery of a nova in the Virgo Galaxy M100. ApJ 468:L95. https://doi.org/10.1086/310246
Ferrarese L, Côté P, Jordán A (2003) Hubble Space Telescope observations of novae in M49. ApJ 599(2):1302–1319. https://doi.org/10.1086/379349. arXiv:astro-ph/0310006
Fields BD (2011) The primordial lithium problem. Annu Rev Nucl Particle Sci 61:47–68. https://doi.org/10.1146/annurev-nucl-102010-130445. arXiv:1203.3551
Fields BD, Molaro P, Sarkar S (2014) Big-bang nucleosynthesis. arXiv e-prints arXiv:1412.1408
Finzell T, Chomiuk L, Metzger BD, Walter FM, Linford JD, Mukai K, Nelson T, Weston JHS, Zheng Y, Sokoloski JL, Mioduszewski A, Rupen MP, Dong S, Starrfield S, Cheung CC, Woodward CE, Taylor GB, Bohlsen T, Buil C, Prieto J, Wagner RM, Bensby T, Bond IA, Sumi T, Bennett DP, Abe F, Koshimoto N, Suzuki D, Tristram PJ, Christie GW, Natusch T, McCormick J, Yee J, Gould A (2018) A detailed observational analysis of V1324 Sco, the most gamma-ray-luminous classical nova to date. ApJ 852(2):108. https://doi.org/10.3847/1538-4357/aaa12a. arXiv:1701.03094
Ford HC, Ciardullo R (1988) Hubble’s novae as distance indicators. In: van den Bergh S, Pritchet CJ (eds) The extragalactic distance scale, ASP conference series, vol 4. Astronomical Society of the Pacific, San Francisco, p 128
Franck JR, Shafter AW, Hornoch K, Misselt KA (2012) The nova rate in NGC 2403. ApJ 760(1):13. https://doi.org/10.1088/0004-637X/760/1/13. arXiv:1210.0604
Franckowiak A, Jean P, Wood M, Cheung CC, Buson S (2018) Search for gamma-ray emission from galactic novae with the Fermi -LAT. A&A 609:A120. https://doi.org/10.1051/0004-6361/201731516. arXiv:1710.04736
Friedjung M (1979) Upper limit of the Li/Na ratio in novae. A&A 77:357–358
Fujimoto MY (1982) A theory of hydrogen shell flashes on accreting white dwarfs—Part two—The stable shell burning and the recurrence period of shell flashes. ApJ 257:767. https://doi.org/10.1086/160030
Gal-Yam A (2012) Luminous supernovae. Science 337(6097):927. https://doi.org/10.1126/science.1203601. arXiv:1208.3217
Gallagher JS, Starrfield S (1978) Theory and observations of classical novae. ARA&A 16:171–214. https://doi.org/10.1146/annurev.aa.16.090178.001131
Gavazzi G, Scodeggio M (1996) The mass dependence of the star formation history of disk galaxies. A&A 312:L29–L32
Gehrels N (1986) Confidence limits for small numbers of events in astrophysical data. ApJ 303:336. https://doi.org/10.1086/164079
Gehrels N, Chincarini G, Giommi P, Mason KO, Nousek JA, Wells AA, White NE, Barthelmy SD, Burrows DN, Cominsky LR, Hurley KC, Marshall FE, Mészáros P, Roming PWA, Angelini L, Barbier LM, Belloni T, Campana S, Caraveo PA, Chester MM, Citterio O, Cline TL, Cropper MS, Cummings JR, Dean AJ, Feigelson ED, Fenimore EE, Frail DA, Fruchter AS, Garmire GP, Gendreau K, Ghisellini G, Greiner J, Hill JE, Hunsberger SD, Krimm HA, Kulkarni SR, Kumar P, Lebrun F, Lloyd-Ronning NM, Markwardt CB, Mattson BJ, Mushotzky RF, Norris JP, Osborne J, Paczynski B, Palmer DM, Park HS, Parsons AM, Paul J, Rees MJ, Reynolds CS, Rhoads JE, Sasseen TP, Schaefer BE, Short AT, Smale AP, Smith IA, Stella L, Tagliaferri G, Takahashi T, Tashiro M, Townsley LK, Tueller J, Turner MJL, Vietri M, Voges W, Ward MJ, Willingale R, Zerbi FM, Zhang WW (2004) The swift gamma-ray burst mission. ApJ 611(2):1005–1020. https://doi.org/10.1086/422091. arXiv:astro-ph/0405233
Gehrz RD (1990) New infrared results for classical novae. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 138. https://doi.org/10.1007/3-540-53500-4_109
Gehrz RD (2008) Infrared studies of classical novae. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 167–193. https://doi.org/10.1017/CBO9780511536168.010
Gehrz RD, Grasdalen GL, Hackwell JA, Ney EP (1980a) The evolution of the dust shell of nova SER 1978. ApJ 237:855–865. https://doi.org/10.1086/157934
Gehrz RD, Hackwell JA, Grasdalen GI, Ney EP, Neugebauer G, Sellgren K (1980b) The optically thin dust shell of nova CYG 1978. ApJ 239:570–580. https://doi.org/10.1086/158143
Gehrz RD, Greenhouse MA, Hayward TL, Houck JR, Mason CG, Woodward CE (1995a) The infrared spectrum of the optically thin dust shell of V705 Cassiopeiae (Nova Cassiopeiae 1993). ApJ 448:L119. https://doi.org/10.1086/309607
Gehrz RD, Jones TJ, Matthews K, Neugebauer G, Woodward CE, Hayward TL, Greenhouse MA (1995b) The neon nova. III. The infrared light curves of nova QU vulpeculae (Nova VUL 1984#2). AJ 110:325. https://doi.org/10.1086/117523
Gehrz RD, Truran JW, Williams RE, Starrfield S (1998) Nucleosynthesis in classical novae and its contribution to the interstellar medium. PASP 110(743):3–26. https://doi.org/10.1086/316107
Gehrz RD, Woodward CE, Helton LA, Polomski EF, Hayward TL, Houck JR, Evans A, Krautter J, Shore SN, Starrfield S, Truran J, Schwarz GJ, Wagner RM (2008) The neon abundance in the ejecta of QU Vulpeculae from late-epoch infrared spectra. ApJ 672(2):1167–1173. https://doi.org/10.1086/523660. arXiv:0709.2693
Gehrz RD, Evans A, Helton LA, Woodward CE (2015) Infrared Observations of Novae in the SOFIA Era. In: Lagadec E, Millour F, Lanz T (eds) The physics of evolved stars: a conference dedicated to the memory of Olivier Chesneau, EDP sciences, EAS publications series, vol 71–72, pp 143–146. https://doi.org/10.1051/eas/1571030. arXiv:1509.00066
Gehrz RD, Evans A, Woodward CE, Helton LA, Banerjee DPK, Srivastava MK, Ashok NM, Joshi V, Eyres SPS, Krautter J, Kuin NPM, Page KL, Osborne JP, Schwarz GJ, Shenoy DP, Shore SN, Starrfield SG, Wagner RM (2018) The temporal development of dust formation and destruction in Nova Sagittarii 2015#2 (V5668 SGR): a panchromatic study. ApJ 858(2):78. https://doi.org/10.3847/1538-4357/aaba81. arXiv:1804.00575
Geisel SL, Kleinmann DE, Low FJ (1970) Infrared emission of novae. ApJ 161:L101. https://doi.org/10.1086/180579
Gill CD, O’Brien TJ (2000) Hubble Space Telescope imaging and ground-based spectroscopy of old nova shells—I. FH Ser, V533 Her, BT Mon, DK Lac and V476 Cyg. MNRAS 314(1):175–182. https://doi.org/10.1046/j.1365-8711.2000.03342.x. arXiv:astro-ph/0001092
Glicenstein JF (1999a) Nova in small magellanic cloud 1999 No. 3. IAU Circ. 7286
Glicenstein JF (1999b) Nova in the small magellanic cloud. IAU Circ. 7239
Godon P, Sion EM, Starrfield S, Livio M, Williams RE, Woodward CE, Kuin P, Page KL (2014) Hubble Space Telescope far ultraviolet spectroscopy of the recurrent Nova T Pyxidis. ApJ 784(2):L33. https://doi.org/10.1088/2041-8205/784/2/L33. arXiv:1402.0128
Graham JA (1979) The premaximum spectrum of a Magellanic Cloud nova. PASP 91:79–82. https://doi.org/10.1086/130445
Greggio L (2010) The rates of SNIa: a theoretical viewpoint. In: Progenitors and environments of stellar explosions, p 65
Güth T, Shafter AW, Misselt KA (2010) The nova rate in M94 (NGC 4736). ApJ 720(2):1155–1160. https://doi.org/10.1088/0004-637X/720/2/1155. arXiv:1007.2154
Hachisu I, Kato M (2006) A universal decline law of classical novae. ApJS 167(1):59–80. https://doi.org/10.1086/508063. arXiv:astro-ph/0607609
Hachisu I, Kato M (2007) A universal decline law of classical novae. II. GK Persei 1901 and Novae in 2005. ApJ 662(1):552–563. https://doi.org/10.1086/517600. arXiv:astro-ph/0702563
Hachisu I, Kato M (2009) Optical and supersoft X-ray light-curve models of classical nova V2491 Cygni: a new clue to the secondary maximum. ApJ 694(2):L103–L106. https://doi.org/10.1088/0004-637X/694/2/L103. arXiv:0902.2424
Hachisu I, Kato M (2010) A prediction formula of supersoft X-ray phase of classical novae. ApJ 709(2):680–714. https://doi.org/10.1088/0004-637X/709/2/680. arXiv:0912.1136
Hachisu I, Kato M (2012) A extremely massive white dwarf of the symbiotic classical nova V407 Cyg as suggested by the RS Oph and U Sco models. Baltic Astron 21:68–75. https://doi.org/10.1515/astro-2017-0360
Hachisu I, Kato M (2014) The UBV color evolution of classical novae. I. Nova-giant Sequence in the color-color diagram. ApJ 785(2):97. https://doi.org/10.1088/0004-637X/785/2/97. arXiv:1401.7113
Hachisu I, Kato M (2015) A light curve analysis of classical novae: free-free emission versus photospheric emission. ApJ 798(2):76. https://doi.org/10.1088/0004-637X/798/2/76. arXiv:1410.7888
Hachisu I, Kato M (2018) A light curve analysis of recurrent and very fast novae in our galaxy, magellanic clouds, and M31. ApJS 237(1):4. https://doi.org/10.3847/1538-4365/aac833. arXiv:1805.09932
Hachisu I, Kato M (2019) A light-curve analysis of 32 recent galactic novae: distances and white dwarf masses. ApJS 242(2):18. https://doi.org/10.3847/1538-4365/ab1b43. arXiv:1905.10655
Hachisu I, Kato M, Nomoto K (1999) A wide symbiotic channel to type IA supernovae. ApJ 522(1):487–503. https://doi.org/10.1086/307608. arXiv:astro-ph/9902304
Hachisu I, Kato M, Cassatella A (2008) A universal decline law of classical novae. III. GQ Muscae 1983. ApJ 687(2):1236–1252. https://doi.org/10.1086/591415. arXiv:0806.4253
Hartwick FDA, Hutchings JB (1978) Classical novae: a time-dependent optically thick wind model for the postmaximum phase. ApJ 226:203–209. https://doi.org/10.1086/156599
Hatano K, Branch D, Fisher A, Starrfield S (1997) On the spatial distribution and occurrence rate of galactic classical novae. MNRAS 290(1):113–118. https://doi.org/10.1093/mnras/290.1.113
Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Della Valle M, Hatzidimitriou D, Rau A, Hartmann DH, Greiner J, Burwitz V, Fliri J (2010) X-ray monitoring of classical novae in the central region of M 31. I. June 2006-March 2007. A&A 523:A89. https://doi.org/10.1051/0004-6361/201014710. arXiv:1009.1644
Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Hatzidimitriou D, Della Valle M, Rau A, Hartmann DH, Burwitz V (2011) X-ray monitoring of classical novae in the central region of M 31. II. Autumn and winter 2007/2008 and 2008/2009. A&A 533:A52. https://doi.org/10.1051/0004-6361/201015887. arXiv:1010.1461
Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Della Valle M, Stiele H (2012) M31N 2008-05d: a M31 disk nova with a dipping supersoft X-ray light curve. A&A 544:A44. https://doi.org/10.1051/0004-6361/201219488. arXiv:1207.2339
Henze M, Pietsch W, Haberl F, Della Valle M, Riffeser A, Sala G, Hatzidimitriou D, Hofmann F, Hartmann DH, Koppenhoefer J, Seitz S, Williams GG, Hornoch K, Itagaki K, Kabashima F, Nishiyama K, Xing G, Lee CH, Magnier E, Chambers K (2013) Supersoft X-rays reveal a classical nova in the M 31 globular cluster Bol 126. A&A 549:A120. https://doi.org/10.1051/0004-6361/201220196. arXiv:1211.4736
Henze M, Pietsch W, Haberl F, Della Valle M, Sala G, Hatzidimitriou D, Hofmann F, Hernanz M, Hartmann DH, Greiner J (2014) X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12. A&A 563:A2. https://doi.org/10.1051/0004-6361/201322426. arXiv:1312.1241
Henze M, Darnley MJ, Williams SC, Kato M, Hachisu I, Anupama GC, Arai A, Boyd D, Burke D, Ciardullo R, Chinetti K, Cook LM, Cook MJ, Erdman P, Gao X, Harris B, Hartmann DH, Hornoch K, Horst JC, Hounsell R, Husar D, Itagaki K, Kabashima F, Kafka S, Kaur A, Kiyota S, Kojiguchi N, Kučáková H, Kuramoto K, Maehara H, Mantero A, Masci FJ, Matsumoto K, Naito H, Ness JU, Nishiyama K, Oksanen A, Osborne JP, Page KL, Paunzen E, Pavana M, Pickard R, Prieto-Arranz J, Rodríguez-Gil P, Sala G, Sano Y, Shafter AW, Sugiura Y, Tan H, Tordai T, Vraštil J, Wagner RM, Watanabe F, Williams BF, Bode MF, Bruno A, Buchheim B, Crawford T, Goff B, Hernanz M, Igarashi AS, José J, Motta M, O’Brien TJ, Oswalt T, Poyner G, Ribeiro VARM, Sabo R, Shara MM, Shears J, Starkey D, Starrfield S, Woodward CE (2018) Breaking the habit: the peculiar 2016 eruption of the unique recurrent nova M31N 2008–12a. ApJ 857(1):68. https://doi.org/10.3847/1538-4357/aab6a6. arXiv:1803.00181
Hernandez S, Larsen S, Trager S, Kaper L, Groot P (2018) Metallicities of young massive clusters in NGC 5236 (M83). MNRAS 473(1):826–837. https://doi.org/10.1093/mnras/stx2397. arXiv:1709.04466
Hernanz M (2012) Novae in \(\gamma\)-rays. Bull Astron Soc India 40:377 arXiv:1301.1660
Hernanz M (2015) Astrophysics: a lithium-rich stellar explosion. Nature 518(7539):307–308. https://doi.org/10.1038/518307a
Hernanz M, Sala G (2010) X-ray observations of classical novae: theoretical implications. Astron Nachr 331(2):169. https://doi.org/10.1002/asna.200911320. arXiv:0910.4607
Hillebrandt W, Thielemann FK (1982) Nucleosynthesis in novae: a source of Ne-E and \(^{26}\)Al. ApJ 255:617–623. https://doi.org/10.1086/159864
Hillman Y, Shara MM, Prialnik D, Kovetz A (2020) A unified theory of cataclysmic variable evolution from feedback-dominated numerical simulations. Nature Astron. https://doi.org/10.1038/s41550-020-1062-y
Hjellming RM (1995) Radio images and light curves for nova V1974 Cyg 1992. In: Bianchini A, Della Valle M, Orio M (eds) Cataclysmic variables. Kluwer Academic, Dordrecht, Astrophysics and Space Science Library, vol 205, p 139. https://doi.org/10.1007/978-94-011-0335-0_29
Hjellming RM, Wade CM (1970) Radio novae. ApJ 162:L1. https://doi.org/10.1086/180610
Hjellming RM, Wade CM, Vandenberg NR, Newell RT (1979) Radio emission from nova shells. AJ 84:1619–1631. https://doi.org/10.1086/112585
Hubble E, Sandage A (1953) The brightest variable stars in extragalactic nebulae. I. M31 and M33. ApJ 118:353. https://doi.org/10.1086/145764
Hubble EP (1929) A spiral nebula as a stellar system, Messier 31. ApJ 69:103–158. https://doi.org/10.1086/143167
Hyland AR, Neugebauer G (1970) Infrared observations of Nova Serpentis 1970. ApJ 160:L177. https://doi.org/10.1086/180554
Iben JI, Tutukov AV (1984) Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. ApJS 54:335–372. https://doi.org/10.1086/190932
Iben JI, Tutukov AV (1985) On the evolution of close binaries with components of initial mass between 3 M and 12 M. ApJS 58:661–710. https://doi.org/10.1086/191054
Icko Iben J, Livio M (1993) Common envelopes in binary star evolution. PASP 105:1373. https://doi.org/10.1086/133321
Icko Iben J, Tutukov AV (1992) Rare thermonuclear explosions in short-period cataclysmic variables, with possible application to the nova-like red variable in the galaxy M31. ApJ 389:369. https://doi.org/10.1086/171211
Iijima T (2012) Spectroscopic observations of the recurrent nova CI aquilae during the 2000 outburst. A&A 544:A26. https://doi.org/10.1051/0004-6361/201117945
Iłkiewicz K, Mikołajewska J, Belczyński K, Wiktorowicz G, Karczmarek P (2019) Wind Roche lobe overflow as a way to make type Ia supernovae from the widest symbiotic systems. MNRAS 485(4):5468–5473. https://doi.org/10.1093/mnras/stz760. arXiv:1812.02602
Iwanowska W, Burnicki A (1962) The population assignment of novae. Bull Acad Polon Sci 10:537
Izzo L, Ederoclite A, Della Valle M, Mason E, Williams RE, Altamore T, Cassatella A, Gilmozzi R, Patat F, Schmidtobreick L, Selvelli P, Tappert C, Thater S, Covone G, Dall’Ora M, Paolillo M (2012) Optical and near infrared multi-site follow up of the recurrent nova T Pyx. Mem. Soc. Astr. It. 83:830
Izzo L, Della Valle M, Mason E, Matteucci F, Romano D, Pasquini L, Vanzi L, Jordan A, Fernand ez JM, Bluhm P, Brahm R, Espinoza N, Williams R (2015) Early optical spectra of nova V1369 cen show the presence of lithium. ApJ 808(1):L14. https://doi.org/10.1088/2041-8205/808/1/L14. arXiv:1506.08048
Izzo L, Molaro P, Bonifacio P, Della Valle M, Cano Z, de Ugarte Postigo A, Prieto JL, Thöne C, Vanzi L, Zapata A, Fernandez D (2018) Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi). MNRAS 478(2):1601–1610. https://doi.org/10.1093/mnras/sty435. arXiv:1802.05896
Jacoby GH, Branch D, Ciardullo R, Davies RL, Harris WE, Pierce MJ, Pritchet CJ, Tonry JL, Welch DL (1992) A critical review of selected techniques for measuring extragalactic distances. PASP 104:599. https://doi.org/10.1086/133035
Jordi K, Grebel EK, Ammon K (2006) Empirical color transformations between SDSS photometry and other photometric systems. A&A 460(1):339–347. https://doi.org/10.1051/0004-6361:20066082. arXiv:astro-ph/0609121
José J (2012) Classical nova explosions—hydrodynamics and nucleosynthesis. Bull Astron Soc India 40:443
José J, Hernanz M (1998) Nucleosynthesis in classical novae: CO versus ONe white dwarfs. ApJ 494(2):680–690. https://doi.org/10.1086/305244. arXiv:astro-ph/9709153
José J, Shore SN (2008) Observational mysteries and theoretical challenges for abundance studies. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 121–140. https://doi.org/10.1017/CBO9780511536168.008
Kantharia NG (2017) Novae: I. The maximum magnitude relation with decline time (MMRD) and distance. arXiv e-prints arXiv:1703.04087, arXiv:1703.04087
Kasliwal MM, Cenko SB, Kulkarni SR, Ofek EO, Quimby R, Rau A (2011) Discovery of a new photometric sub-class of faint and fast classical novae. ApJ 735(2):94. https://doi.org/10.1088/0004-637X/735/2/94. arXiv:1003.1720
Kato M, Hachisu I (1989) Mass loss during nova outbursts on various white dwarf masses. ApJ 346:424. https://doi.org/10.1086/168022
Kato M, Hachisu I (1994) Optically thick winds in nova outbursts. ApJ 437:802. https://doi.org/10.1086/175041
Kato M, Hachisu I (2012) Recurrent novae as progenitors of type Ia supernovae. Bull Astron Soc India 40:393 arXiv:1212.2295
Kato M, Hachisu I, Cassatella A (1991) A universal decline law of classical novae. IV. V838 Her (1991): a very massive white dwarf. ApJ 704(2):1676–1688. https://doi.org/10.1088/0004-637X/704/2/1676. arXiv:0909.1506
Kato M, Hachisu I, Henze M (2013) Novae in globular clusters. ApJ 779(1):19. https://doi.org/10.1088/0004-637X/779/1/19. arXiv:1310.6579
Kato M, Saio H, Hachisu I, Nomoto K (2014) Shortest recurrence periods of novae. ApJ 793(2):136. https://doi.org/10.1088/0004-637X/793/2/136. arXiv:1404.0582
Kato M, Saio H, Hachisu I (2015) Multi-wavelength light curve model of the one-year recurrence period nova M31N 2008–12A. ApJ 808(1):52. https://doi.org/10.1088/0004-637X/808/1/52. arXiv:1506.05364
Kaur A (2016) The puzzling bulge to disk nova ratio in the Andromeda galaxy (M31). PhD thesis, Clemson University
Kodaira K (1970) Energy distribution around the light maximum of Nova Serpentis 1970. PASJ 22:447
Kolb U, Politano M (1997) The contribution of O-Ne-Mg novae to the \(^{26}\)Al production in the galaxy. A&A 319:909–922
Kopylov IM (1952) Commun Crimean Ap Obs 9:116
Kopylov IM (1955) Izv Krymskoi Astrofiz Obs 13:23
Kovetz A, Prialnik D (1985) CNO abundances resulting from diffusion in accreting nova progenitors. ApJ 291:812–821. https://doi.org/10.1086/163117
Kraft RP (1964) Binary stars among cataclysmic variables. III. Ten old novae. ApJ 139:457. https://doi.org/10.1086/147776
Kraft RP (1965) Binary stars among cataclysmic variables. VII. On the kinematics and space distribution of W Ursae majoris and U geminorum-type stars. ApJ 142:1588. https://doi.org/10.1086/148438
Krautter J, Oegelman H, Starrfield S, Wichmann R, Pfeffermann E (1996) ROSAT X-ray observations of nova V1974 Cygni: the rise and fall of the brightest supersoft X-ray source. ApJ 456:788. https://doi.org/10.1086/176697
Kukarkin BV (1949) The study of the structure and evolution of stellar systems. Moscow
Lambert DL, Reddy BE (2004) Lithium abundances of the local thin disc stars. MNRAS 349(2):757–767. https://doi.org/10.1111/j.1365-2966.2004.07557.x. arXiv:astro-ph/0401259
Li KL, Metzger BD, Chomiuk L, Vurm I, Strader J, Finzell T, Beloborodov AM, Nelson T, Shappee BJ, Kochanek CS, Prieto JL, Kafka S, Holoien TWS, Thompson TA, Luckas PJ, Itoh H (2017) A nova outburst powered by shocks. Nature Astron 1:697–702. https://doi.org/10.1038/s41550-017-0222-1. arXiv:1709.00763
Li W, Bloom JS, Podsiadlowski P, Miller AA, Cenko SB, Jha SW, Sullivan M, Howell DA, Nugent PE, Butler NR, Ofek EO, Kasliwal MM, Richards JW, Stockton A, Shih HY, Bildsten L, Shara MM, Bibby J, Filippenko AV, Ganeshalingam M, Silverman JM, Kulkarni SR, Law NM, Poznanski D, Quimby RM, McCully C, Patel B, Maguire K, Shen KJ (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480(7377):348–350. https://doi.org/10.1038/nature10646. arXiv:1109.1593
Liller W, Mayer B (1987) The rate of nova production in the galaxy. PASP 99:606–609. https://doi.org/10.1086/132021
Linford JD, Chomiuk L, Rupen MP (2018) ngVLA studies of classical novae. In: Murphy E (ed) Science with a next generation very large array. Astronomical Society of the Pacific, San Francisco, ASP conference series, vol 517, p 271
Livio M (1992) Classical novae and the extragalactic distance scale. ApJ 393:516. https://doi.org/10.1086/171524
Livio M, Mazzali P (2018) On the progenitors of type Ia supernovae. Phys Rept 736:1–23. https://doi.org/10.1016/j.physrep.2018.02.002. arXiv:1802.03125
Livio M, Truran JW (1994) On the interpretation and implications of nova abundances: an abundance of riches or an overabundance of enrichments. ApJ 425:797. https://doi.org/10.1086/174024
Livio M, Riess A, Sparks W (2002) Will jets identify the progenitors of type Ia supernovae? ApJ 571(2):L99–L102. https://doi.org/10.1086/341413. arXiv:astro-ph/0204454
Lloyd HM, O’Brien TJ, Bode MF (1996) Models for the radio emission from classical novae. In: Taylor AR, Paredes JM (eds) Radio emission from the stars and the sun. ASP conference series, vol 93. Astronomical Society of the Pacific, San Francisco, p 200
Lodders K, Palme H, Gail HP (2009) Abundances of the elements in the solar system. Landolt-Börnstein https://doi.org/10.1007/978-3-540-88055-4_34. arXiv:0901.1149
Lundmark K (1922) The absolute magnitudes of novæ. PASP 34(200):207. https://doi.org/10.1086/123201
Lundmark K (1923) Some facts and suggestions concerning novæ. PASP 35(204):95. https://doi.org/10.1086/123277
Lundmark K (1927) Studies of anagalactic nebulae—first paper. Nova acta Regiae Societatis Scientiarum Upsaliensis Ser. V, pp 1–127
Lundmark K (1935) On the novae and their classification among the variable stars. Meddelanden Fran Lunds Astron Obs Ser II 74:1–20
Madrid JP, Sparks WB, Ferguson HC, Livio M, Macchetto D (2007) Discovery of 13 nova candidates in M87. ApJ 654(1):L41–L44. https://doi.org/10.1086/510904. arXiv:astro-ph/0611825
Mannucci F, Della Valle M, Panagia N, Cappellaro E, Cresci G, Maiolino R, Petrosian A, Turatto M (2005) The supernova rate per unit mass. A&A 433(3):807–814. https://doi.org/10.1051/0004-6361:20041411. arXiv:astro-ph/0411450
Mannucci F, Della Valle M, Panagia N (2006) Two populations of progenitors for type Ia supernovae? MNRAS 370(2):773–783. https://doi.org/10.1111/j.1365-2966.2006.10501.x. arXiv:astro-ph/0510315
Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of type Ia supernovae. ARA&A 52:107–170. https://doi.org/10.1146/annurev-astro-082812-141031. arXiv:1312.0628
Martin P, Dubus G (2013) Particle acceleration and non-thermal emission during the V407 Cygni nova outburst. A&A 551:A37. https://doi.org/10.1051/0004-6361/201220289. arXiv:1209.0625
Martin P, Dubus G, Jean P, Tatischeff V, Dosne C (2018) Gamma-ray emission from internal shocks in novae. A&A 612:A38. https://doi.org/10.1051/0004-6361/201731692. arXiv:1710.05515
Martini P, Wagner RM, Tomaney A, Rich RM, Della Valle M, Hauschildt PH (1999) Nova Sagittarii 1994 1 (V4332 Sagittarii): the discovery and evolution of an unusual luminous red variable star. AJ 118(2):1034–1042. https://doi.org/10.1086/300951. arXiv:astro-ph/9905016
Mason CG, Gehrz RD, Woodward CE, Smilowitz JB, Greenhouse MA, Hayward TL, Houck JR (1996) Infrared observations of dust formation and coronal emission in nova aquilae 1995. ApJ 470:577. https://doi.org/10.1086/177889
Mason CG, Gehrz RD, Woodward CE, Smilowitz JB, Hayward TL, Houck JR (1998) The infrared development of V705 cassiopeiae. ApJ 494(2):783–791. https://doi.org/10.1086/305220
Mason E, Della Valle M, Gilmozzi R, Lo Curto G, Williams RE (2005) Early decline spectra of nova SMC 2001 and nova LMC 2002. A&A 435(3):1031–1042. https://doi.org/10.1051/0004-6361:20041351. arXiv:astro-ph/0504153
Mason E, Shore SN, De Gennaro Aquino I, Izzo L, Page K, Schwarz GJ (2018) V1369 cen high-resolution panchromatic late nebular spectra in the context of a unified picture for nova ejecta. ApJ 853(1):27. https://doi.org/10.3847/1538-4357/aaa247. arXiv:1807.07178
Matteucci F, D’Antona F, Timmes FX (1995) News (\({\nu }\)s) on the galactic evolution of lithium. A&A 303:460
Matteucci F, Renda A, Pipino A, Della Valle M (2003) Modelling the nova rate in galaxies. A&A 405:23–30. https://doi.org/10.1051/0004-6361:20030520. arXiv:astro-ph/0304123
Mazzali PA, Nomoto K, Cappellaro E, Nakamura T, Umeda H, Iwamoto K (2001) Can differences in the nickel abundance in Chandrasekhar-mass models explain the relation between the brightness and decline rate of normal type Ia supernovae? ApJ 547(2):988–994. https://doi.org/10.1086/318428. arXiv:astro-ph/0009490
McLaughlin DB (1939) The forms of light curves of novae. In: Sixtieth meeting, Ann Arbor, Michigan, 1938. American Astronomical Society, Publications of the AAS, vol 9, p 157
McLaughlin DB (1940) The relation between absorption velocity and rate of decline for galactic novae. ApJ 91:369. https://doi.org/10.1086/144179
McLaughlin DB (1941) The distances and luminosities of three novae. ApJ 93:417. https://doi.org/10.1086/144281
McLaughlin DB (1942) The luminosities of novae. Popular. Astronomy 50:233
McLaughlin DB (1943) On the spectra of novae. Publ Michigan Obs 8(12):149–194
McLaughlin DB (1945a) A note on the absorption of light in the galaxy. AJ 51:97. https://doi.org/10.1086/105832
McLaughlin DB (1945b) The relation between light-curves and luminosities of novae. PASP 57(335):69. https://doi.org/10.1086/125689
McLaughlin DB (1946) The classification of nova spectra. AJ 52:46. https://doi.org/10.1086/105904
McLaughlin DB (1960) The spectra of novae. In: Greenstein JL (ed) Stellar atmospheres. University of Chicago Press, Chicago, p 585
Metzger BD, Finzell T, Vurm I, Hascoët R, Beloborodov AM, Chomiuk L (2015) Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks. MNRAS 450(3):2739–2748. https://doi.org/10.1093/mnras/stv742. arXiv:1501.05308
Minkowski R (1948) Novae and planetary nebulae. ApJ 107:106. https://doi.org/10.1086/144993
Molaro P, Izzo L, Mason E, Bonifacio P, Della Valle M (2016) Highly enriched \(^{7}\)Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the galactic \(^{7}\)Li origin. MNRAS 463(1):L117–L121. https://doi.org/10.1093/mnrasl/slw169. arXiv:1609.07297
Molaro P, Izzo L, Bonifacio P, Hernanz M, Selvelli P, della Valle M (2020) Search for \(^{7}\)Be in the outbursts of four recent novae. MNRAS 492(4):4975–4985. https://doi.org/10.1093/mnras/stz3587. arXiv:1912.13281
Monck WHS (1885) New stars and shooting-stars. Observatory 8:335–336
Moraes M, Diaz M (2009) HR Del remnant anatomy using two-dimensional spectral data and three-dimensional photoionization shell models. AJ 138(6):1541–1556. https://doi.org/10.1088/0004-6256/138/6/1541. arXiv:0909.4689
Morris PJ, Cotter G, Brown AM, Chadwick PM (2017) Gamma-ray novae: rare or nearby? MNRAS 465(1):1218–1226. https://doi.org/10.1093/mnras/stw2776. arXiv:1610.09941
Mould J, Cohen J, Graham JR, Hamilton D, Matthews K, Picard A, Reid N, Schmidt M, Soifer T, Wilson C, Rich RM, Gunn J (1990) A nova-like red variable in M31. ApJ 353:L35. https://doi.org/10.1086/185702
Mróz P, Udalski A, Poleski R, Soszyński I, Szymański MK, Pietrzyński G, Wyrzykowski Ł, Ulaczyk K, Kozłowski S, Pietrukowicz P, Skowron J (2015) OGLE atlas of classical novae. I. Galactic bulge objects. ApJS 219(2):26. https://doi.org/10.1088/0067-0049/219/2/26. arXiv:1504.08224
Mróz P, Udalski A, Poleski R, Soszyński I, Szymański MK, Pietrzyński G, Wyrzykowski Ł, Ulaczyk K, Kozłowski S, Pietrukowicz P, Skowron J (2016) OGLE atlas of classical novae. II. Magellanic clouds. ApJS 222(1):9. https://doi.org/10.3847/0067-0049/222/1/9. arXiv:1511.06355
Mukai K, Ishida M (2001) The early X-ray emission from V382 velorum (nova Velorum 1999): an internal shock model. ApJ 551(2):1024–1030. https://doi.org/10.1086/320220. arXiv:astro-ph/0101026
Mukai K, Sokoloski JL (2019) The new science of novae. Phys Today 72(11):38–44. https://doi.org/10.1063/PT.3.4341
Mukai K, Orio M, Della Valle M (2008) Novae as a class of transient X-ray sources. ApJ 677(2):1248–1252. https://doi.org/10.1086/529362
Munari U, Renzini A (1992) Are symbiotic stars the precursors of type Ia supernovae? ApJ 397:L87. https://doi.org/10.1086/186551
Munari U, Zwitter T (1997) Equivalent width of Na I and K I lines and reddening. A&A 318:269–274
Munari U, Mason E, Valisa P (2014) The narrow and moving HeII lines in nova KT Eridani. A&A 564:A76. https://doi.org/10.1051/0004-6361/201323180. arXiv:1403.3284
Munari U, Hambsch FJ, Frigo A (2017) Photometric evolution of seven recent novae and the double-component characterizing the light curve of those emitting in gamma rays. MNRAS 469(4):4341–4358. https://doi.org/10.1093/mnras/stx1116. arXiv:1703.09017
Muraveva T, Delgado HE, Clementini G, Sarro LM, Garofalo A (2018) RR Lyrae stars as standard candles in the Gaia Data Release 2 era. MNRAS 481(1):1195–1211. https://doi.org/10.1093/mnras/sty2241. arXiv:1805.08742
Nariai K, Nomoto K, Sugimoto D (1980) Nova explosion of mass-accreting white dwarfs. PASJ 32:473
Naylor T, Charles PA, Mukai K, Evans A (1992) An observational case against nova hibernation. MNRAS 258:449–456. https://doi.org/10.1093/mnras/258.3.449
Neill JD, Shara MM (2004) The H\(\alpha\) light curves and spatial distribution of novae in M81. AJ 127(2):816–831. https://doi.org/10.1086/381484. arXiv:astro-ph/0311327
Neill JD, Shara MM (2005) A possible high nova rate for two local group dwarf galaxies: M32 and NGC 205. AJ 129(4):1873–1885. https://doi.org/10.1086/428482. arXiv:astro-ph/0501030
Nelson T, Chomiuk L, Roy N, Sokoloski JL, Mukai K, Krauss MI, Mioduszewski AJ, Rupen MP, Weston J (2014) The 2011 outburst of recurrent Nova T Pyx: radio observations reveal the ejecta mass and hint at complex mass loss. ApJ 785(1):78. https://doi.org/10.1088/0004-637X/785/1/78. arXiv:1211.3112
Ness JU, Schwarz GJ, Retter A, Starrfield S, Schmitt JHMM, Gehrels N, Burrows D, Osborne JP (2007) Swift X-ray observations of classical novae. ApJ 663(1):505–515. https://doi.org/10.1086/518084. arXiv:astro-ph/0703286
Ness JU, Drake JJ, Starrfield S, Bode MF, O’Brien TJ, Evans A, Eyres SPS, Helton LA, Osborne JP, Page KL, Schneider C, Woodward CE (2009) High-resolution X-ray spectroscopy of the evolving shock in the 2006 outburst of RS Ophiuchi. AJ 137(2):3414–3436. https://doi.org/10.1088/0004-6256/137/2/3414. arXiv:0810.2023
Ness JU, Beardmore AP, Osborne JP, Kuulkers E, Henze M, Piro AL, Drake JJ, Dobrotka A, Schwarz G, Starrfield S, Kretschmar P, Hirsch M, Wilms J (2015) Short-period X-ray oscillations in super-soft novae and persistent super-soft sources. A&A 578:A39. https://doi.org/10.1051/0004-6361/201425178. arXiv:1503.00186
Newton I (1729) The mathematical principles of natural philosophy
Nomoto K (1982a) Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms. ApJ 253:798–810. https://doi.org/10.1086/159682
Nomoto K (1982b) Accreting white dwarf models for type I supernovae. II. Off-center detonation supernovae. ApJ 257:780–792. https://doi.org/10.1086/160031
Nomoto K, Kondo Y (1991) Conditions for accretion-induced collapse of white dwarfs. ApJ 367:L19. https://doi.org/10.1086/185922
O’Brien T, Rupen M, Chomiuk L, Ribeiro V, Bode M, Sokoloski J, Woudt PA (2015) Thermal radio emission from novae& symbiotics with the square kilometre array. In: Advancing astrophysics with the square kilometre array (AASKA14), p 62. arXiv:1502.04927
Oegelman H, Beuermann K, Krautter J (1984) The detection of X-rays from nova MUSCAE 1983 with the EXOSAT satellite. ApJ 287:L31–L34. https://doi.org/10.1086/184391
Oegelman H, Orio M, Krautter J, Starrfield S (1993) Detection of supersoft X-ray emission from GQ Muscae nine years after a nova outburst. Nature 361(6410):331–333. https://doi.org/10.1038/361331a0
Oort JH (1926) Asymmetry in the distribution of stellar velocities. Observatory 49:302–304
Orio M (2006) A close look at the population of supersoft and quasi-soft X-ray sources observed in M31 with XMM-Newton. ApJ 643(2):844–862. https://doi.org/10.1086/500099. arXiv:astro-ph/0512016
Orio M, Covington J, Ögelman H (2001) X-ray emission from classical and recurrent novae observed with ROSAT. A&A 373:542–554. https://doi.org/10.1051/0004-6361:20010537. arXiv:astro-ph/0104219
Orio M, Tepedelenlioglu E, Starrfield S, Woodward CE, Della Valle M (2005) Chandra observations of the recurrent nova IM normae. ApJ 620(2):938–942. https://doi.org/10.1086/427207. arXiv:astro-ph/0411162
Orio M, Nelson T, Bianchini A, Di Mille F, Harbeck D (2010) A census of the supersoft X-ray sources in M31. ApJ 717(2):739–765. https://doi.org/10.1088/0004-637X/717/2/739
Orio M, Ness JU, Dobrotka A, Gatuzz E, Ospina N, Aydi E, Behar E, Buckley DAH, Ciroi S, Della Valle M, Hernanz M, Henze M, Osborne JP, Page KL, Rauch T, Sala G, Starrfield S, Williams RE, Woodward CE, Zemko P (2018) What we learn from the X-ray grating spectra of nova SMC 2016. ApJ 862(2):164. https://doi.org/10.3847/1538-4357/aacf06. arXiv:1806.08249
Ortolani S, Rafanelli P, Rosino L, Vittone A (1980) The recent outburst of the dwarf nova WZ Sge. A&A 87:31–35
Osborne JP (2015) Getting to know classical novae with swift. J High Energy Astrophys 7:117–125. https://doi.org/10.1016/j.jheap.2015.06.005. arXiv:1507.02153
Osborne JP, Page KL, Beardmore AP, Bode MF, Goad MR, O’Brien TJ, Starrfield S, Rauch T, Ness JU, Krautter J, Schwarz G, Burrows DN, Gehrels N, Drake JJ, Evans A, Eyres SPS (2011) The supersoft X-ray phase of nova RS Ophiuchi 2006. ApJ 727(2):124. https://doi.org/10.1088/0004-637X/727/2/124. arXiv:1011.5327
Osterbrock DE, Ferland GJ (2006) Astrophysics of gaseous nebulae and active galactic nuclei. University Science Books, Sausalito
Özdönmez A, Ege E, Güver T, Ak T (2018) A new catalogue of galactic novae: investigation of the MMRD relation and spatial distribution. MNRAS 476(3):4162–4186. https://doi.org/10.1093/mnras/sty432
Paczyński B (1965) Cataclysmic variables among binary stars. II. Physical parameters for novae. Acta Astron 15:197
Page KL, Osborne JP, Kuin NPM, Henze M, Walter FM, Beardmore AP, Bode MF, Darnley MJ, Delgado L, Drake JJ, Hernanz M, Mukai K, Nelson T, Ness JU, Schwarz GJ, Shore SN, Starrfield S, Woodward CE (2015) Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014). MNRAS 454(3):3108–3120. https://doi.org/10.1093/mnras/stv2144. arXiv:1509.04004
Pagnotta A, Walker ES, Schaefer BE (2014) The diffuse source at the center of LMC SNR 0509-67.5 is a background galaxy at z = 0.031. ApJ 788(2):173. https://doi.org/10.1088/0004-637X/788/2/173. arXiv:1405.0243
Panagia N, Van Dyk SD, Weiler KW, Sramek RA, Stockdale CJ, Murata KP (2006) A search for radio emission from type Ia supernovae. ApJ 646(1):369–377. https://doi.org/10.1086/504710. arXiv:astro-ph/0603808
Pastorello A, Mason E, Taubenberger S, Fraser M, Cortini G, Tomasella L, Botticella MT, Elias-Rosa N, Kotak R, Smartt SJ, Benetti S, Cappellaro E, Turatto M, Tartaglia L, Djorgovski SG, Drake AJ, Berton M, Briganti F, Brimacombe J, Bufano F, Cai YZ, Chen S, Christensen EJ, Ciabattari F, Congiu E, Dimai A, Inserra C, Kankare E, Magill L, Maguire K, Martinelli F, Morales-Garoffolo A, Ochner P, Pignata G, Reguitti A, Sollerman J, Spiro S, Terreran G, Wright DE (2019) Luminous red novae: stellar mergers or giant eruptions? A&A 630:A75. https://doi.org/10.1051/0004-6361/201935999. arXiv:1906.00812
Patat F, Hussain GAJ (2013) Selecting and scheduling observing programmes at ESO. In: Heck A (ed) Organizations, people and strategies in astronomy, vol 2. Venngeist, Duttlenheim, pp 231–256
Patat F, Benetti S, Justham S, Mazzali PA, Pasquini L, Cappellaro E, Della Valle M, Podsiadlowski P, Turatto M, Gal-Yam A, Simon JD (2007a) Upper limit for circumstellar gas around the type Ia SN 2000cx. A&A 474(3):931–936. https://doi.org/10.1051/0004-6361:20078393. arXiv:0708.3698
Patat F, Chandra P, Chevalier R, Justham S, Podsiadlowski P, Wolf C, Gal-Yam A, Pasquini L, Crawford IA, Mazzali PA, Pauldrach AWA, Nomoto K, Benetti S, Cappellaro E, Elias-Rosa N, Hillebrandt W, Leonard DC, Pastorello A, Renzini A, Sabbadin F, Simon JD, Turatto M (2007b) Detection of circumstellar material in a normal type Ia supernova. Science 317(5840):924. https://doi.org/10.1126/science.1143005. arXiv:0707.2793
Patat F, Kerzendorf W, Bordelon D, Van de Ven G, Pritchard T (2019) The distributed peer review experiment. Messenger 177:3–13. https://doi.org/10.18727/0722-6691/5147
Patterson J (1984) The evolution of cataclysmic and low-mass X-ray binaries. ApJS 54:443–493. https://doi.org/10.1086/190940
Patterson J (1998) Late evolution of cataclysmic variables. PASP 110(752):1132–1147. https://doi.org/10.1086/316233
Payne-Gaposchkin C (1957) The galactic novae. Dover, New York
Pease FG (1917) A suspected nova in the nebula N. G. C. 2841. PASP 29(171):213. https://doi.org/10.1086/122639
Peimbert M, Sarmiento A (1984) Novae and galactic chemical evolution. Astron Express 1:97–103
Perlmutter S, Aldering G, Della Valle M, Deustua S, Ellis RS, Fabbro S, Fruchter A, Goldhaber G, Groom DE, Hook IM, Kim AG, Kim MY, Knop RA, Lidman C, McMahon RG, Nugent P, Pain R, Panagia N, Pennypacker CR, Ruiz-Lapuente P, Schaefer B, Walton N (1998) Discovery of a supernova explosion at half the age of the universe. Nature 391(6662):51–54. https://doi.org/10.1038/34124. arXiv:astro-ph/9712212
Pfau W (1976) Recalibration of the absolute magnitudes of novae and application to nova Cygni 1975. A&A 50:113–115
Phillips MM (1993) The absolute magnitudes of type Ia supernovae. ApJ 413:L105. https://doi.org/10.1086/186970
Pietrzyński G, Graczyk D, Gallenne A, Gieren W, Thompson IB, Pilecki B, Karczmarek P, Górski M, Suchomska K, Taormina M, Zgirski B, Wielgórski P, Kołaczkowski Z, Konorski P, Villanova S, Nardetto N, Kervella P, Bresolin F, Kudritzki RP, Storm J, Smolec R, Narloch W (2019) A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567(7747):200–203. https://doi.org/10.1038/s41586-019-0999-4. arXiv:1903.08096
Pinto C, Ness JU, Verbunt F, Kaastra JS, Costantini E, Detmers RG (2012) A phenomenological model for the X-ray spectrum of nova V2491 Cygni. A&A 543:A134. https://doi.org/10.1051/0004-6361/201117835. arXiv:1206.2143
Plaut L (1965) Distribution of novae in the galaxy. In: Blaauw A, Schmidt M (eds) Galactic structure. University of Chicago Press, Chicago, p 311
Poggiani R (2018) Galactic and extragalactic novae—a review. In: Accretion processes in cosmic sources—II, PoS, vol 342. Sissa, p 057. https://doi.org/10.22323/1.342.0057
Politano M, Livio M, Truran JW, Webbink RF (1990) The theoretical frequency of classical nova outbursts as a function of white dwarf mass. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 386. https://doi.org/10.1007/3-540-53500-4_150
Prantzos N (2012) Production and evolution of Li, Be, and B isotopes in the galaxy. A&A 542:A67. https://doi.org/10.1051/0004-6361/201219043. arXiv:1203.5662
Pretorius ML, Knigge C (2007) Discovery of a new cataclysmic variable through optical variability and X-ray emission. A&A 461(3):1103–1106. https://doi.org/10.1051/0004-6361:20066418. arXiv:astro-ph/0610527
Prialnik D, Kovetz A (1995) An extended grid of multicycle nova evolution models. ApJ 445:789. https://doi.org/10.1086/175741
Prialnik D, Shara MM, Shaviv G (1978) The evolution of a slow nova model with a Z = 0.03 envelope from pre-explosion to extinction. A&A 62(3):339–348
Prialnik D, Livio M, Shaviv G, Kovetz A (1982) On the role of the accretion rate in nova outbursts. ApJ 257:312–317. https://doi.org/10.1086/159990
Pritchet CJ, van den Bergh S (1987) Observations of novae in the Virgo cluster. ApJ 318:507. https://doi.org/10.1086/165387
Rafanelli P, Rosino L (1978) The spectral evolution of nova HR Del (1967) during its decline. A&AS 31:337–352
Ramírez I, Fish JR, Lambert DL, Allende Prieto C (2012) Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets. ApJ 756(1):46. https://doi.org/10.1088/0004-637X/756/1/46. arXiv:1207.0499
Reeves H, Richer J, Sato K, Terasawa N (1990) On the origin of lithium. ApJ 355:18. https://doi.org/10.1086/168736
Ribeiro VARM, Bode MF, Darnley MJ, Harman DJ, Newsam AM, O’Brien TJ, Bohigas J, Echevarría JM, Bond HE, Chavushyan VH, Costero R, Coziol R, Evans A, Eyres SPS, León-Tavares J, Richer MG, Tovmassian G, Starrfield S, Zharikov SV (2009) The expanding nebular remnant of the recurrent nova RS Ophiuchi (2006). II. Modeling of combined Hubble Space Telescope imaging and ground-based spectroscopy. ApJ 703(2):1955–1963. https://doi.org/10.1088/0004-637X/703/2/1955. arXiv:0908.2704
Ribeiro VARM, Bode MF, Darnley MJ, Barnsley RM, Munari U, Harman DJ (2013a) Morpho-kinematical modelling of Nova Eridani 2009 (KT Eri). MNRAS 433(3):1991–1996. https://doi.org/10.1093/mnras/stt856. arXiv:1305.3834
Ribeiro VARM, Munari U, Valisa P (2013b) Optical morphology, inclination, and expansion velocity of the ejected shell of Nova Monocerotis 2012. ApJ 768(1):49. https://doi.org/10.1088/0004-637X/768/1/49. arXiv:1303.3715
Rich RM, Mould J, Picard A, Frogel JA, Davies R (1989) Luminous M giants in the bulge of M31. ApJ 341:L51. https://doi.org/10.1086/185455
Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut B, Phillips MM, Reiss D, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ 116(3):1009–1038. https://doi.org/10.1086/300499. arXiv:astro-ph/9805201
Riess AG, Fliri J, Valls-Gabaud D (2012) Cepheid period-luminosity relations in the near-infrared and the distance to M31 from the Hubble Space Telescope Wide Field Camera 3. ApJ 745(2):156. https://doi.org/10.1088/0004-637X/745/2/156. arXiv:1110.3769
Riess AG, Casertano S, Yuan W, Macri LM, Scolnic D (2019) Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\varLambda\)CDM. ApJ 876(1):85. https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603
Ritchey GW (1917a) Another faint nova in the Andromeda nebula. PASP 29(172):257. https://doi.org/10.1086/122653
Ritchey GW (1917b) Novae in spiral nebulae. PASP 29(171):210. https://doi.org/10.1086/122638
Ritchey GW (1918) Three additional novae in the Andromeda nebula. PASP 30(174):162. https://doi.org/10.1086/122710
Ritter H, Politano M, Livio M, Webbink RF (1991) The white dwarf mass distribution in classical nova systems. ApJ 376:177. https://doi.org/10.1086/170265
Robbins RR (1968a) The helium triplet spectrum in expanding nebulae. I. The capture-cascade intensities. ApJ 151:497. https://doi.org/10.1086/149452
Robbins RR (1968b) The helium triplet spectrum in expanding nebulae. II. Self-absorption. ApJ 151:511. https://doi.org/10.1086/149453
Robinson EL (1975) Preeruption light curves of novae. AJ 80:515. https://doi.org/10.1086/111774
Romano D, Matteucci F (2003) Nova nucleosynthesis and galactic evolution of the CNO isotopes. MNRAS 342(1):185–198. https://doi.org/10.1046/j.1365-8711.2003.06526.x. arXiv:astro-ph/0302233
Romano D, Matteucci F, Ventura P, D’Antona F (2001) The stellar origin of \(^{7}\)Li. Do AGB stars contribute a substantial fraction of the local galactic lithium abundance? A&A 374:646–655. https://doi.org/10.1051/0004-6361:20010751. arXiv:astro-ph/0105483
Rosino L (1956) Nuove ricerche sulle stelle variabili della nebulosa di Orione. Mem Soc Astron Ital 27:335
Rosino L (1964) Novae in Messier 31 discovered and observed at Asiago from 1955 to 1963. Ann Astrophys 27:498–505
Rosino L (1973) Novae in M 31 discovered and observed at Asiago from 1963 to 1970. A&AS 9:347
Rosino L, Bianchini A (1973) Discovery of five novae in Messier 33 and a supernova in a field galaxy. A&A 22:461
Rosino L, Ciatti F, Della Valle M (1986) Researches on novae and related objects. I. The spectral evolution of nova FH SER (1970). A&A 158:34–44
Rosino L, Capaccioli M, D’Onofrio M, Della Valle M (1989) Fifty-two novae in M31 discovered and observed at Asiago from 1971 to 1986. AJ 97:83. https://doi.org/10.1086/114959
Roy N, Chomiuk L, Sokoloski JL, Weston J, Rupen MP, Johnson T, Krauss MI, Nelson T, Mukai K, Mioduszewski A, Bode MF, Eyres SPS, O’Brien TJ (2012a) Radio studies of novae: a current status report and highlights of new results. Bull Astron Soc India 40:293–310 arXiv:1302.4455
Roy N, Kantharia NG, Eyres SPS, Anupama GC, Bode MF, Prabhu TP, O’Brien TJ (2012b) An H I shell-like structure associated with nova V458 Vulpeculae? MNRAS 427(1):L55–L59. https://doi.org/10.1111/j.1745-3933.2012.01344.x. arXiv:1209.2431
Rupen MP, Mioduszewski AJ, Sokoloski JL (2008) V. ApJ 688(1):559–567. https://doi.org/10.1086/525555. arXiv:0711.1142
Sackmann IJ, Boothroyd AI (1992) The creation of superrich lithium giants. ApJ 392:L71. https://doi.org/10.1086/186428
Sackmann IJ, Boothroyd AI (1999) Creation of \(^{7}\)Li and destruction of \(^{3}\)He, \(^{9}\)Be, \(^{10}\)B, and \(^{11}\)B in low-mass red giants. Due to deep circulation. ApJ 510(1):217–231. https://doi.org/10.1086/306545
Sadakane K, Tajitsu A, Mizoguchi S, Arai A, Naito H (2010) Discovery of multiple high-velocity narrow circumstellar NaI D lines in nova V1280 Sco. PASJ 62:L5. https://doi.org/10.1093/pasj/62.1.L5. arXiv:0911.5229
Sanford RF (1918) Two novae in the andromeda nebula. PASP 30(178):341. https://doi.org/10.1086/122772
Sanford RF (1919) Two new novae in the andromeda nebula. PASP 31(180):109. https://doi.org/10.1086/122832
Santamaría E, Guerrero MA, Ramos-Larios G, Toalá JA, Sabin L, Rubio G, Quino-Mendoza JA (2020) Angular expansion of nova shells. ApJ 892(1):60. https://doi.org/10.3847/1538-4357/ab76c5. arXiv:2002.06749
Sawyer HB (1938) The bright nova of 1860 in the globular cluster Messier 80 and its relation to supernovae. J R Astron Soc Can 32:69
Sawyer Hogg H, Wehlau A (1964) Probable nova in the globular cluster M 14. AJ 69:141
Sbordone L, Bonifacio P, Caffau E, Ludwig HG, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, van’t Veer C, Molaro P, Plez B, Sivarani T, Spite M, Spite F, Beers TC, Christlieb N, François P, Hill V (2010) The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. A&A 522:A26. https://doi.org/10.1051/0004-6361/200913282. arXiv:1003.4510
Schaefer BE (2018) The distances to Novae as seen by Gaia. MNRAS 481(3):3033–3051. https://doi.org/10.1093/mnras/sty2388. arXiv:1809.00180
Schaefer GH, Brummelaar TT, Gies DR, Farrington CD, Kloppenborg B, Chesneau O, Monnier JD, Ridgway ST, Scott N, Tallon-Bosc I, McAlister HA, Boyajian T, Maestro V, Mourard D, Meilland A, Nardetto N, Stee P, Sturmann J, Vargas N, Baron F, Ireland M, Baines EK, Che X, Jones J, Richardson ND, Roettenbacher RM, Sturmann L, Turner NH, Tuthill P, van Belle G, von Braun K, Zavala RT, Banerjee DPK, Ashok NM, Joshi V, Becker J, Muirhead PS (2014) The expanding fireball of Nova Delphini 2013. Nature 515(7526):234–236. https://doi.org/10.1038/nature13834. arXiv:1505.04852
Schatzman E (1951) Remarques sur le phénomène de Nova: IV. L’onde de détonation due à l’isotope \(^{3}\)He. Ann Astrophys 14:294
Schmidt BP, Suntzeff NB, Phillips MM, Schommer RA, Clocchiatti A, Kirshner RP, Garnavich P, Challis P, Leibundgut B, Spyromilio J, Riess AG, Filippenko AV, Hamuy M, Smith RC, Hogan C, Stubbs C, Diercks A, Reiss D, Gilliland R, Tonry J, Maza J, Dressler A, Walsh J, Ciardullo R (1998) The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. ApJ 507(1):46–63. https://doi.org/10.1086/306308. arXiv:astro-ph/9805200
Schmidt T (1957) Die Lichtkurven-Leuchtkraft-Beziehung Neuer Sterne. ZAP 41:182
Schwarz GJ (2002) A new abundance analysis of the ONeMg nova QU Vulpeculae. ApJ 577(2):940–950. https://doi.org/10.1086/342234
Schwarz GJ, Shore SN, Starrfield S, Hauschildt PH, Della Valle M, Baron E (2001) Multiwavelength analyses of the extraordinary nova LMC 1991. MNRAS 320(1):103–123. https://doi.org/10.1046/j.1365-8711.2001.03960.x
Schwarz GJ, Shore SN, Starrfield S, Vanlandingham KM (2007) Abundance analysis of the extremely fast ONeMg novae V838 Herculis and V4160 Sagittarii. ApJ 657(1):453–464. https://doi.org/10.1086/510661
Schwarz GJ, Ness JU, Osborne JP, Page KL, Evans PA, Beardmore AP, Walter FM, Helton LA, Woodward CE, Bode M, Starrfield S, Drake JJ (2011) Swift X-ray observations of classical novae. II. The super soft source sample. ApJS 197(2):31. https://doi.org/10.1088/0067-0049/197/2/31. arXiv:1110.6224
Schwope AD (2018) Exploring the space density of X-ray selected cataclysmic variables. A&A 619:A62. https://doi.org/10.1051/0004-6361/201833723. arXiv:1808.08144
Schwope AD, Brunner H, Buckley D, Greiner J, van der Heyden K, Neizvestny S, Potter S, Schwarz R (2002) The census of cataclysmic variables in the ROSAT bright survey. A&A 396:895–910. https://doi.org/10.1051/0004-6361:20021386. arXiv:astro-ph/0210059
Seaquist ER (2008) Radio emission from novae. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 141–166. https://doi.org/10.1017/CBO9780511536168.009
Seaquist ER, Palimaka J (1977) Thick inhomogeneous shell models for the radio emission from Nova Serpentis 1970. ApJ 217:781–787. https://doi.org/10.1086/155625
Selvelli P, Gilmozzi R (2013) An archive study of 18 old novae. I. The UV spectra. A&A 560:A49. https://doi.org/10.1051/0004-6361/201220627
Selvelli P, Gilmozzi R (2019) A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD. A&A 622:A186. https://doi.org/10.1051/0004-6361/201834238. arXiv:1903.05868
Selvelli P, Cassatella A, Gilmozzi R, González-Riestra R (2008) The secrets of T Pyxidis. II. A recurrent nova that will not become a SN Ia. A&A 492(3):787–803. https://doi.org/10.1051/0004-6361:200810678. arXiv:0904.1146
Selvelli P, Molaro P, Izzo L (2018) Absorption and emission features of \(^{7}\)Be II in the outburst spectra of V838 Her (Nova Her 1991). MNRAS 481(2):2261–2272. https://doi.org/10.1093/mnras/sty2310. arXiv:1809.04180
Shafter AW (1997) On the nova rate in the galaxy. ApJ 487(1):226–236. https://doi.org/10.1086/304609