Observations of galactic and extragalactic novae

Abstract

The recent GAIA DR2 measurements of distances to galactic novae have allowed to re-analyse some properties of nova populations in the Milky Way and in external galaxies on new and more solid empirical bases. In some cases, we have been able to confirm results previously obtained, such as the concept of nova populations into two classes of objects, that is disk and bulge novae and their link with the Tololo spectroscopic classification in Fe II and He/N novae. The recent and robust estimates of nova rates in the Magellanic Clouds galaxies provided by the OGLE team have confirmed the dependence of the normalized nova rate (i.e., the nova rate per unit of luminosity of the host galaxy) with the colors and/or class of luminosity of the parent galaxies. The nova rates in the Milky Way and in external galaxies have been collected from literature and critically discussed. They are the necessary ingredient to asses the contribution of novae to the nucleosynthesis of the respective host galaxies, particularly to explain the origin of the overabundance of lithium observed in young stellar populations. A direct comparison between distances obtained via GAIA DR2 and maximum magnitude vs. rate of decline (MMRD) relationship points out that the MMRD can provide distances with an uncertainty better than 30%. Multiwavelength observations of novae along the whole electromagnetic spectrum, from radio to gamma rays, have revealed that novae undergo a complex evolution characterized by several emission phases and a non-spherical geometry for the nova ejecta.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57

Notes

  1. 1.

    Out of 37 that constitute his entire work

  2. 2.

    We derived the GAIA DR2 distance of V1500 Cyg using the parallax provided in the GAIA DR2 database and using the formula given in Bailer-Jones et al. (2018), see also Muraveva et al. (2018). The GAIA DR2 archive is available at https://gea.esac.esa.int/archive/

  3. 3.

    http://leda.univ-lyon1.fr/

  4. 4.

    The GAIA DR2 distance of V1500 Cyg used in this paper, \(d = 1.29 \pm 0.31\), can be derived using the parallex measurement as provided in the GAIA DR2 data archive: https://gea.esac.esa.int/archive/.

  5. 5.

    see Hyperleda archive: http://leda.univ-lyon1.fr

References

  1. Abbott BP, Abbott R, Abbott TD (2017) Multi-messenger observations of a binary neutron star merger. ApJ 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833

    ADS  Article  MATH  Google Scholar 

  2. Abdo AA et al.; Fermi LAT Collaboration (2010) Gamma-ray emission concurrent with the Nova in the symbiotic binary V407 Cygni. Science 329(5993):817–821. https://doi.org/10.1126/science.1192537. arXiv:1008.3912

  3. Abia C, Domínguez I, Straniero O, Limongi M, Chieffi A, Isern J (2001) The implications of the new Z = 0 Stellar models and yields on the early metal pollution of the intergalactic medium. ApJ 557(1):126–136. https://doi.org/10.1086/321660. arXiv:astro-ph/0104276

    ADS  Article  Google Scholar 

  4. Ackermann M et al.; Fermi-LAT Collaboration (2014) Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345(6196):554–558. https://doi.org/10.1126/science.1253947. arXiv:1408.0735

  5. Alis S, Saygac AT (2014) Investigating the Nova rate connection to galaxy type using archival hubble space telescope images. In: Woudt PA, Ribeiro VARM (eds) Stella Novae: past and future decades, ASP conference series, vol 490. Astronomical Society of the Pacific, San Francisco, p 95

  6. Allen CW (1954) Whole-sky statistics of celestial objects. MNRAS 114:387. https://doi.org/10.1093/mnras/114.4.387

    ADS  Article  Google Scholar 

  7. Allen CW (1973) Astrophysical quantities. Athlone Press, London

    Google Scholar 

  8. Amati L (2006) The \(E_{p, i}\)-\(E_{iso}\) correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. MNRAS 372(1):233–245. https://doi.org/10.1111/j.1365-2966.2006.10840.x. arXiv:astro-ph/0601553

    ADS  Article  Google Scholar 

  9. Ambartsumian VA (1952) Teoreticheskaia astrofizika, Moscow

  10. Arnould M, Norgaard H (1975) The explosive thermonuclear formation of \(^{7}\)Li and \(^{11}\)B. A&A 42:55

    ADS  Google Scholar 

  11. Arp HC (1956) Novae in the Andromeda nebula. AJ 61:15–34. https://doi.org/10.1086/107284

    ADS  Article  Google Scholar 

  12. Aydi E, Page KL, Kuin NPM, Darnley MJ, Walter FM, Mróz P, Buckley DAH, Mohamed S, Whitelock P, Woudt P, Williams SC, Orio M, Williams RE, Beardmore AP, Osborne JP, Kniazev A, Ribeiro VARM, Udalski A, Strader J, Chomiuk L (2018) Multiwavelength observations of nova SMCN 2016–10a—one of the brightest novae ever observed. MNRAS 474(2):2679–2705. https://doi.org/10.1093/mnras/stx2678. arXiv:1710.03716

    ADS  Article  Google Scholar 

  13. Aydi E, Chomiuk L, Strader J, Swihart SJ, Bahramian A, Harvey EJ, Britt CT, Buckley DAH, Chen P, Dage K, Darnley MJ, Dong S, Hambsch FJ, Holoien TWS, Jha SW, Kochanek CS, Kuin NPM, Li KL, Monard LAG, Mukai K, Page KL, Prieto JL, Richardson ND, Shappee BJ, Shishkovsky L, Sokolovsky KV, Stanek KZ, Thompson T (2019) Flaring, dust formation, and shocks in the very slow Nova ASASSN-17pf (LMCN 2017-11a). arXiv e-prints arXiv:1903.09232,

  14. Aydi E, Sokolovsky KV, Chomiuk L, Steinberg E, Li KL, Vurm I, Metzger BD, Strader J, Mukai K, Pejcha O, Shen KJ, Wade GA, Kuschnig R, Moffat AFJ, Pablo H, Pigulski A, Popowicz A, Weiss W, Zwintz K, Izzo L, Pollard KR, Handler G, Ryder SD, Filipović MD, Alsaberi RZE, Manojlović P, De Oliveira R, Walter FM, Vallely PJ, Buckley DAH, Brown MJI, Harvey EJ, Kawash A, Kniazev A, Kochanek CS, Linford J, Mikolajewska J, Molaro P, Orio M, Page KL, Sokoloski JL (2020) Direct evidence for shock-powered optical emission in a nova. Nature Astron. https://doi.org/10.1038/s41550-020-1070-y

  15. Baade W (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula. ApJ 100:137. https://doi.org/10.1086/144650

    ADS  Article  Google Scholar 

  16. Baade W (1957) Galaxies and their stellar population. Observatory 77:165–171

    ADS  Google Scholar 

  17. Baade W (1958) The population of the galactic nucleus and the evidence for the presence of an old population pervading the whole disk of our galaxy. Ricerche Astron 5:303

    ADS  Google Scholar 

  18. Baade W, Zwicky F (1934) On super-novae. Proc Natl Acad Sci 20(5):254–259. https://doi.org/10.1073/pnas.20.5.254

    ADS  Article  Google Scholar 

  19. Bailer-Jones CAL, Rybizki J, Fouesneau M, Mantelet G, Andrae R (2018) Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. AJ 156(2):58. https://doi.org/10.3847/1538-3881/aacb21. arXiv:1804.10121

    ADS  Article  Google Scholar 

  20. Balman Ş, Krautter J (2001) The re-analysis of the ROSAT data of Nova Mus 1983 using white dwarf atmosphere emission models. MNRAS 326(4):1441–1447. https://doi.org/10.1111/j.1365-2966.2001.04716.x. arXiv:astro-ph/0106216

    ADS  Article  Google Scholar 

  21. Balman Ş, Krautter J, Ögelman H (1998) The X-ray spectral evolution of classical Nova V1974 Cygni 1992: a reanalysis of the ROSAT data. ApJ 499(1):395–406. https://doi.org/10.1086/305600

    ADS  Article  Google Scholar 

  22. Bath GT, Shaviv G (1978) The space density, recurrence rate and classification of novae. MNRAS 183:515–522. https://doi.org/10.1093/mnras/183.3.515

    ADS  Article  Google Scholar 

  23. Bianchini A (1987) Detection of solar-type cycles in cataclysmic variables. Mem Soc Astron Ital 58:245–251

    ADS  Google Scholar 

  24. Bianchini A, Hamzaoglu E, Sabbadin F (1981) The old-nova GK Per (1901). I. Determination of the orbital period. A&A 99:392–393

    ADS  Google Scholar 

  25. Bode MF (2002) The evolution of Nova remnants. In: Hernanz M, José J (eds) Classical Nova explosions, AIP conference series, vol 637. American Institute of Physics, pp 497–508. https://doi.org/10.1063/1.1518252. arXiv:astro-ph/0211437

  26. Bode MF, Evans A (2008) Classical Novae, 2nd edn. Cambridge astrophysics series, vol 43. Cambridge University Press, Cambridge

  27. Boffi FR, Branch D (1995) Radio emission from type IA supernovae as a test of symbiotic star progenitor systems. PASP 107:347. https://doi.org/10.1086/133558

    ADS  Article  Google Scholar 

  28. Bondi H (1952) On spherically symmetrical accretion. MNRAS 112:195. https://doi.org/10.1093/mnras/112.2.195

    ADS  MathSciNet  Article  Google Scholar 

  29. Bothun GD (1992) The Bulge/Halo luminosity of M33 and its globular cluster population. AJ 103:104. https://doi.org/10.1086/116044

    ADS  Article  Google Scholar 

  30. Bowen IS (1947) Excitation by line coincidence. PASP 59(349):196–198. https://doi.org/10.1086/125951

    ADS  Article  Google Scholar 

  31. Bowen IS (1954) Edwin P. Hubble: 1889-1953. Science 119(3085):204. https://doi.org/10.1126/science.119.3085.204

    ADS  Article  Google Scholar 

  32. Brown AGA et al.; Gaia Collaboration (2018) Gaia Data Release 2. Summary of the contents and survey properties. A&A 616:A1, https://doi.org/10.1051/0004-6361/201833051, arXiv:1804.09365

  33. Burstein D, Heiles C (1984) Reddening estimates for galaxies in the second reference catalog and the Uppsala general catalog. ApJS 54:33–79. https://doi.org/10.1086/190918

    ADS  Article  Google Scholar 

  34. Buscombe W, de Vaucouleurs G (1955) Novae in the magellanic clouds and in the galaxy. Observatory 75:170–175

    ADS  Google Scholar 

  35. Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. ApJ 164:111. https://doi.org/10.1086/150821

    ADS  Article  Google Scholar 

  36. Cao Y, Kasliwal MM, Neill JD, Kulkarni SR, Lou YQ, Ben-Ami S, Bloom JS, Cenko SB, Law NM, Nugent PE, Ofek EO, Poznanski D, Quimby RM (2012) Classical Novae in Andromeda: light curves from the palomar transient factory and GALEX. ApJ 752(2):133. https://doi.org/10.1088/0004-637X/752/2/133. arXiv:1201.2393

    ADS  Article  Google Scholar 

  37. Capaccioli M, Della Valle M, D’Onofrio M, Rosino L (1989) Properties of the Nova population of M31. AJ 97:1622. https://doi.org/10.1086/115104

    ADS  Article  Google Scholar 

  38. Capaccioli M, Della Valle M, D’Onofrio M, Rosino L (1990) Distance of the large magellanic cloud through the maximum magnitude versus rate of decline relation for Novae. ApJ 360:63. https://doi.org/10.1086/169096

    ADS  Article  Google Scholar 

  39. Cappellaro E, Evans R, Turatto M (1999) A new determination of supernova rates and a comparison with indicators for galactic star formation. A&A 351:459–466 arXiv:astro-ph/9904225

    ADS  Google Scholar 

  40. Cappellaro E, Botticella MT, Pignata G, Grado A, Greggio L, Limatola L, Vaccari M, Baruffolo A, Benetti S, Bufano F, Capaccioli M, Cascone E, Covone G, De Cicco D, Falocco S, Della Valle M, Jarvis M, Marchetti L, Napolitano NR, Paolillo M, Pastorello A, Radovich M, Schipani P, Spiro S, Tomasella L, Turatto M (2015) Supernova rates from the SUDARE VST-OmegaCAM search. I. Rates per unit volume. A&A 584:A62. https://doi.org/10.1051/0004-6361/201526712. arXiv:1509.04496

    ADS  Article  Google Scholar 

  41. Cassatella A, Benvenuti P, Clavel J, Heck A, Penston M, Selvelli PL, Macchetto F (1979) On the ultraviolet spectrum of Nova Cygni 1978. A&A 74:L18–L19

    ADS  Google Scholar 

  42. Cassatella A, Altamore A, González-Riestra R (2002) Classical novae in outburst: the early evolution of the ultraviolet continuum. A&A 384:1023–1029. https://doi.org/10.1051/0004-6361:20020107

    ADS  Article  Google Scholar 

  43. Cassatella A, Lamers HJGLM, Rossi C, Altamore A, González-Riestra R (2004) A study of the expanding envelope of Nova V1974 Cyg 1992 based on IUE high resolution spectroscopy. A&A 420:571–588. https://doi.org/10.1051/0004-6361:20034102. arXiv:astro-ph/0403288

    ADS  Article  Google Scholar 

  44. Cecchini G, Gratton L (1942) Le stelle nuove. U. Hoepli, Milano

    Google Scholar 

  45. Charbonnel C, Primas F (2005) The lithium content of the galactic Halo stars. A&A 442(3):961–992. https://doi.org/10.1051/0004-6361:20042491. arXiv:astro-ph/0505247

    ADS  Article  Google Scholar 

  46. Chen HL, Woods TE, Yungelson LR, Gilfanov M, Han Z (2016) Modelling nova populations in galaxies. MNRAS 458(3):2916–2927. https://doi.org/10.1093/mnras/stw458. arXiv:1602.07849

    ADS  Article  Google Scholar 

  47. Chesneau O, Banerjee DPK (2012) Interferometric studies of novae in the infrared. Bull Astron Soc India 40:267 arXiv:1210.2507

    ADS  Google Scholar 

  48. Chesneau O, Nardetto N, Millour F, Hummel C, Domiciano de Souza A, Bonneau D, Vannier M, Rantakyrö F, Spang A, Malbet F, Mourard D, Bode MF, O’Brien TJ, Skinner G, Petrov RG, Stee P, Tatulli E, Vakili F (2007) AMBER/VLTI interferometric observations of the recurrent Nova RS Ophiuchii 5.5 days after outburst. A&A 464(1):119–126. https://doi.org/10.1051/0004-6361:20066609. arXiv:astro-ph/0611602

    ADS  Article  Google Scholar 

  49. Chesneau O, Meilland A, Banerjee DPK, Le Bouquin JB, McAlister H, Millour F, Ridgway ST, Spang A, ten Brummelaar T, Wittkowski M, Ashok NM, Benisty M, Berger JP, Boyajian T, Farrington C, Goldfinger PJ, Merand A, Nardetto N, Petrov R, Rivinius T, Schaefer G, Touhami Y, Zins G (2011) The 2011 outburst of the recurrent nova T Pyxidis. Evidence for a face-on bipolar ejection. A&A 534:L11. https://doi.org/10.1051/0004-6361/201117792. arXiv:1109.4534

  50. Chesneau O, Lagadec E, Otulakowska-Hypka M, Banerjee DPK, Woodward CE, Harvey E, Spang A, Kervella P, Millour F, Nardetto N, Ashok NM, Barlow MJ, Bode M, Evans A, Lynch DK, O’Brien TJ, Rudy RJ, Russell RW (2012) The expanding dusty bipolar nebula around the nova V1280 Scorpi. A&A 545:A63. https://doi.org/10.1051/0004-6361/201219825. arXiv:1207.5301

    ADS  Article  Google Scholar 

  51. Cheung CC, Jean P, Shore SN, Stawarz Ł, Corbet RHD, Knödlseder J, Starrfield S, Wood DL, Desiante R, Longo F, Pivato G, Wood KS (2016) Fermi-LAT gamma-ray detections of classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. ApJ 826(2):142. https://doi.org/10.3847/0004-637X/826/2/142. arXiv:1605.04216

    ADS  Article  Google Scholar 

  52. Chevalier RA (1988) The interaction of supernova 1987A with dense circumstellar gas. Nature 332(6164):514–516. https://doi.org/10.1038/332514a0

    ADS  Article  Google Scholar 

  53. Chomiuk L, Linford JD, Yang J, O’Brien TJ, Paragi Z, Mioduszewski AJ, Beswick RJ, Cheung CC, Mukai K, Nelson T, Ribeiro VARM, Rupen MP, Sokoloski JL, Weston J, Zheng Y, Bode MF, Eyres S, Roy N, Taylor GB (2014a) Binary orbits as the driver of \(\gamma\)-ray emission and mass ejection in classical novae. Nature 514(7522):339–342. https://doi.org/10.1038/nature13773. arXiv:1410.3473

    ADS  Article  Google Scholar 

  54. Chomiuk L, Nelson T, Mukai K, Sokoloski JL, Rupen MP, Page KL, Osborne JP, Kuulkers E, Mioduszewski AJ, Roy N, Weston J, Krauss MI (2014b) The 2011 outburst of recurrent Nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics. ApJ 788(2):130. https://doi.org/10.1088/0004-637X/788/2/130. arXiv:1404.3210

    ADS  Article  Google Scholar 

  55. Chomiuk L, Soderberg AM, Chevalier RA, Bruzewski S, Foley RJ, Parrent J, Strader J, Badenes C, Fransson C, Kamble A, Margutti R, Rupen MP, Simon JD (2016) A deep search for prompt radio emission from thermonuclear supernovae with the very large array. ApJ 821(2):119. https://doi.org/10.3847/0004-637X/821/2/119. arXiv:1510.07662

    ADS  Article  Google Scholar 

  56. Ciardullo R, Ford HC, Neill JD, Jacoby GH, Shafter AW (1987) The spatial distribution and population of Novae in M31. ApJ 318:520. https://doi.org/10.1086/165388

    ADS  Article  Google Scholar 

  57. Ciardullo R, Ford HC, Williams RE, Tamblyn P, Jacoby GH (1990) The Nova rate in the elliptical component of NGC 5128. AJ 99:1079. https://doi.org/10.1086/115397

    ADS  Article  Google Scholar 

  58. Ciatti F, Rosino L (1974) Photographic and spectroscopic observations of N Aql 1970, N Cyg 1970, and N Sct 1970. A&AS 16:305–322

    ADS  Google Scholar 

  59. Cieslinski D, Diaz MP, Mennickent RE, Pietrzyński G (2003) Identification of new eruptive cataclysmic variables toward the galactic bulge and magellanic clouds using the OGLE-II database. PASP 115(804):193–211. https://doi.org/10.1086/367673

    ADS  Article  Google Scholar 

  60. Clayton DD (1979) Sudden grain nucleation and growth in supernova and nova ejecta. Ap&SS 65(1):179–189. https://doi.org/10.1007/BF00643499

    ADS  Article  Google Scholar 

  61. Coc A, Uzan JP, Vangioni E (2013) Standard big-bang nucleosynthesis after Planck. arXiv e-prints arXiv:1307.6955,

  62. Coc A, Uzan JP, Vangioni E (2014) Standard big bang nucleosynthesis and primordial CNO abundances after Planck. JCAP 10:050. https://doi.org/10.1088/1475-7516/2014/10/050. arXiv:1403.6694

    ADS  Article  Google Scholar 

  63. Coelho EA, Shafter AW, Misselt KA (2008) The rate and spatial distribution of Novae in M101 (NGC 5457). ApJ 686(2):1261–1268. https://doi.org/10.1086/591517. arXiv:0807.0210

    ADS  Article  Google Scholar 

  64. Cohen JG (1985) Nova shells. II. Calibration of the distance scale using novae. ApJ 292:90–103. https://doi.org/10.1086/163135

    ADS  Article  Google Scholar 

  65. Cohen JG, Rosenthal AJ (1983) Nova shells. ApJ 268:689–697. https://doi.org/10.1086/160990

    ADS  Article  Google Scholar 

  66. Conti PS (1968) Lithium destruction and rotational braking. ApJ 152:657. https://doi.org/10.1086/149581

    ADS  Article  Google Scholar 

  67. Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 \(M_{\odot }\). ApJ 866(1):21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673

    ADS  Article  Google Scholar 

  68. Curtin C, Shafter AW, Pritchet CJ, Neill JD, Kundu A, Maccarone TJ (2015) Exploring the role of globular cluster specific frequency on the nova rates in three virgo elliptical galaxies. ApJ 811(1):34. https://doi.org/10.1088/0004-637X/811/1/34. arXiv:1508.03319

    ADS  Article  Google Scholar 

  69. Curtis HD (1917a) Finding list for general catalog numbers. PASP 29(170):180–180. https://doi.org/10.1086/122678

    ADS  Article  Google Scholar 

  70. Curtis HD (1917b) Novae in the spiral nebulae and the island universe theory. PASP 29(171):206–207. https://doi.org/10.1086/122632

    ADS  Article  Google Scholar 

  71. Curtis HD (1917c) Two Novae in N.G.C. 4321. Harvard Coll Obs Bull 642:1–1

    ADS  Google Scholar 

  72. D’Antona F, Matteucci F (1991) Galactic evolution of lithium. A&A 248:62

    ADS  Google Scholar 

  73. Darnley MJ, Bode MF, Kerins E, Newsam AM, An J, Baillon P, Novati SC, Carr BJ, Crézé M, Evans NW, Giraud-Héraud Y, Gould A, Hewett P, Jetzer P, Kaplan J, Paulin-Henriksson S, Smartt SJ, Stalin CS, Tsapras Y (2004) Classical novae from the POINT-AGAPE microlensing survey of M31—I. The nova catalogue. MNRAS 353(2):571–588. https://doi.org/10.1111/j.1365-2966.2004.08087.x. arXiv:astro-ph/0403447

    ADS  Article  Google Scholar 

  74. Darnley MJ, Bode MF, Kerins E, Newsam AM, An J, Baillon P, Belokurov V, Calchi Novati S, Carr BJ, Crézé M, Evans NW, Giraud-Héraud Y, Gould A, Hewett P, Jetzer P, Kaplan J, Paulin-Henriksson S, Smartt SJ, Tsapras Y, Weston M (2006) Classical novae from the POINT-AGAPE microlensing survey of M31—II. Rate and statistical characteristics of the nova population. MNRAS 369(1):257–271. https://doi.org/10.1111/j.1365-2966.2006.10297.x. arXiv:astro-ph/0509493

    ADS  Article  Google Scholar 

  75. Darnley MJ, Ribeiro VARM, Bode MF, Hounsell RA, Williams RP (2012) On the progenitors of galactic novae. ApJ 746(1):61. https://doi.org/10.1088/0004-637X/746/1/61. arXiv:1112.2589

    ADS  Article  Google Scholar 

  76. Darnley MJ, Hounsell R, O’Brien TJ, Henze M, Rodríguez-Gil P, Shafter AW, Shara MM, Vaytet NMH, Bode MF, Ciardullo R, Davis BD, Galera-Rosillo R, Harman DJ, Harvey EJ, Healy MW, Ness JU, Ribeiro VARM, Williams SC (2019) A recurrent nova super-remnant in the Andromeda galaxy. Nature 565(7740):460–463. https://doi.org/10.1038/s41586-018-0825-4. arXiv:1712.04872

    ADS  Article  Google Scholar 

  77. Darnley MJ, Newsam AM, Chinetti K, Hawkins IDW, Jannetta AL, Kasliwal MM, McGarry JC, Shara MM, Sitaram M, Williams SC (2020) AT 2016dah and AT 2017fyp: the first classical novae discovered within a tidal stream. arXiv e-prints arXiv:2004.09431

  78. De Gennaro Aquino I, Shore SN, Schwarz GJ, Mason E, Starrfield S, Sion EM (2014) The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. III. The ultraviolet development from iron curtain through the post-X-ray turnoff. A&A 562:A28. https://doi.org/10.1051/0004-6361/201322545

    ADS  Article  Google Scholar 

  79. De Gennaro Aquino I, Schröder KP, Mittag M, Wolter U, Jack D, Eenens P, González-Pérez JN, Hempelmann A, Schmitt JHMM, Hauschildt PH, Rauw G (2015) High spectral resolution monitoring of Nova V339 Delphini with TIGRE. A&A 581:A134. https://doi.org/10.1051/0004-6361/201525810

    ADS  Article  Google Scholar 

  80. de Maupertuis PLM (1732) Discours sur les differentes figures des astres

  81. de Vaucouleurs G (1958) Photoelectric photometry of the Andromeda Nebula in the UBV system. ApJ 128:465. https://doi.org/10.1086/146564

    ADS  Article  Google Scholar 

  82. de Vaucouleurs G (1978) The extragalactic distance scale. II. Distances of the nearest galaxies from primary indicators. ApJ 223:730–739. https://doi.org/10.1086/156306

    ADS  Article  Google Scholar 

  83. Della Valle M (1988) Distance modulus and rate of novae in M33. In: van den Bergh S, Pritchet CJ (eds) The extragalactic distance scale, ASP conference series, vol 4. Astronomical Society of the Pacific, p 73

  84. Della Valle M (1991) Nova LMC 1991: evidence for a super-bright nova population. A&A 252:L9

    ADS  Google Scholar 

  85. Della Valle M, Calvani M (1990) Quasi-periodic outburst activity of novae at minimum. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 48. https://doi.org/10.1007/3-540-53500-4_93

    Google Scholar 

  86. Della Valle M, Duerbeck HW (1993) The space density of classical novae in the galactic disk. A&A 271:175–179

    ADS  Google Scholar 

  87. Della Valle M, Gilmozzi R (2002) Rebirth of novae as distance indicators due to efficient large telescopes. Science 296:1275. https://doi.org/10.1126/science.1070939. arXiv:astro-ph/0206067

    ADS  Article  Google Scholar 

  88. Della Valle M, Livio M (1994) On the progenitors of type IA supernovae in early-type and late-type galaxies. ApJ 423:L31. https://doi.org/10.1086/187228

    ADS  Article  Google Scholar 

  89. Della Valle M, Livio M (1995) The calibration of novae as distance indicators. ApJ 452:704. https://doi.org/10.1086/176342

    ADS  Article  Google Scholar 

  90. Della Valle M, Livio M (1996) On the frequency of occurrence of recurrent novae and their role as type IA supernova progenitors. ApJ 473:240. https://doi.org/10.1086/178139

    ADS  Article  Google Scholar 

  91. Della Valle M, Livio M (1998) The spectroscopic differences between disk and thick-disk/bulge novae. ApJ 506(2):818–823. https://doi.org/10.1086/306275

    ADS  Article  Google Scholar 

  92. Della Valle M, Rosino L (1987) Semiregular variations of Nova V841 Oph (1848) at minimum. Inform Bull Var Stars 2995:1

    ADS  Google Scholar 

  93. Della Valle M, Bianchini A, Livio M, Orio M (1992) On the possible existence of two classes of progenitors for classical novae. A&A 266:232–236

    ADS  Google Scholar 

  94. Della Valle M, Rosino L, Bianchini A, Livio M (1994) The nova rate in galaxies of different Hubble types. A&A 287:403–409

    ADS  Google Scholar 

  95. Della Valle M, Gilmozzi R, Bianchini A, Esenoglu H (1997) Study of nova shells. II. FH Serentis 1970 and QU Vulpeculae 1984, nebular expansion, parallax and luminosity. A&A 325:1151–1156

    ADS  Google Scholar 

  96. Della Valle M, Pasquini L, Daou D, Williams RE (2002) The evolution of Nova V382 Velorum 1999. A&A 390:155–166. https://doi.org/10.1051/0004-6361:20020611. arXiv:astro-ph/0205135

    ADS  Article  Google Scholar 

  97. Downes RA, Duerbeck HW (2000) Optical imaging of nova shells and the maximum magnitude-rate of decline relationship. AJ 120(4):2007–2037. https://doi.org/10.1086/301551. arXiv:astro-ph/0006458

    ADS  Article  Google Scholar 

  98. Doyle TF, Shara MM, Lessing AM, Zurek D (2019) A Hubble Space Telescope survey for novae in the globular clusters of M87. ApJ 874(1):65. https://doi.org/10.3847/1538-4357/ab0490. arXiv:1810.12471

    ADS  Article  Google Scholar 

  99. Duerbeck HW (1981) Light curve types, absolute magnitudes, and physical properties of galactic novae. PASP 93:165–175. https://doi.org/10.1086/130799

    ADS  Article  Google Scholar 

  100. Duerbeck HW (1984) Constraints for cataclysmic binary evolution as derived from space distributions. Ap&SS 99(80):363. https://doi.org/10.1007/BF00650260

    ADS  Article  Google Scholar 

  101. Duerbeck HW (1987) A reference catalogue and atlas of galactic novae. Space Sci Rev 45(1–2):1–14. https://doi.org/10.1007/BF00187826

    ADS  Article  Google Scholar 

  102. Duerbeck HW (1990) Galactic distribution and outburst frequency of classical novae. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 34. https://doi.org/10.1007/3-540-53500-4_90

    Google Scholar 

  103. Duerbeck HW (1992) The final decline of novae and the hibernation hypothesis. MNRAS 258:629–638. https://doi.org/10.1093/mnras/258.3.629

    ADS  Article  Google Scholar 

  104. Duncan JC (1918) A ninth nova in the Andromeda nebula. PASP 30(176):255. https://doi.org/10.1086/122743

    ADS  Article  Google Scholar 

  105. Dunkley J, Komatsu E, Nolta MR, Spergel DN, Larson D, Hinshaw G, Page L, Bennett CL, Gold B, Jarosik N, Weiland JL, Halpern M, Hill RS, Kogut A, Limon M, Meyer SS, Tucker GS, Wollack E, Wright EL (2009) Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data. ApJS 180(2):306–329. https://doi.org/10.1088/0067-0049/180/2/306. arXiv:0803.0586

    ADS  Article  Google Scholar 

  106. Ederoclite A, Mason E, Della Valle M, Gilmozzi R, Williams RE, Germany L, Saviane I, Matteucci F, Schaefer BE, Walter F, Rudy RJ, Lynch D, Mazuk S, Venturini CC, Puetter RC, Perry RB, Liller W, Rotter A (2006) Early spectral evolution of Nova Sagittarii 2004 (V5114 Sagittarii). A&A 459(3):875–883. https://doi.org/10.1051/0004-6361:20065741. arXiv:astro-ph/0608598

    ADS  Article  Google Scholar 

  107. Eggleton PP (1983) Aproximations to the radii of Roche lobes. ApJ 268:368–369. https://doi.org/10.1086/160960

    ADS  Article  Google Scholar 

  108. Ennis D, Becklin EE, Beckwith S, Elias J, Gatley I, Matthews K, Neugebauer G, Willner SP (1977) Infrared observations of Nova Cygni 1975. ApJ 214:478–487. https://doi.org/10.1086/155273

    ADS  Article  Google Scholar 

  109. Eyres SPS, Davis RJ, Kenny HT, Bode MF, Dougherty SM, Llyod HM (1996) MERLIN observations of symbiotic novae. In: Taylor AR, Paredes JM (eds) Radio emission from the stars and the sun, ASP conference series, vol 93. Astronomical Society of the Pacific, San Francisco, p 194

  110. Ferrarese L, Livio M, Freedman W, Saha A, Stetson PB, Ford HC, Hill RJ, Madore BF (1996) Discovery of a nova in the Virgo Galaxy M100. ApJ 468:L95. https://doi.org/10.1086/310246

    ADS  Article  Google Scholar 

  111. Ferrarese L, Côté P, Jordán A (2003) Hubble Space Telescope observations of novae in M49. ApJ 599(2):1302–1319. https://doi.org/10.1086/379349. arXiv:astro-ph/0310006

    ADS  Article  Google Scholar 

  112. Fields BD (2011) The primordial lithium problem. Annu Rev Nucl Particle Sci 61:47–68. https://doi.org/10.1146/annurev-nucl-102010-130445. arXiv:1203.3551

    ADS  Article  Google Scholar 

  113. Fields BD, Molaro P, Sarkar S (2014) Big-bang nucleosynthesis. arXiv e-prints arXiv:1412.1408

  114. Finzell T, Chomiuk L, Metzger BD, Walter FM, Linford JD, Mukai K, Nelson T, Weston JHS, Zheng Y, Sokoloski JL, Mioduszewski A, Rupen MP, Dong S, Starrfield S, Cheung CC, Woodward CE, Taylor GB, Bohlsen T, Buil C, Prieto J, Wagner RM, Bensby T, Bond IA, Sumi T, Bennett DP, Abe F, Koshimoto N, Suzuki D, Tristram PJ, Christie GW, Natusch T, McCormick J, Yee J, Gould A (2018) A detailed observational analysis of V1324 Sco, the most gamma-ray-luminous classical nova to date. ApJ 852(2):108. https://doi.org/10.3847/1538-4357/aaa12a. arXiv:1701.03094

    ADS  Article  Google Scholar 

  115. Ford HC, Ciardullo R (1988) Hubble’s novae as distance indicators. In: van den Bergh S, Pritchet CJ (eds) The extragalactic distance scale, ASP conference series, vol 4. Astronomical Society of the Pacific, San Francisco, p 128

  116. Franck JR, Shafter AW, Hornoch K, Misselt KA (2012) The nova rate in NGC 2403. ApJ 760(1):13. https://doi.org/10.1088/0004-637X/760/1/13. arXiv:1210.0604

    ADS  Article  Google Scholar 

  117. Franckowiak A, Jean P, Wood M, Cheung CC, Buson S (2018) Search for gamma-ray emission from galactic novae with the Fermi -LAT. A&A 609:A120. https://doi.org/10.1051/0004-6361/201731516. arXiv:1710.04736

    ADS  Article  Google Scholar 

  118. Friedjung M (1979) Upper limit of the Li/Na ratio in novae. A&A 77:357–358

    ADS  Google Scholar 

  119. Fujimoto MY (1982) A theory of hydrogen shell flashes on accreting white dwarfs—Part two—The stable shell burning and the recurrence period of shell flashes. ApJ 257:767. https://doi.org/10.1086/160030

    ADS  Article  Google Scholar 

  120. Gal-Yam A (2012) Luminous supernovae. Science 337(6097):927. https://doi.org/10.1126/science.1203601. arXiv:1208.3217

    ADS  Article  Google Scholar 

  121. Gallagher JS, Starrfield S (1978) Theory and observations of classical novae. ARA&A 16:171–214. https://doi.org/10.1146/annurev.aa.16.090178.001131

    ADS  Article  Google Scholar 

  122. Gavazzi G, Scodeggio M (1996) The mass dependence of the star formation history of disk galaxies. A&A 312:L29–L32

    ADS  Google Scholar 

  123. Gehrels N (1986) Confidence limits for small numbers of events in astrophysical data. ApJ 303:336. https://doi.org/10.1086/164079

    ADS  Article  Google Scholar 

  124. Gehrels N, Chincarini G, Giommi P, Mason KO, Nousek JA, Wells AA, White NE, Barthelmy SD, Burrows DN, Cominsky LR, Hurley KC, Marshall FE, Mészáros P, Roming PWA, Angelini L, Barbier LM, Belloni T, Campana S, Caraveo PA, Chester MM, Citterio O, Cline TL, Cropper MS, Cummings JR, Dean AJ, Feigelson ED, Fenimore EE, Frail DA, Fruchter AS, Garmire GP, Gendreau K, Ghisellini G, Greiner J, Hill JE, Hunsberger SD, Krimm HA, Kulkarni SR, Kumar P, Lebrun F, Lloyd-Ronning NM, Markwardt CB, Mattson BJ, Mushotzky RF, Norris JP, Osborne J, Paczynski B, Palmer DM, Park HS, Parsons AM, Paul J, Rees MJ, Reynolds CS, Rhoads JE, Sasseen TP, Schaefer BE, Short AT, Smale AP, Smith IA, Stella L, Tagliaferri G, Takahashi T, Tashiro M, Townsley LK, Tueller J, Turner MJL, Vietri M, Voges W, Ward MJ, Willingale R, Zerbi FM, Zhang WW (2004) The swift gamma-ray burst mission. ApJ 611(2):1005–1020. https://doi.org/10.1086/422091. arXiv:astro-ph/0405233

    ADS  Article  Google Scholar 

  125. Gehrz RD (1990) New infrared results for classical novae. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 138. https://doi.org/10.1007/3-540-53500-4_109

    Google Scholar 

  126. Gehrz RD (2008) Infrared studies of classical novae. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 167–193. https://doi.org/10.1017/CBO9780511536168.010

    Google Scholar 

  127. Gehrz RD, Grasdalen GL, Hackwell JA, Ney EP (1980a) The evolution of the dust shell of nova SER 1978. ApJ 237:855–865. https://doi.org/10.1086/157934

    ADS  Article  Google Scholar 

  128. Gehrz RD, Hackwell JA, Grasdalen GI, Ney EP, Neugebauer G, Sellgren K (1980b) The optically thin dust shell of nova CYG 1978. ApJ 239:570–580. https://doi.org/10.1086/158143

    ADS  Article  Google Scholar 

  129. Gehrz RD, Greenhouse MA, Hayward TL, Houck JR, Mason CG, Woodward CE (1995a) The infrared spectrum of the optically thin dust shell of V705 Cassiopeiae (Nova Cassiopeiae 1993). ApJ 448:L119. https://doi.org/10.1086/309607

    ADS  Article  Google Scholar 

  130. Gehrz RD, Jones TJ, Matthews K, Neugebauer G, Woodward CE, Hayward TL, Greenhouse MA (1995b) The neon nova. III. The infrared light curves of nova QU vulpeculae (Nova VUL 1984#2). AJ 110:325. https://doi.org/10.1086/117523

    ADS  Article  Google Scholar 

  131. Gehrz RD, Truran JW, Williams RE, Starrfield S (1998) Nucleosynthesis in classical novae and its contribution to the interstellar medium. PASP 110(743):3–26. https://doi.org/10.1086/316107

    ADS  Article  Google Scholar 

  132. Gehrz RD, Woodward CE, Helton LA, Polomski EF, Hayward TL, Houck JR, Evans A, Krautter J, Shore SN, Starrfield S, Truran J, Schwarz GJ, Wagner RM (2008) The neon abundance in the ejecta of QU Vulpeculae from late-epoch infrared spectra. ApJ 672(2):1167–1173. https://doi.org/10.1086/523660. arXiv:0709.2693

    ADS  Article  Google Scholar 

  133. Gehrz RD, Evans A, Helton LA, Woodward CE (2015) Infrared Observations of Novae in the SOFIA Era. In: Lagadec E, Millour F, Lanz T (eds) The physics of evolved stars: a conference dedicated to the memory of Olivier Chesneau, EDP sciences, EAS publications series, vol 71–72, pp 143–146. https://doi.org/10.1051/eas/1571030. arXiv:1509.00066

  134. Gehrz RD, Evans A, Woodward CE, Helton LA, Banerjee DPK, Srivastava MK, Ashok NM, Joshi V, Eyres SPS, Krautter J, Kuin NPM, Page KL, Osborne JP, Schwarz GJ, Shenoy DP, Shore SN, Starrfield SG, Wagner RM (2018) The temporal development of dust formation and destruction in Nova Sagittarii 2015#2 (V5668 SGR): a panchromatic study. ApJ 858(2):78. https://doi.org/10.3847/1538-4357/aaba81. arXiv:1804.00575

    ADS  Article  Google Scholar 

  135. Geisel SL, Kleinmann DE, Low FJ (1970) Infrared emission of novae. ApJ 161:L101. https://doi.org/10.1086/180579

    ADS  Article  Google Scholar 

  136. Gill CD, O’Brien TJ (2000) Hubble Space Telescope imaging and ground-based spectroscopy of old nova shells—I. FH Ser, V533 Her, BT Mon, DK Lac and V476 Cyg. MNRAS 314(1):175–182. https://doi.org/10.1046/j.1365-8711.2000.03342.x. arXiv:astro-ph/0001092

    ADS  Article  Google Scholar 

  137. Glicenstein JF (1999a) Nova in small magellanic cloud 1999 No. 3. IAU Circ. 7286

  138. Glicenstein JF (1999b) Nova in the small magellanic cloud. IAU Circ. 7239

  139. Godon P, Sion EM, Starrfield S, Livio M, Williams RE, Woodward CE, Kuin P, Page KL (2014) Hubble Space Telescope far ultraviolet spectroscopy of the recurrent Nova T Pyxidis. ApJ 784(2):L33. https://doi.org/10.1088/2041-8205/784/2/L33. arXiv:1402.0128

    ADS  Article  Google Scholar 

  140. Graham JA (1979) The premaximum spectrum of a Magellanic Cloud nova. PASP 91:79–82. https://doi.org/10.1086/130445

    ADS  Article  Google Scholar 

  141. Greggio L (2010) The rates of SNIa: a theoretical viewpoint. In: Progenitors and environments of stellar explosions, p 65

  142. Güth T, Shafter AW, Misselt KA (2010) The nova rate in M94 (NGC 4736). ApJ 720(2):1155–1160. https://doi.org/10.1088/0004-637X/720/2/1155. arXiv:1007.2154

    ADS  Article  Google Scholar 

  143. Hachisu I, Kato M (2006) A universal decline law of classical novae. ApJS 167(1):59–80. https://doi.org/10.1086/508063. arXiv:astro-ph/0607609

    ADS  Article  Google Scholar 

  144. Hachisu I, Kato M (2007) A universal decline law of classical novae. II. GK Persei 1901 and Novae in 2005. ApJ 662(1):552–563. https://doi.org/10.1086/517600. arXiv:astro-ph/0702563

    ADS  Article  Google Scholar 

  145. Hachisu I, Kato M (2009) Optical and supersoft X-ray light-curve models of classical nova V2491 Cygni: a new clue to the secondary maximum. ApJ 694(2):L103–L106. https://doi.org/10.1088/0004-637X/694/2/L103. arXiv:0902.2424

    ADS  Article  Google Scholar 

  146. Hachisu I, Kato M (2010) A prediction formula of supersoft X-ray phase of classical novae. ApJ 709(2):680–714. https://doi.org/10.1088/0004-637X/709/2/680. arXiv:0912.1136

    ADS  Article  Google Scholar 

  147. Hachisu I, Kato M (2012) A extremely massive white dwarf of the symbiotic classical nova V407 Cyg as suggested by the RS Oph and U Sco models. Baltic Astron 21:68–75. https://doi.org/10.1515/astro-2017-0360

    ADS  Article  Google Scholar 

  148. Hachisu I, Kato M (2014) The UBV color evolution of classical novae. I. Nova-giant Sequence in the color-color diagram. ApJ 785(2):97. https://doi.org/10.1088/0004-637X/785/2/97. arXiv:1401.7113

    ADS  Article  Google Scholar 

  149. Hachisu I, Kato M (2015) A light curve analysis of classical novae: free-free emission versus photospheric emission. ApJ 798(2):76. https://doi.org/10.1088/0004-637X/798/2/76. arXiv:1410.7888

    ADS  Article  Google Scholar 

  150. Hachisu I, Kato M (2018) A light curve analysis of recurrent and very fast novae in our galaxy, magellanic clouds, and M31. ApJS 237(1):4. https://doi.org/10.3847/1538-4365/aac833. arXiv:1805.09932

    ADS  Article  Google Scholar 

  151. Hachisu I, Kato M (2019) A light-curve analysis of 32 recent galactic novae: distances and white dwarf masses. ApJS 242(2):18. https://doi.org/10.3847/1538-4365/ab1b43. arXiv:1905.10655

    ADS  Article  Google Scholar 

  152. Hachisu I, Kato M, Nomoto K (1999) A wide symbiotic channel to type IA supernovae. ApJ 522(1):487–503. https://doi.org/10.1086/307608. arXiv:astro-ph/9902304

    ADS  Article  Google Scholar 

  153. Hachisu I, Kato M, Cassatella A (2008) A universal decline law of classical novae. III. GQ Muscae 1983. ApJ 687(2):1236–1252. https://doi.org/10.1086/591415. arXiv:0806.4253

    ADS  Article  Google Scholar 

  154. Hartwick FDA, Hutchings JB (1978) Classical novae: a time-dependent optically thick wind model for the postmaximum phase. ApJ 226:203–209. https://doi.org/10.1086/156599

    ADS  Article  Google Scholar 

  155. Hatano K, Branch D, Fisher A, Starrfield S (1997) On the spatial distribution and occurrence rate of galactic classical novae. MNRAS 290(1):113–118. https://doi.org/10.1093/mnras/290.1.113

    ADS  Article  Google Scholar 

  156. Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Della Valle M, Hatzidimitriou D, Rau A, Hartmann DH, Greiner J, Burwitz V, Fliri J (2010) X-ray monitoring of classical novae in the central region of M 31. I. June 2006-March 2007. A&A 523:A89. https://doi.org/10.1051/0004-6361/201014710. arXiv:1009.1644

    ADS  Article  Google Scholar 

  157. Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Hatzidimitriou D, Della Valle M, Rau A, Hartmann DH, Burwitz V (2011) X-ray monitoring of classical novae in the central region of M 31. II. Autumn and winter 2007/2008 and 2008/2009. A&A 533:A52. https://doi.org/10.1051/0004-6361/201015887. arXiv:1010.1461

    ADS  Article  Google Scholar 

  158. Henze M, Pietsch W, Haberl F, Hernanz M, Sala G, Della Valle M, Stiele H (2012) M31N 2008-05d: a M31 disk nova with a dipping supersoft X-ray light curve. A&A 544:A44. https://doi.org/10.1051/0004-6361/201219488. arXiv:1207.2339

    ADS  Article  Google Scholar 

  159. Henze M, Pietsch W, Haberl F, Della Valle M, Riffeser A, Sala G, Hatzidimitriou D, Hofmann F, Hartmann DH, Koppenhoefer J, Seitz S, Williams GG, Hornoch K, Itagaki K, Kabashima F, Nishiyama K, Xing G, Lee CH, Magnier E, Chambers K (2013) Supersoft X-rays reveal a classical nova in the M 31 globular cluster Bol 126. A&A 549:A120. https://doi.org/10.1051/0004-6361/201220196. arXiv:1211.4736

    ADS  Article  Google Scholar 

  160. Henze M, Pietsch W, Haberl F, Della Valle M, Sala G, Hatzidimitriou D, Hofmann F, Hernanz M, Hartmann DH, Greiner J (2014) X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12. A&A 563:A2. https://doi.org/10.1051/0004-6361/201322426. arXiv:1312.1241

    ADS  Article  Google Scholar 

  161. Henze M, Darnley MJ, Williams SC, Kato M, Hachisu I, Anupama GC, Arai A, Boyd D, Burke D, Ciardullo R, Chinetti K, Cook LM, Cook MJ, Erdman P, Gao X, Harris B, Hartmann DH, Hornoch K, Horst JC, Hounsell R, Husar D, Itagaki K, Kabashima F, Kafka S, Kaur A, Kiyota S, Kojiguchi N, Kučáková H, Kuramoto K, Maehara H, Mantero A, Masci FJ, Matsumoto K, Naito H, Ness JU, Nishiyama K, Oksanen A, Osborne JP, Page KL, Paunzen E, Pavana M, Pickard R, Prieto-Arranz J, Rodríguez-Gil P, Sala G, Sano Y, Shafter AW, Sugiura Y, Tan H, Tordai T, Vraštil J, Wagner RM, Watanabe F, Williams BF, Bode MF, Bruno A, Buchheim B, Crawford T, Goff B, Hernanz M, Igarashi AS, José J, Motta M, O’Brien TJ, Oswalt T, Poyner G, Ribeiro VARM, Sabo R, Shara MM, Shears J, Starkey D, Starrfield S, Woodward CE (2018) Breaking the habit: the peculiar 2016 eruption of the unique recurrent nova M31N 2008–12a. ApJ 857(1):68. https://doi.org/10.3847/1538-4357/aab6a6. arXiv:1803.00181

    ADS  Article  Google Scholar 

  162. Hernandez S, Larsen S, Trager S, Kaper L, Groot P (2018) Metallicities of young massive clusters in NGC 5236 (M83). MNRAS 473(1):826–837. https://doi.org/10.1093/mnras/stx2397. arXiv:1709.04466

    ADS  Article  Google Scholar 

  163. Hernanz M (2012) Novae in \(\gamma\)-rays. Bull Astron Soc India 40:377 arXiv:1301.1660

    ADS  Google Scholar 

  164. Hernanz M (2015) Astrophysics: a lithium-rich stellar explosion. Nature 518(7539):307–308. https://doi.org/10.1038/518307a

    ADS  Article  Google Scholar 

  165. Hernanz M, Sala G (2010) X-ray observations of classical novae: theoretical implications. Astron Nachr 331(2):169. https://doi.org/10.1002/asna.200911320. arXiv:0910.4607

    ADS  Article  Google Scholar 

  166. Hillebrandt W, Thielemann FK (1982) Nucleosynthesis in novae: a source of Ne-E and \(^{26}\)Al. ApJ 255:617–623. https://doi.org/10.1086/159864

    ADS  Article  Google Scholar 

  167. Hillman Y, Shara MM, Prialnik D, Kovetz A (2020) A unified theory of cataclysmic variable evolution from feedback-dominated numerical simulations. Nature Astron. https://doi.org/10.1038/s41550-020-1062-y

  168. Hjellming RM (1995) Radio images and light curves for nova V1974 Cyg 1992. In: Bianchini A, Della Valle M, Orio M (eds) Cataclysmic variables. Kluwer Academic, Dordrecht, Astrophysics and Space Science Library, vol 205, p 139. https://doi.org/10.1007/978-94-011-0335-0_29

  169. Hjellming RM, Wade CM (1970) Radio novae. ApJ 162:L1. https://doi.org/10.1086/180610

    ADS  Article  Google Scholar 

  170. Hjellming RM, Wade CM, Vandenberg NR, Newell RT (1979) Radio emission from nova shells. AJ 84:1619–1631. https://doi.org/10.1086/112585

    ADS  Article  Google Scholar 

  171. Hubble E, Sandage A (1953) The brightest variable stars in extragalactic nebulae. I. M31 and M33. ApJ 118:353. https://doi.org/10.1086/145764

    ADS  Article  Google Scholar 

  172. Hubble EP (1929) A spiral nebula as a stellar system, Messier 31. ApJ 69:103–158. https://doi.org/10.1086/143167

    ADS  Article  Google Scholar 

  173. Hyland AR, Neugebauer G (1970) Infrared observations of Nova Serpentis 1970. ApJ 160:L177. https://doi.org/10.1086/180554

    ADS  Article  Google Scholar 

  174. Iben JI, Tutukov AV (1984) Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. ApJS 54:335–372. https://doi.org/10.1086/190932

    ADS  Article  Google Scholar 

  175. Iben JI, Tutukov AV (1985) On the evolution of close binaries with components of initial mass between 3 M and 12 M. ApJS 58:661–710. https://doi.org/10.1086/191054

    ADS  Article  Google Scholar 

  176. Icko Iben J, Livio M (1993) Common envelopes in binary star evolution. PASP 105:1373. https://doi.org/10.1086/133321

    ADS  Article  Google Scholar 

  177. Icko Iben J, Tutukov AV (1992) Rare thermonuclear explosions in short-period cataclysmic variables, with possible application to the nova-like red variable in the galaxy M31. ApJ 389:369. https://doi.org/10.1086/171211

    ADS  Article  Google Scholar 

  178. Iijima T (2012) Spectroscopic observations of the recurrent nova CI aquilae during the 2000 outburst. A&A 544:A26. https://doi.org/10.1051/0004-6361/201117945

    ADS  Article  Google Scholar 

  179. Iłkiewicz K, Mikołajewska J, Belczyński K, Wiktorowicz G, Karczmarek P (2019) Wind Roche lobe overflow as a way to make type Ia supernovae from the widest symbiotic systems. MNRAS 485(4):5468–5473. https://doi.org/10.1093/mnras/stz760. arXiv:1812.02602

    ADS  Article  Google Scholar 

  180. Iwanowska W, Burnicki A (1962) The population assignment of novae. Bull Acad Polon Sci 10:537

    Google Scholar 

  181. Izzo L, Ederoclite A, Della Valle M, Mason E, Williams RE, Altamore T, Cassatella A, Gilmozzi R, Patat F, Schmidtobreick L, Selvelli P, Tappert C, Thater S, Covone G, Dall’Ora M, Paolillo M (2012) Optical and near infrared multi-site follow up of the recurrent nova T Pyx. Mem. Soc. Astr. It. 83:830

    ADS  Google Scholar 

  182. Izzo L, Della Valle M, Mason E, Matteucci F, Romano D, Pasquini L, Vanzi L, Jordan A, Fernand ez JM, Bluhm P, Brahm R, Espinoza N, Williams R (2015) Early optical spectra of nova V1369 cen show the presence of lithium. ApJ 808(1):L14. https://doi.org/10.1088/2041-8205/808/1/L14. arXiv:1506.08048

    ADS  Article  Google Scholar 

  183. Izzo L, Molaro P, Bonifacio P, Della Valle M, Cano Z, de Ugarte Postigo A, Prieto JL, Thöne C, Vanzi L, Zapata A, Fernandez D (2018) Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi). MNRAS 478(2):1601–1610. https://doi.org/10.1093/mnras/sty435. arXiv:1802.05896

    ADS  Article  Google Scholar 

  184. Jacoby GH, Branch D, Ciardullo R, Davies RL, Harris WE, Pierce MJ, Pritchet CJ, Tonry JL, Welch DL (1992) A critical review of selected techniques for measuring extragalactic distances. PASP 104:599. https://doi.org/10.1086/133035

    ADS  Article  Google Scholar 

  185. Jordi K, Grebel EK, Ammon K (2006) Empirical color transformations between SDSS photometry and other photometric systems. A&A 460(1):339–347. https://doi.org/10.1051/0004-6361:20066082. arXiv:astro-ph/0609121

    ADS  Article  Google Scholar 

  186. José J (2012) Classical nova explosions—hydrodynamics and nucleosynthesis. Bull Astron Soc India 40:443

    ADS  Google Scholar 

  187. José J, Hernanz M (1998) Nucleosynthesis in classical novae: CO versus ONe white dwarfs. ApJ 494(2):680–690. https://doi.org/10.1086/305244. arXiv:astro-ph/9709153

    ADS  Article  Google Scholar 

  188. José J, Shore SN (2008) Observational mysteries and theoretical challenges for abundance studies. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 121–140. https://doi.org/10.1017/CBO9780511536168.008

    Google Scholar 

  189. Kantharia NG (2017) Novae: I. The maximum magnitude relation with decline time (MMRD) and distance. arXiv e-prints arXiv:1703.04087, arXiv:1703.04087

  190. Kasliwal MM, Cenko SB, Kulkarni SR, Ofek EO, Quimby R, Rau A (2011) Discovery of a new photometric sub-class of faint and fast classical novae. ApJ 735(2):94. https://doi.org/10.1088/0004-637X/735/2/94. arXiv:1003.1720

    ADS  Article  Google Scholar 

  191. Kato M, Hachisu I (1989) Mass loss during nova outbursts on various white dwarf masses. ApJ 346:424. https://doi.org/10.1086/168022

    ADS  Article  Google Scholar 

  192. Kato M, Hachisu I (1994) Optically thick winds in nova outbursts. ApJ 437:802. https://doi.org/10.1086/175041

    ADS  Article  Google Scholar 

  193. Kato M, Hachisu I (2012) Recurrent novae as progenitors of type Ia supernovae. Bull Astron Soc India 40:393 arXiv:1212.2295

    ADS  Google Scholar 

  194. Kato M, Hachisu I, Cassatella A (1991) A universal decline law of classical novae. IV. V838 Her (1991): a very massive white dwarf. ApJ 704(2):1676–1688. https://doi.org/10.1088/0004-637X/704/2/1676. arXiv:0909.1506

    ADS  Article  Google Scholar 

  195. Kato M, Hachisu I, Henze M (2013) Novae in globular clusters. ApJ 779(1):19. https://doi.org/10.1088/0004-637X/779/1/19. arXiv:1310.6579

    ADS  Article  Google Scholar 

  196. Kato M, Saio H, Hachisu I, Nomoto K (2014) Shortest recurrence periods of novae. ApJ 793(2):136. https://doi.org/10.1088/0004-637X/793/2/136. arXiv:1404.0582

    ADS  Article  Google Scholar 

  197. Kato M, Saio H, Hachisu I (2015) Multi-wavelength light curve model of the one-year recurrence period nova M31N 2008–12A. ApJ 808(1):52. https://doi.org/10.1088/0004-637X/808/1/52. arXiv:1506.05364

    ADS  Article  Google Scholar 

  198. Kaur A (2016) The puzzling bulge to disk nova ratio in the Andromeda galaxy (M31). PhD thesis, Clemson University

  199. Kodaira K (1970) Energy distribution around the light maximum of Nova Serpentis 1970. PASJ 22:447

    ADS  Google Scholar 

  200. Kolb U, Politano M (1997) The contribution of O-Ne-Mg novae to the \(^{26}\)Al production in the galaxy. A&A 319:909–922

    ADS  Google Scholar 

  201. Kopylov IM (1952) Commun Crimean Ap Obs 9:116

  202. Kopylov IM (1955) Izv Krymskoi Astrofiz Obs 13:23

  203. Kovetz A, Prialnik D (1985) CNO abundances resulting from diffusion in accreting nova progenitors. ApJ 291:812–821. https://doi.org/10.1086/163117

    ADS  Article  Google Scholar 

  204. Kraft RP (1964) Binary stars among cataclysmic variables. III. Ten old novae. ApJ 139:457. https://doi.org/10.1086/147776

    ADS  Article  Google Scholar 

  205. Kraft RP (1965) Binary stars among cataclysmic variables. VII. On the kinematics and space distribution of W Ursae majoris and U geminorum-type stars. ApJ 142:1588. https://doi.org/10.1086/148438

    ADS  Article  Google Scholar 

  206. Krautter J, Oegelman H, Starrfield S, Wichmann R, Pfeffermann E (1996) ROSAT X-ray observations of nova V1974 Cygni: the rise and fall of the brightest supersoft X-ray source. ApJ 456:788. https://doi.org/10.1086/176697

    ADS  Article  Google Scholar 

  207. Kukarkin BV (1949) The study of the structure and evolution of stellar systems. Moscow

  208. Lambert DL, Reddy BE (2004) Lithium abundances of the local thin disc stars. MNRAS 349(2):757–767. https://doi.org/10.1111/j.1365-2966.2004.07557.x. arXiv:astro-ph/0401259

    ADS  Article  Google Scholar 

  209. Li KL, Metzger BD, Chomiuk L, Vurm I, Strader J, Finzell T, Beloborodov AM, Nelson T, Shappee BJ, Kochanek CS, Prieto JL, Kafka S, Holoien TWS, Thompson TA, Luckas PJ, Itoh H (2017) A nova outburst powered by shocks. Nature Astron 1:697–702. https://doi.org/10.1038/s41550-017-0222-1. arXiv:1709.00763

    ADS  Article  Google Scholar 

  210. Li W, Bloom JS, Podsiadlowski P, Miller AA, Cenko SB, Jha SW, Sullivan M, Howell DA, Nugent PE, Butler NR, Ofek EO, Kasliwal MM, Richards JW, Stockton A, Shih HY, Bildsten L, Shara MM, Bibby J, Filippenko AV, Ganeshalingam M, Silverman JM, Kulkarni SR, Law NM, Poznanski D, Quimby RM, McCully C, Patel B, Maguire K, Shen KJ (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480(7377):348–350. https://doi.org/10.1038/nature10646. arXiv:1109.1593

    ADS  Article  Google Scholar 

  211. Liller W, Mayer B (1987) The rate of nova production in the galaxy. PASP 99:606–609. https://doi.org/10.1086/132021

    ADS  Article  Google Scholar 

  212. Linford JD, Chomiuk L, Rupen MP (2018) ngVLA studies of classical novae. In: Murphy E (ed) Science with a next generation very large array. Astronomical Society of the Pacific, San Francisco, ASP conference series, vol 517, p 271

  213. Livio M (1992) Classical novae and the extragalactic distance scale. ApJ 393:516. https://doi.org/10.1086/171524

    ADS  Article  Google Scholar 

  214. Livio M, Mazzali P (2018) On the progenitors of type Ia supernovae. Phys Rept 736:1–23. https://doi.org/10.1016/j.physrep.2018.02.002. arXiv:1802.03125

    ADS  MathSciNet  Article  Google Scholar 

  215. Livio M, Truran JW (1994) On the interpretation and implications of nova abundances: an abundance of riches or an overabundance of enrichments. ApJ 425:797. https://doi.org/10.1086/174024

    ADS  Article  Google Scholar 

  216. Livio M, Riess A, Sparks W (2002) Will jets identify the progenitors of type Ia supernovae? ApJ 571(2):L99–L102. https://doi.org/10.1086/341413. arXiv:astro-ph/0204454

    ADS  Article  Google Scholar 

  217. Lloyd HM, O’Brien TJ, Bode MF (1996) Models for the radio emission from classical novae. In: Taylor AR, Paredes JM (eds) Radio emission from the stars and the sun. ASP conference series, vol 93. Astronomical Society of the Pacific, San Francisco, p 200

  218. Lodders K, Palme H, Gail HP (2009) Abundances of the elements in the solar system. Landolt-Börnstein https://doi.org/10.1007/978-3-540-88055-4_34. arXiv:0901.1149

  219. Lundmark K (1922) The absolute magnitudes of novæ. PASP 34(200):207. https://doi.org/10.1086/123201

    ADS  Article  Google Scholar 

  220. Lundmark K (1923) Some facts and suggestions concerning novæ. PASP 35(204):95. https://doi.org/10.1086/123277

    ADS  Article  Google Scholar 

  221. Lundmark K (1927) Studies of anagalactic nebulae—first paper. Nova acta Regiae Societatis Scientiarum Upsaliensis Ser. V, pp 1–127

  222. Lundmark K (1935) On the novae and their classification among the variable stars. Meddelanden Fran Lunds Astron Obs Ser II 74:1–20

    ADS  MATH  Google Scholar 

  223. Madrid JP, Sparks WB, Ferguson HC, Livio M, Macchetto D (2007) Discovery of 13 nova candidates in M87. ApJ 654(1):L41–L44. https://doi.org/10.1086/510904. arXiv:astro-ph/0611825

    ADS  Article  Google Scholar 

  224. Mannucci F, Della Valle M, Panagia N, Cappellaro E, Cresci G, Maiolino R, Petrosian A, Turatto M (2005) The supernova rate per unit mass. A&A 433(3):807–814. https://doi.org/10.1051/0004-6361:20041411. arXiv:astro-ph/0411450

    ADS  Article  Google Scholar 

  225. Mannucci F, Della Valle M, Panagia N (2006) Two populations of progenitors for type Ia supernovae? MNRAS 370(2):773–783. https://doi.org/10.1111/j.1365-2966.2006.10501.x. arXiv:astro-ph/0510315

    ADS  Article  Google Scholar 

  226. Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of type Ia supernovae. ARA&A 52:107–170. https://doi.org/10.1146/annurev-astro-082812-141031. arXiv:1312.0628

    ADS  Article  Google Scholar 

  227. Martin P, Dubus G (2013) Particle acceleration and non-thermal emission during the V407 Cygni nova outburst. A&A 551:A37. https://doi.org/10.1051/0004-6361/201220289. arXiv:1209.0625

    ADS  Article  Google Scholar 

  228. Martin P, Dubus G, Jean P, Tatischeff V, Dosne C (2018) Gamma-ray emission from internal shocks in novae. A&A 612:A38. https://doi.org/10.1051/0004-6361/201731692. arXiv:1710.05515

    ADS  Article  Google Scholar 

  229. Martini P, Wagner RM, Tomaney A, Rich RM, Della Valle M, Hauschildt PH (1999) Nova Sagittarii 1994 1 (V4332 Sagittarii): the discovery and evolution of an unusual luminous red variable star. AJ 118(2):1034–1042. https://doi.org/10.1086/300951. arXiv:astro-ph/9905016

    ADS  Article  Google Scholar 

  230. Mason CG, Gehrz RD, Woodward CE, Smilowitz JB, Greenhouse MA, Hayward TL, Houck JR (1996) Infrared observations of dust formation and coronal emission in nova aquilae 1995. ApJ 470:577. https://doi.org/10.1086/177889

    ADS  Article  Google Scholar 

  231. Mason CG, Gehrz RD, Woodward CE, Smilowitz JB, Hayward TL, Houck JR (1998) The infrared development of V705 cassiopeiae. ApJ 494(2):783–791. https://doi.org/10.1086/305220

    ADS  Article  Google Scholar 

  232. Mason E, Della Valle M, Gilmozzi R, Lo Curto G, Williams RE (2005) Early decline spectra of nova SMC 2001 and nova LMC 2002. A&A 435(3):1031–1042. https://doi.org/10.1051/0004-6361:20041351. arXiv:astro-ph/0504153

    ADS  Article  Google Scholar 

  233. Mason E, Shore SN, De Gennaro Aquino I, Izzo L, Page K, Schwarz GJ (2018) V1369 cen high-resolution panchromatic late nebular spectra in the context of a unified picture for nova ejecta. ApJ 853(1):27. https://doi.org/10.3847/1538-4357/aaa247. arXiv:1807.07178

    ADS  Article  Google Scholar 

  234. Matteucci F, D’Antona F, Timmes FX (1995) News (\({\nu }\)s) on the galactic evolution of lithium. A&A 303:460

    ADS  Google Scholar 

  235. Matteucci F, Renda A, Pipino A, Della Valle M (2003) Modelling the nova rate in galaxies. A&A 405:23–30. https://doi.org/10.1051/0004-6361:20030520. arXiv:astro-ph/0304123

    ADS  Article  Google Scholar 

  236. Mazzali PA, Nomoto K, Cappellaro E, Nakamura T, Umeda H, Iwamoto K (2001) Can differences in the nickel abundance in Chandrasekhar-mass models explain the relation between the brightness and decline rate of normal type Ia supernovae? ApJ 547(2):988–994. https://doi.org/10.1086/318428. arXiv:astro-ph/0009490

    ADS  Article  Google Scholar 

  237. McLaughlin DB (1939) The forms of light curves of novae. In: Sixtieth meeting, Ann Arbor, Michigan, 1938. American Astronomical Society, Publications of the AAS, vol 9, p 157

  238. McLaughlin DB (1940) The relation between absorption velocity and rate of decline for galactic novae. ApJ 91:369. https://doi.org/10.1086/144179

    ADS  Article  Google Scholar 

  239. McLaughlin DB (1941) The distances and luminosities of three novae. ApJ 93:417. https://doi.org/10.1086/144281

    ADS  Article  Google Scholar 

  240. McLaughlin DB (1942) The luminosities of novae. Popular. Astronomy 50:233

    Google Scholar 

  241. McLaughlin DB (1943) On the spectra of novae. Publ Michigan Obs 8(12):149–194

    ADS  Google Scholar 

  242. McLaughlin DB (1945a) A note on the absorption of light in the galaxy. AJ 51:97. https://doi.org/10.1086/105832

    ADS  Article  Google Scholar 

  243. McLaughlin DB (1945b) The relation between light-curves and luminosities of novae. PASP 57(335):69. https://doi.org/10.1086/125689

    ADS  Article  Google Scholar 

  244. McLaughlin DB (1946) The classification of nova spectra. AJ 52:46. https://doi.org/10.1086/105904

    ADS  Article  Google Scholar 

  245. McLaughlin DB (1960) The spectra of novae. In: Greenstein JL (ed) Stellar atmospheres. University of Chicago Press, Chicago, p 585

    Google Scholar 

  246. Metzger BD, Finzell T, Vurm I, Hascoët R, Beloborodov AM, Chomiuk L (2015) Gamma-ray novae as probes of relativistic particle acceleration at non-relativistic shocks. MNRAS 450(3):2739–2748. https://doi.org/10.1093/mnras/stv742. arXiv:1501.05308

    ADS  Article  Google Scholar 

  247. Minkowski R (1948) Novae and planetary nebulae. ApJ 107:106. https://doi.org/10.1086/144993

    ADS  Article  Google Scholar 

  248. Molaro P, Izzo L, Mason E, Bonifacio P, Della Valle M (2016) Highly enriched \(^{7}\)Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the galactic \(^{7}\)Li origin. MNRAS 463(1):L117–L121. https://doi.org/10.1093/mnrasl/slw169. arXiv:1609.07297

    ADS  Article  Google Scholar 

  249. Molaro P, Izzo L, Bonifacio P, Hernanz M, Selvelli P, della Valle M (2020) Search for \(^{7}\)Be in the outbursts of four recent novae. MNRAS 492(4):4975–4985. https://doi.org/10.1093/mnras/stz3587. arXiv:1912.13281

    ADS  Article  Google Scholar 

  250. Monck WHS (1885) New stars and shooting-stars. Observatory 8:335–336

    ADS  Google Scholar 

  251. Moraes M, Diaz M (2009) HR Del remnant anatomy using two-dimensional spectral data and three-dimensional photoionization shell models. AJ 138(6):1541–1556. https://doi.org/10.1088/0004-6256/138/6/1541. arXiv:0909.4689

    ADS  Article  Google Scholar 

  252. Morris PJ, Cotter G, Brown AM, Chadwick PM (2017) Gamma-ray novae: rare or nearby? MNRAS 465(1):1218–1226. https://doi.org/10.1093/mnras/stw2776. arXiv:1610.09941

    ADS  Article  Google Scholar 

  253. Mould J, Cohen J, Graham JR, Hamilton D, Matthews K, Picard A, Reid N, Schmidt M, Soifer T, Wilson C, Rich RM, Gunn J (1990) A nova-like red variable in M31. ApJ 353:L35. https://doi.org/10.1086/185702

    ADS  Article  Google Scholar 

  254. Mróz P, Udalski A, Poleski R, Soszyński I, Szymański MK, Pietrzyński G, Wyrzykowski Ł, Ulaczyk K, Kozłowski S, Pietrukowicz P, Skowron J (2015) OGLE atlas of classical novae. I. Galactic bulge objects. ApJS 219(2):26. https://doi.org/10.1088/0067-0049/219/2/26. arXiv:1504.08224

    ADS  Article  Google Scholar 

  255. Mróz P, Udalski A, Poleski R, Soszyński I, Szymański MK, Pietrzyński G, Wyrzykowski Ł, Ulaczyk K, Kozłowski S, Pietrukowicz P, Skowron J (2016) OGLE atlas of classical novae. II. Magellanic clouds. ApJS 222(1):9. https://doi.org/10.3847/0067-0049/222/1/9. arXiv:1511.06355

    ADS  Article  Google Scholar 

  256. Mukai K, Ishida M (2001) The early X-ray emission from V382 velorum (nova Velorum 1999): an internal shock model. ApJ 551(2):1024–1030. https://doi.org/10.1086/320220. arXiv:astro-ph/0101026

    ADS  Article  Google Scholar 

  257. Mukai K, Sokoloski JL (2019) The new science of novae. Phys Today 72(11):38–44. https://doi.org/10.1063/PT.3.4341

    Article  Google Scholar 

  258. Mukai K, Orio M, Della Valle M (2008) Novae as a class of transient X-ray sources. ApJ 677(2):1248–1252. https://doi.org/10.1086/529362

    ADS  Article  Google Scholar 

  259. Munari U, Renzini A (1992) Are symbiotic stars the precursors of type Ia supernovae? ApJ 397:L87. https://doi.org/10.1086/186551

    ADS  Article  Google Scholar 

  260. Munari U, Zwitter T (1997) Equivalent width of Na I and K I lines and reddening. A&A 318:269–274

    ADS  Google Scholar 

  261. Munari U, Mason E, Valisa P (2014) The narrow and moving HeII lines in nova KT Eridani. A&A 564:A76. https://doi.org/10.1051/0004-6361/201323180. arXiv:1403.3284

    ADS  Article  Google Scholar 

  262. Munari U, Hambsch FJ, Frigo A (2017) Photometric evolution of seven recent novae and the double-component characterizing the light curve of those emitting in gamma rays. MNRAS 469(4):4341–4358. https://doi.org/10.1093/mnras/stx1116. arXiv:1703.09017

    ADS  Article  Google Scholar 

  263. Muraveva T, Delgado HE, Clementini G, Sarro LM, Garofalo A (2018) RR Lyrae stars as standard candles in the Gaia Data Release 2 era. MNRAS 481(1):1195–1211. https://doi.org/10.1093/mnras/sty2241. arXiv:1805.08742

    ADS  Article  Google Scholar 

  264. Nariai K, Nomoto K, Sugimoto D (1980) Nova explosion of mass-accreting white dwarfs. PASJ 32:473

    ADS  Google Scholar 

  265. Naylor T, Charles PA, Mukai K, Evans A (1992) An observational case against nova hibernation. MNRAS 258:449–456. https://doi.org/10.1093/mnras/258.3.449

    ADS  Article  Google Scholar 

  266. Neill JD, Shara MM (2004) The H\(\alpha\) light curves and spatial distribution of novae in M81. AJ 127(2):816–831. https://doi.org/10.1086/381484. arXiv:astro-ph/0311327

    ADS  Article  Google Scholar 

  267. Neill JD, Shara MM (2005) A possible high nova rate for two local group dwarf galaxies: M32 and NGC 205. AJ 129(4):1873–1885. https://doi.org/10.1086/428482. arXiv:astro-ph/0501030

    ADS  Article  Google Scholar 

  268. Nelson T, Chomiuk L, Roy N, Sokoloski JL, Mukai K, Krauss MI, Mioduszewski AJ, Rupen MP, Weston J (2014) The 2011 outburst of recurrent Nova T Pyx: radio observations reveal the ejecta mass and hint at complex mass loss. ApJ 785(1):78. https://doi.org/10.1088/0004-637X/785/1/78. arXiv:1211.3112

    ADS  Article  Google Scholar 

  269. Ness JU, Schwarz GJ, Retter A, Starrfield S, Schmitt JHMM, Gehrels N, Burrows D, Osborne JP (2007) Swift X-ray observations of classical novae. ApJ 663(1):505–515. https://doi.org/10.1086/518084. arXiv:astro-ph/0703286

    ADS  Article  Google Scholar 

  270. Ness JU, Drake JJ, Starrfield S, Bode MF, O’Brien TJ, Evans A, Eyres SPS, Helton LA, Osborne JP, Page KL, Schneider C, Woodward CE (2009) High-resolution X-ray spectroscopy of the evolving shock in the 2006 outburst of RS Ophiuchi. AJ 137(2):3414–3436. https://doi.org/10.1088/0004-6256/137/2/3414. arXiv:0810.2023

    ADS  Article  Google Scholar 

  271. Ness JU, Beardmore AP, Osborne JP, Kuulkers E, Henze M, Piro AL, Drake JJ, Dobrotka A, Schwarz G, Starrfield S, Kretschmar P, Hirsch M, Wilms J (2015) Short-period X-ray oscillations in super-soft novae and persistent super-soft sources. A&A 578:A39. https://doi.org/10.1051/0004-6361/201425178. arXiv:1503.00186

    ADS  Article  Google Scholar 

  272. Newton I (1729) The mathematical principles of natural philosophy

  273. Nomoto K (1982a) Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms. ApJ 253:798–810. https://doi.org/10.1086/159682

    ADS  Article  Google Scholar 

  274. Nomoto K (1982b) Accreting white dwarf models for type I supernovae. II. Off-center detonation supernovae. ApJ 257:780–792. https://doi.org/10.1086/160031

    ADS  Article  Google Scholar 

  275. Nomoto K, Kondo Y (1991) Conditions for accretion-induced collapse of white dwarfs. ApJ 367:L19. https://doi.org/10.1086/185922

    ADS  Article  Google Scholar 

  276. O’Brien T, Rupen M, Chomiuk L, Ribeiro V, Bode M, Sokoloski J, Woudt PA (2015) Thermal radio emission from novae& symbiotics with the square kilometre array. In: Advancing astrophysics with the square kilometre array (AASKA14), p 62. arXiv:1502.04927

  277. Oegelman H, Beuermann K, Krautter J (1984) The detection of X-rays from nova MUSCAE 1983 with the EXOSAT satellite. ApJ 287:L31–L34. https://doi.org/10.1086/184391

    ADS  Article  Google Scholar 

  278. Oegelman H, Orio M, Krautter J, Starrfield S (1993) Detection of supersoft X-ray emission from GQ Muscae nine years after a nova outburst. Nature 361(6410):331–333. https://doi.org/10.1038/361331a0

    ADS  Article  Google Scholar 

  279. Oort JH (1926) Asymmetry in the distribution of stellar velocities. Observatory 49:302–304

    ADS  Google Scholar 

  280. Orio M (2006) A close look at the population of supersoft and quasi-soft X-ray sources observed in M31 with XMM-Newton. ApJ 643(2):844–862. https://doi.org/10.1086/500099. arXiv:astro-ph/0512016

    ADS  Article  Google Scholar 

  281. Orio M, Covington J, Ögelman H (2001) X-ray emission from classical and recurrent novae observed with ROSAT. A&A 373:542–554. https://doi.org/10.1051/0004-6361:20010537. arXiv:astro-ph/0104219

    ADS  Article  Google Scholar 

  282. Orio M, Tepedelenlioglu E, Starrfield S, Woodward CE, Della Valle M (2005) Chandra observations of the recurrent nova IM normae. ApJ 620(2):938–942. https://doi.org/10.1086/427207. arXiv:astro-ph/0411162

    ADS  Article  Google Scholar 

  283. Orio M, Nelson T, Bianchini A, Di Mille F, Harbeck D (2010) A census of the supersoft X-ray sources in M31. ApJ 717(2):739–765. https://doi.org/10.1088/0004-637X/717/2/739

    ADS  Article  Google Scholar 

  284. Orio M, Ness JU, Dobrotka A, Gatuzz E, Ospina N, Aydi E, Behar E, Buckley DAH, Ciroi S, Della Valle M, Hernanz M, Henze M, Osborne JP, Page KL, Rauch T, Sala G, Starrfield S, Williams RE, Woodward CE, Zemko P (2018) What we learn from the X-ray grating spectra of nova SMC 2016. ApJ 862(2):164. https://doi.org/10.3847/1538-4357/aacf06. arXiv:1806.08249

    ADS  Article  Google Scholar 

  285. Ortolani S, Rafanelli P, Rosino L, Vittone A (1980) The recent outburst of the dwarf nova WZ Sge. A&A 87:31–35

    ADS  Google Scholar 

  286. Osborne JP (2015) Getting to know classical novae with swift. J High Energy Astrophys 7:117–125. https://doi.org/10.1016/j.jheap.2015.06.005. arXiv:1507.02153

    ADS  Article  Google Scholar 

  287. Osborne JP, Page KL, Beardmore AP, Bode MF, Goad MR, O’Brien TJ, Starrfield S, Rauch T, Ness JU, Krautter J, Schwarz G, Burrows DN, Gehrels N, Drake JJ, Evans A, Eyres SPS (2011) The supersoft X-ray phase of nova RS Ophiuchi 2006. ApJ 727(2):124. https://doi.org/10.1088/0004-637X/727/2/124. arXiv:1011.5327

    ADS  Article  Google Scholar 

  288. Osterbrock DE, Ferland GJ (2006) Astrophysics of gaseous nebulae and active galactic nuclei. University Science Books, Sausalito

    Google Scholar 

  289. Özdönmez A, Ege E, Güver T, Ak T (2018) A new catalogue of galactic novae: investigation of the MMRD relation and spatial distribution. MNRAS 476(3):4162–4186. https://doi.org/10.1093/mnras/sty432

    ADS  Article  Google Scholar 

  290. Paczyński B (1965) Cataclysmic variables among binary stars. II. Physical parameters for novae. Acta Astron 15:197

    ADS  Google Scholar 

  291. Page KL, Osborne JP, Kuin NPM, Henze M, Walter FM, Beardmore AP, Bode MF, Darnley MJ, Delgado L, Drake JJ, Hernanz M, Mukai K, Nelson T, Ness JU, Schwarz GJ, Shore SN, Starrfield S, Woodward CE (2015) Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014). MNRAS 454(3):3108–3120. https://doi.org/10.1093/mnras/stv2144. arXiv:1509.04004

    ADS  Article  Google Scholar 

  292. Pagnotta A, Walker ES, Schaefer BE (2014) The diffuse source at the center of LMC SNR 0509-67.5 is a background galaxy at z = 0.031. ApJ 788(2):173. https://doi.org/10.1088/0004-637X/788/2/173. arXiv:1405.0243

    ADS  Article  Google Scholar 

  293. Panagia N, Van Dyk SD, Weiler KW, Sramek RA, Stockdale CJ, Murata KP (2006) A search for radio emission from type Ia supernovae. ApJ 646(1):369–377. https://doi.org/10.1086/504710. arXiv:astro-ph/0603808

    ADS  Article  Google Scholar 

  294. Pastorello A, Mason E, Taubenberger S, Fraser M, Cortini G, Tomasella L, Botticella MT, Elias-Rosa N, Kotak R, Smartt SJ, Benetti S, Cappellaro E, Turatto M, Tartaglia L, Djorgovski SG, Drake AJ, Berton M, Briganti F, Brimacombe J, Bufano F, Cai YZ, Chen S, Christensen EJ, Ciabattari F, Congiu E, Dimai A, Inserra C, Kankare E, Magill L, Maguire K, Martinelli F, Morales-Garoffolo A, Ochner P, Pignata G, Reguitti A, Sollerman J, Spiro S, Terreran G, Wright DE (2019) Luminous red novae: stellar mergers or giant eruptions? A&A 630:A75. https://doi.org/10.1051/0004-6361/201935999. arXiv:1906.00812

    ADS  Article  Google Scholar 

  295. Patat F, Hussain GAJ (2013) Selecting and scheduling observing programmes at ESO. In: Heck A (ed) Organizations, people and strategies in astronomy, vol 2. Venngeist, Duttlenheim, pp 231–256

    Google Scholar 

  296. Patat F, Benetti S, Justham S, Mazzali PA, Pasquini L, Cappellaro E, Della Valle M, Podsiadlowski P, Turatto M, Gal-Yam A, Simon JD (2007a) Upper limit for circumstellar gas around the type Ia SN 2000cx. A&A 474(3):931–936. https://doi.org/10.1051/0004-6361:20078393. arXiv:0708.3698

    ADS  Article  Google Scholar 

  297. Patat F, Chandra P, Chevalier R, Justham S, Podsiadlowski P, Wolf C, Gal-Yam A, Pasquini L, Crawford IA, Mazzali PA, Pauldrach AWA, Nomoto K, Benetti S, Cappellaro E, Elias-Rosa N, Hillebrandt W, Leonard DC, Pastorello A, Renzini A, Sabbadin F, Simon JD, Turatto M (2007b) Detection of circumstellar material in a normal type Ia supernova. Science 317(5840):924. https://doi.org/10.1126/science.1143005. arXiv:0707.2793

    ADS  Article  Google Scholar 

  298. Patat F, Kerzendorf W, Bordelon D, Van de Ven G, Pritchard T (2019) The distributed peer review experiment. Messenger 177:3–13. https://doi.org/10.18727/0722-6691/5147

    ADS  Article  Google Scholar 

  299. Patterson J (1984) The evolution of cataclysmic and low-mass X-ray binaries. ApJS 54:443–493. https://doi.org/10.1086/190940

    ADS  Article  Google Scholar 

  300. Patterson J (1998) Late evolution of cataclysmic variables. PASP 110(752):1132–1147. https://doi.org/10.1086/316233

    ADS  Article  Google Scholar 

  301. Payne-Gaposchkin C (1957) The galactic novae. Dover, New York

    Google Scholar 

  302. Pease FG (1917) A suspected nova in the nebula N. G. C. 2841. PASP 29(171):213. https://doi.org/10.1086/122639

    ADS  Article  Google Scholar 

  303. Peimbert M, Sarmiento A (1984) Novae and galactic chemical evolution. Astron Express 1:97–103

    ADS  Google Scholar 

  304. Perlmutter S, Aldering G, Della Valle M, Deustua S, Ellis RS, Fabbro S, Fruchter A, Goldhaber G, Groom DE, Hook IM, Kim AG, Kim MY, Knop RA, Lidman C, McMahon RG, Nugent P, Pain R, Panagia N, Pennypacker CR, Ruiz-Lapuente P, Schaefer B, Walton N (1998) Discovery of a supernova explosion at half the age of the universe. Nature 391(6662):51–54. https://doi.org/10.1038/34124. arXiv:astro-ph/9712212

    ADS  Article  Google Scholar 

  305. Pfau W (1976) Recalibration of the absolute magnitudes of novae and application to nova Cygni 1975. A&A 50:113–115

    ADS  Google Scholar 

  306. Phillips MM (1993) The absolute magnitudes of type Ia supernovae. ApJ 413:L105. https://doi.org/10.1086/186970

    ADS  Article  Google Scholar 

  307. Pietrzyński G, Graczyk D, Gallenne A, Gieren W, Thompson IB, Pilecki B, Karczmarek P, Górski M, Suchomska K, Taormina M, Zgirski B, Wielgórski P, Kołaczkowski Z, Konorski P, Villanova S, Nardetto N, Kervella P, Bresolin F, Kudritzki RP, Storm J, Smolec R, Narloch W (2019) A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567(7747):200–203. https://doi.org/10.1038/s41586-019-0999-4. arXiv:1903.08096

    ADS  Article  Google Scholar 

  308. Pinto C, Ness JU, Verbunt F, Kaastra JS, Costantini E, Detmers RG (2012) A phenomenological model for the X-ray spectrum of nova V2491 Cygni. A&A 543:A134. https://doi.org/10.1051/0004-6361/201117835. arXiv:1206.2143

    ADS  Article  Google Scholar 

  309. Plaut L (1965) Distribution of novae in the galaxy. In: Blaauw A, Schmidt M (eds) Galactic structure. University of Chicago Press, Chicago, p 311

    Google Scholar 

  310. Poggiani R (2018) Galactic and extragalactic novae—a review. In: Accretion processes in cosmic sources—II, PoS, vol 342. Sissa, p 057. https://doi.org/10.22323/1.342.0057

  311. Politano M, Livio M, Truran JW, Webbink RF (1990) The theoretical frequency of classical nova outbursts as a function of white dwarf mass. In: Cassatella A, Viotti R (eds) Physics of classical novae, vol 369. Springer, Berlin, p 386. https://doi.org/10.1007/3-540-53500-4_150

    Google Scholar 

  312. Prantzos N (2012) Production and evolution of Li, Be, and B isotopes in the galaxy. A&A 542:A67. https://doi.org/10.1051/0004-6361/201219043. arXiv:1203.5662

    ADS  Article  Google Scholar 

  313. Pretorius ML, Knigge C (2007) Discovery of a new cataclysmic variable through optical variability and X-ray emission. A&A 461(3):1103–1106. https://doi.org/10.1051/0004-6361:20066418. arXiv:astro-ph/0610527

    ADS  Article  Google Scholar 

  314. Prialnik D, Kovetz A (1995) An extended grid of multicycle nova evolution models. ApJ 445:789. https://doi.org/10.1086/175741

    ADS  Article  Google Scholar 

  315. Prialnik D, Shara MM, Shaviv G (1978) The evolution of a slow nova model with a Z = 0.03 envelope from pre-explosion to extinction. A&A 62(3):339–348

    ADS  Google Scholar 

  316. Prialnik D, Livio M, Shaviv G, Kovetz A (1982) On the role of the accretion rate in nova outbursts. ApJ 257:312–317. https://doi.org/10.1086/159990

    ADS  Article  Google Scholar 

  317. Pritchet CJ, van den Bergh S (1987) Observations of novae in the Virgo cluster. ApJ 318:507. https://doi.org/10.1086/165387

    ADS  Article  Google Scholar 

  318. Rafanelli P, Rosino L (1978) The spectral evolution of nova HR Del (1967) during its decline. A&AS 31:337–352

    ADS  Google Scholar 

  319. Ramírez I, Fish JR, Lambert DL, Allende Prieto C (2012) Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets. ApJ 756(1):46. https://doi.org/10.1088/0004-637X/756/1/46. arXiv:1207.0499

    ADS  Article  Google Scholar 

  320. Reeves H, Richer J, Sato K, Terasawa N (1990) On the origin of lithium. ApJ 355:18. https://doi.org/10.1086/168736

    ADS  Article  Google Scholar 

  321. Ribeiro VARM, Bode MF, Darnley MJ, Harman DJ, Newsam AM, O’Brien TJ, Bohigas J, Echevarría JM, Bond HE, Chavushyan VH, Costero R, Coziol R, Evans A, Eyres SPS, León-Tavares J, Richer MG, Tovmassian G, Starrfield S, Zharikov SV (2009) The expanding nebular remnant of the recurrent nova RS Ophiuchi (2006). II. Modeling of combined Hubble Space Telescope imaging and ground-based spectroscopy. ApJ 703(2):1955–1963. https://doi.org/10.1088/0004-637X/703/2/1955. arXiv:0908.2704

    ADS  Article  Google Scholar 

  322. Ribeiro VARM, Bode MF, Darnley MJ, Barnsley RM, Munari U, Harman DJ (2013a) Morpho-kinematical modelling of Nova Eridani 2009 (KT Eri). MNRAS 433(3):1991–1996. https://doi.org/10.1093/mnras/stt856. arXiv:1305.3834

    ADS  Article  Google Scholar 

  323. Ribeiro VARM, Munari U, Valisa P (2013b) Optical morphology, inclination, and expansion velocity of the ejected shell of Nova Monocerotis 2012. ApJ 768(1):49. https://doi.org/10.1088/0004-637X/768/1/49. arXiv:1303.3715

    ADS  Article  Google Scholar 

  324. Rich RM, Mould J, Picard A, Frogel JA, Davies R (1989) Luminous M giants in the bulge of M31. ApJ 341:L51. https://doi.org/10.1086/185455

    ADS  Article  Google Scholar 

  325. Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut B, Phillips MM, Reiss D, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ 116(3):1009–1038. https://doi.org/10.1086/300499. arXiv:astro-ph/9805201

    ADS  Article  Google Scholar 

  326. Riess AG, Fliri J, Valls-Gabaud D (2012) Cepheid period-luminosity relations in the near-infrared and the distance to M31 from the Hubble Space Telescope Wide Field Camera 3. ApJ 745(2):156. https://doi.org/10.1088/0004-637X/745/2/156. arXiv:1110.3769

    ADS  Article  Google Scholar 

  327. Riess AG, Casertano S, Yuan W, Macri LM, Scolnic D (2019) Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\varLambda\)CDM. ApJ 876(1):85. https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603

    ADS  Article  Google Scholar 

  328. Ritchey GW (1917a) Another faint nova in the Andromeda nebula. PASP 29(172):257. https://doi.org/10.1086/122653

    ADS  Article  Google Scholar 

  329. Ritchey GW (1917b) Novae in spiral nebulae. PASP 29(171):210. https://doi.org/10.1086/122638

    ADS  Article  Google Scholar 

  330. Ritchey GW (1918) Three additional novae in the Andromeda nebula. PASP 30(174):162. https://doi.org/10.1086/122710

    ADS  Article  Google Scholar 

  331. Ritter H, Politano M, Livio M, Webbink RF (1991) The white dwarf mass distribution in classical nova systems. ApJ 376:177. https://doi.org/10.1086/170265

    ADS  Article  Google Scholar 

  332. Robbins RR (1968a) The helium triplet spectrum in expanding nebulae. I. The capture-cascade intensities. ApJ 151:497. https://doi.org/10.1086/149452

    ADS  Article  Google Scholar 

  333. Robbins RR (1968b) The helium triplet spectrum in expanding nebulae. II. Self-absorption. ApJ 151:511. https://doi.org/10.1086/149453

    ADS  Article  Google Scholar 

  334. Robinson EL (1975) Preeruption light curves of novae. AJ 80:515. https://doi.org/10.1086/111774

    ADS  Article  Google Scholar 

  335. Romano D, Matteucci F (2003) Nova nucleosynthesis and galactic evolution of the CNO isotopes. MNRAS 342(1):185–198. https://doi.org/10.1046/j.1365-8711.2003.06526.x. arXiv:astro-ph/0302233

    ADS  Article  Google Scholar 

  336. Romano D, Matteucci F, Ventura P, D’Antona F (2001) The stellar origin of \(^{7}\)Li. Do AGB stars contribute a substantial fraction of the local galactic lithium abundance? A&A 374:646–655. https://doi.org/10.1051/0004-6361:20010751. arXiv:astro-ph/0105483

    ADS  Article  Google Scholar 

  337. Rosino L (1956) Nuove ricerche sulle stelle variabili della nebulosa di Orione. Mem Soc Astron Ital 27:335

    ADS  Google Scholar 

  338. Rosino L (1964) Novae in Messier 31 discovered and observed at Asiago from 1955 to 1963. Ann Astrophys 27:498–505

    ADS  Google Scholar 

  339. Rosino L (1973) Novae in M 31 discovered and observed at Asiago from 1963 to 1970. A&AS 9:347

    ADS  Google Scholar 

  340. Rosino L, Bianchini A (1973) Discovery of five novae in Messier 33 and a supernova in a field galaxy. A&A 22:461

    ADS  Google Scholar 

  341. Rosino L, Ciatti F, Della Valle M (1986) Researches on novae and related objects. I. The spectral evolution of nova FH SER (1970). A&A 158:34–44

    ADS  Google Scholar 

  342. Rosino L, Capaccioli M, D’Onofrio M, Della Valle M (1989) Fifty-two novae in M31 discovered and observed at Asiago from 1971 to 1986. AJ 97:83. https://doi.org/10.1086/114959

    ADS  Article  Google Scholar 

  343. Roy N, Chomiuk L, Sokoloski JL, Weston J, Rupen MP, Johnson T, Krauss MI, Nelson T, Mukai K, Mioduszewski A, Bode MF, Eyres SPS, O’Brien TJ (2012a) Radio studies of novae: a current status report and highlights of new results. Bull Astron Soc India 40:293–310 arXiv:1302.4455

    ADS  Google Scholar 

  344. Roy N, Kantharia NG, Eyres SPS, Anupama GC, Bode MF, Prabhu TP, O’Brien TJ (2012b) An H I shell-like structure associated with nova V458 Vulpeculae? MNRAS 427(1):L55–L59. https://doi.org/10.1111/j.1745-3933.2012.01344.x. arXiv:1209.2431

    ADS  Article  Google Scholar 

  345. Rupen MP, Mioduszewski AJ, Sokoloski JL (2008) V. ApJ 688(1):559–567. https://doi.org/10.1086/525555. arXiv:0711.1142

    ADS  Article  Google Scholar 

  346. Sackmann IJ, Boothroyd AI (1992) The creation of superrich lithium giants. ApJ 392:L71. https://doi.org/10.1086/186428

    ADS  Article  Google Scholar 

  347. Sackmann IJ, Boothroyd AI (1999) Creation of \(^{7}\)Li and destruction of \(^{3}\)He, \(^{9}\)Be, \(^{10}\)B, and \(^{11}\)B in low-mass red giants. Due to deep circulation. ApJ 510(1):217–231. https://doi.org/10.1086/306545

    ADS  Article  Google Scholar 

  348. Sadakane K, Tajitsu A, Mizoguchi S, Arai A, Naito H (2010) Discovery of multiple high-velocity narrow circumstellar NaI D lines in nova V1280 Sco. PASJ 62:L5. https://doi.org/10.1093/pasj/62.1.L5. arXiv:0911.5229

    ADS  Article  Google Scholar 

  349. Sanford RF (1918) Two novae in the andromeda nebula. PASP 30(178):341. https://doi.org/10.1086/122772

    ADS  Article  Google Scholar 

  350. Sanford RF (1919) Two new novae in the andromeda nebula. PASP 31(180):109. https://doi.org/10.1086/122832

    ADS  Article  Google Scholar 

  351. Santamaría E, Guerrero MA, Ramos-Larios G, Toalá JA, Sabin L, Rubio G, Quino-Mendoza JA (2020) Angular expansion of nova shells. ApJ 892(1):60. https://doi.org/10.3847/1538-4357/ab76c5. arXiv:2002.06749

    ADS  Article  Google Scholar 

  352. Sawyer HB (1938) The bright nova of 1860 in the globular cluster Messier 80 and its relation to supernovae. J R Astron Soc Can 32:69

    ADS  Google Scholar 

  353. Sawyer Hogg H, Wehlau A (1964) Probable nova in the globular cluster M 14. AJ 69:141

    ADS  Google Scholar 

  354. Sbordone L, Bonifacio P, Caffau E, Ludwig HG, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, van’t Veer C, Molaro P, Plez B, Sivarani T, Spite M, Spite F, Beers TC, Christlieb N, François P, Hill V (2010) The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. A&A 522:A26. https://doi.org/10.1051/0004-6361/200913282. arXiv:1003.4510

    ADS  Article  Google Scholar 

  355. Schaefer BE (2018) The distances to Novae as seen by Gaia. MNRAS 481(3):3033–3051. https://doi.org/10.1093/mnras/sty2388. arXiv:1809.00180

    ADS  Article  Google Scholar 

  356. Schaefer GH, Brummelaar TT, Gies DR, Farrington CD, Kloppenborg B, Chesneau O, Monnier JD, Ridgway ST, Scott N, Tallon-Bosc I, McAlister HA, Boyajian T, Maestro V, Mourard D, Meilland A, Nardetto N, Stee P, Sturmann J, Vargas N, Baron F, Ireland M, Baines EK, Che X, Jones J, Richardson ND, Roettenbacher RM, Sturmann L, Turner NH, Tuthill P, van Belle G, von Braun K, Zavala RT, Banerjee DPK, Ashok NM, Joshi V, Becker J, Muirhead PS (2014) The expanding fireball of Nova Delphini 2013. Nature 515(7526):234–236. https://doi.org/10.1038/nature13834. arXiv:1505.04852

    ADS  Article  Google Scholar 

  357. Schatzman E (1951) Remarques sur le phénomène de Nova: IV. L’onde de détonation due à l’isotope \(^{3}\)He. Ann Astrophys 14:294

    ADS  Google Scholar 

  358. Schmidt BP, Suntzeff NB, Phillips MM, Schommer RA, Clocchiatti A, Kirshner RP, Garnavich P, Challis P, Leibundgut B, Spyromilio J, Riess AG, Filippenko AV, Hamuy M, Smith RC, Hogan C, Stubbs C, Diercks A, Reiss D, Gilliland R, Tonry J, Maza J, Dressler A, Walsh J, Ciardullo R (1998) The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. ApJ 507(1):46–63. https://doi.org/10.1086/306308. arXiv:astro-ph/9805200

    ADS  Article  Google Scholar 

  359. Schmidt T (1957) Die Lichtkurven-Leuchtkraft-Beziehung Neuer Sterne. ZAP 41:182

    ADS  Google Scholar 

  360. Schwarz GJ (2002) A new abundance analysis of the ONeMg nova QU Vulpeculae. ApJ 577(2):940–950. https://doi.org/10.1086/342234

    ADS  Article  Google Scholar 

  361. Schwarz GJ, Shore SN, Starrfield S, Hauschildt PH, Della Valle M, Baron E (2001) Multiwavelength analyses of the extraordinary nova LMC 1991. MNRAS 320(1):103–123. https://doi.org/10.1046/j.1365-8711.2001.03960.x

    ADS  Article  Google Scholar 

  362. Schwarz GJ, Shore SN, Starrfield S, Vanlandingham KM (2007) Abundance analysis of the extremely fast ONeMg novae V838 Herculis and V4160 Sagittarii. ApJ 657(1):453–464. https://doi.org/10.1086/510661

    ADS  Article  Google Scholar 

  363. Schwarz GJ, Ness JU, Osborne JP, Page KL, Evans PA, Beardmore AP, Walter FM, Helton LA, Woodward CE, Bode M, Starrfield S, Drake JJ (2011) Swift X-ray observations of classical novae. II. The super soft source sample. ApJS 197(2):31. https://doi.org/10.1088/0067-0049/197/2/31. arXiv:1110.6224

    ADS  Article  Google Scholar 

  364. Schwope AD (2018) Exploring the space density of X-ray selected cataclysmic variables. A&A 619:A62. https://doi.org/10.1051/0004-6361/201833723. arXiv:1808.08144

    ADS  Article  Google Scholar 

  365. Schwope AD, Brunner H, Buckley D, Greiner J, van der Heyden K, Neizvestny S, Potter S, Schwarz R (2002) The census of cataclysmic variables in the ROSAT bright survey. A&A 396:895–910. https://doi.org/10.1051/0004-6361:20021386. arXiv:astro-ph/0210059

    ADS  Article  Google Scholar 

  366. Seaquist ER (2008) Radio emission from novae. In: Bode MF, Evans A (eds) Classical Novae, Cambridge Astrophysics Series, vol 43. Cambridge University Press, Cambridge, pp 141–166. https://doi.org/10.1017/CBO9780511536168.009

    Google Scholar 

  367. Seaquist ER, Palimaka J (1977) Thick inhomogeneous shell models for the radio emission from Nova Serpentis 1970. ApJ 217:781–787. https://doi.org/10.1086/155625

    ADS  Article  Google Scholar 

  368. Selvelli P, Gilmozzi R (2013) An archive study of 18 old novae. I. The UV spectra. A&A 560:A49. https://doi.org/10.1051/0004-6361/201220627

    ADS  Article  Google Scholar 

  369. Selvelli P, Gilmozzi R (2019) A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD. A&A 622:A186. https://doi.org/10.1051/0004-6361/201834238. arXiv:1903.05868

    ADS  Article  Google Scholar 

  370. Selvelli P, Cassatella A, Gilmozzi R, González-Riestra R (2008) The secrets of T Pyxidis. II. A recurrent nova that will not become a SN Ia. A&A 492(3):787–803. https://doi.org/10.1051/0004-6361:200810678. arXiv:0904.1146

    ADS  Article  Google Scholar 

  371. Selvelli P, Molaro P, Izzo L (2018) Absorption and emission features of \(^{7}\)Be II in the outburst spectra of V838 Her (Nova Her 1991). MNRAS 481(2):2261–2272. https://doi.org/10.1093/mnras/sty2310. arXiv:1809.04180

    ADS  Article  Google Scholar 

  372. Shafter AW (1997) On the nova rate in the galaxy. ApJ 487(1):226–236. https://doi.org/10.1086/304609

    ADS  Article  Google Scholar 

  373. Shafter AW (2013) Photometric and spectroscopic properties of novae in the Large Magellanic Cloud. AJ 145(5):117. https://doi.org/10.1088/0004-6256/145/5/117. arXiv:1302.6285

    ADS  Article  Google Scholar 

  374. Shafter AW (2017) The galactic nova rate revisited. ApJ 834(2):196. https://doi.org/10.3847/1538-4357/834/2/196. arXiv:1606.02358

    ADS  Article  Google Scholar 

  375. Shafter AW (2019) Extragalactic novae; a historical perspective. IOP Publishing, Bristol. https://doi.org/10.1088/2514-3433/ab2c63

    Google Scholar 

  376. Shafter AW, Irby BK (2001) On the spatial distribution, stellar population, and rate of novae in M31. ApJ 563(2):749–767. https://doi.org/10.1086/324044

    ADS  Article  Google Scholar 

  377. Shafter AW, Ciardullo R, Pritchet CJ (2000) Novae in external galaxies: M51, M87, and M101. ApJ 530(1):193–206. https://doi.org/10.1086/308349

    ADS  Article  Google Scholar 

  378. Shafter AW, Darnley MJ, Hornoch K, Filippenko AV, Bode MF, Ciardullo R, Misselt KA, Hounsell RA, Chornock R, Matheson T (2011) A spectroscopic and photometric survey of novae in M31. ApJ 734(1):12. https://doi.org/10.1088/0004-637X/734/1/12. arXiv:1104.0222

    ADS  Article  Google Scholar 

  379. Shafter AW, Darnley MJ, Bode MF, Ciardullo R (2012) On the spectroscopic classes of novae in M33. ApJ 752(2):156. https://doi.org/10.1088/0004-637X/752/2/156. arXiv:1204.4850

    ADS  Article  Google Scholar 

  380. Shafter AW, Henze M, Rector TA, Schweizer F, Hornoch K, Orio M, Pietsch W, Darnley MJ, Williams SC, Bode MF, Bryan J (2015) Recurrent novae in M31. ApJS 216(2):34. https://doi.org/10.1088/0067-0049/216/2/34. arXiv:1412.8510

    ADS  Article  Google Scholar 

  381. Shapley H (1917) A faint nova in the nebula of Andromeda. PASP 29(171):213–217. https://doi.org/10.1086/122669

    ADS  Article  Google Scholar 

  382. Shara MM (1981) A theoretical explanation of the absolute magnitude-decline time \(M_{B}-t_{3}\) relationship for classical novae. ApJ 243:926–934. https://doi.org/10.1086/158657

    ADS  Article  Google Scholar 

  383. Shara MM, Livio M, Moffat AFJ, Orio M (1986) Do novae hibernate during most of the millennia between eruptions? Links between dwarf and classical novae, and implications for the space densities and evolution of cataclysmic binaries. ApJ 311:163. https://doi.org/10.1086/164762

    ADS  Article  Google Scholar 

  384. Shara MM, Moffat AFJ, Potter M (1990) Spectroscopic authentication of very old nova candidates. AJ 100:540. https://doi.org/10.1086/115535

    ADS  Article  Google Scholar 

  385. Shara MM, Sandage A, Zurek DR (1999) The early Palomar program (1950–1955) for the discovery of classical novae in M81: analysis of the spatial distribution, magnitude distribution, and distance suggestion. PASP 111(765):1367–1381. https://doi.org/10.1086/316449. arXiv:astro-ph/9907400

    ADS  Article  Google Scholar 

  386. Shara MM, Zurek DR, Baltz EA, Lauer TR, Silk J (2004) An erupting classical nova in a globular cluster of M87. ApJ 605(2):L117–L120. https://doi.org/10.1086/420882. arXiv:astro-ph/0401444

    ADS  Article  Google Scholar 

  387. Shara MM, Martin CD, Seibert M, Rich RM, Salim S, Reitzel D, Schiminovich D, Deliyannis CP, Sarrazine AR, Kulkarni SR, Ofek EO, Brosch N, Lépine S, Zurek D, De Marco O, Jacoby G (2007) An ancient nova shell around the dwarf nova Z Camelopardalis. Nature 446(7132):159–162. https://doi.org/10.1038/nature05576

    ADS  Article  Google Scholar 

  388. Shara MM, Mizusawa T, Wehinger P, Zurek D, Martin CD, Neill JD, Forster K, Seibert M (2012) AT Cnc: a second dwarf nova with a classical nova shell. ApJ 758(2):121. https://doi.org/10.1088/0004-637X/758/2/121. arXiv:1208.1280

    ADS  Article  Google Scholar 

  389. Shara MM, Zurek D, Schaefer BE, Bond HE, Godon P, Mac Low MM, Pagnotta A, Prialnik D, Sion EM, Toraskar J, Williams RE (2015) HST images flash ionization of old ejecta by the 2011 eruption of recurrent Nova T Pyxidis. ApJ 805(2):148. https://doi.org/10.1088/0004-637X/805/2/148. arXiv:1503.08840

    ADS  Article  Google Scholar 

  390. Shara MM, Doyle TF, Lauer TR, Zurek D, Neill JD, Madrid JP, Mikołajewska J, Welch DL, Baltz EA (2016) A Hubble Space Telescope survey for novae in M87. I. Light and color curves, spatial distributions, and the nova rate. ApJS 227(1):1. https://doi.org/10.3847/0067-0049/227/1/1. arXiv:1602.00758

    ADS  Article  Google Scholar 

  391. Shara MM, Doyle T, Lauer TR, Zurek D, Baltz EA, Kovetz A, Madrid JP, Mikołajewska J, Neill JD, Prialnik D, Welch DL, Yaron O (2017a) A Hubble Space Telescope survey for novae in M87. II. Snuffing out the maximum magnitude-rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae. ApJ 839(2):109. https://doi.org/10.3847/1538-4357/aa65cd. arXiv:1702.05788

    ADS  Article  Google Scholar 

  392. Shara MM, Iłkiewicz K, Mikołajewska J, Pagnotta A, Bode MF, Crause LA, Drozd K, Faherty J, Fuentes-Morales I, Grindlay JE (2017b) Proper-motion age dating of the progeny of Nova Scorpii AD 1437. Nature 548(7669):558–560. https://doi.org/10.1038/nature23644. arXiv:1704.00086

    ADS  Article  Google Scholar 

  393. Shara MM, Doyle TF, Pagnotta A, Garland JT, Lauer TR, Zurek D, Baltz EA, Goerl A, Kovetz A, Machac T, Madrid JP, Mikołajewska J, Neill JD, Prialnik D, Welch DL, Yaron O (2018) A Hubble Space Telescope survey for novae in M87—III. Are novae good standard candles 15 d after maximum brightness? MNRAS 474(2):1746–1751. https://doi.org/10.1093/mnras/stx2873. arXiv:1702.06988

    ADS  Article  Google Scholar 

  394. Sharov AS (1972) Estimate for the frequency of novae in the Andromeda nebula and our galaxy. Sov Astron 16:41

    ADS  Google Scholar 

  395. Sharov AS (1979) The maximum luminosity-rate of decline relation and the problem of distance determination of novae. Peremennye Zvezdy 21:141–147

    ADS  Google Scholar 

  396. Sharov AS (1993) The rate of explosions of novae in galaxies of the local group. Astron Lett 19:147

    ADS  Google Scholar 

  397. Shore SN (2012) Spectroscopy of novae—a user’s manual. Bull Astron Soc India 40:185 arXiv:1211.3176

    ADS  Google Scholar 

  398. Shore SN (2013) A unified model for the spectrophotometric development of classical and recurrent novae. The role of asphericity of the ejecta. A&A 559:L7. https://doi.org/10.1051/0004-6361/201322470. arXiv:1309.7388

    ADS  Article  Google Scholar 

  399. Shore SN, Sonneborn G, Starrfield S, Riestra-Gonzalez R, Ake TB (1993) The early ultraviolet spectral evolution of Nova Cygni 1992. AJ 106:2408. https://doi.org/10.1086/116812

    ADS  Article  Google Scholar 

  400. Shore SN, Starrfield S, Sonneborn G (1996) The ultraviolet and X-ray view of the demise of Nova V1974 Cygni. ApJ 463:L21. https://doi.org/10.1086/310045

    ADS  Article  Google Scholar 

  401. Shore SN, Schwarz G, Bond HE, Downes RA, Starrfield S, Evans A, Gehrz RD, Hauschildt PH, Krautter J, Woodward CE (2003) The early ultraviolet evolution of the ONeMg nova V382 Velorum 1999. AJ 125(3):1507–1518. https://doi.org/10.1086/367803. arXiv:astro-ph/0301415

    ADS  Article  Google Scholar 

  402. Shore SN, Augusteijn T, Ederoclite A, Uthas H (2011) The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. I. The optically thick phase and the origin of moving lines in novae. A&A 533:L8. https://doi.org/10.1051/0004-6361/201117721. arXiv:1108.3505

    ADS  Article  Google Scholar 

  403. Shore SN, Kuin NP, Mason E, De Gennaro Aquino I (2018) Spectroscopic diagnostics of dust formation and evolution in classical nova ejecta. A&A 619:A104. https://doi.org/10.1051/0004-6361/201833204. arXiv:1807.07174

    ADS  Article  Google Scholar 

  404. Siegert T, Coc A, Delgado L, Diehl R, Greiner J, Hernanz M, Jean P, José J, Molaro P, Pleintinger MMM, Savchenko V, Starrfield S, Tatischeff V, Weinberger C (2018) Gamma-ray observations of Nova Sgr 2015 No. 2 with INTEGRAL. A&A 615:A107. https://doi.org/10.1051/0004-6361/201732514. arXiv:1803.06888

    ADS  Article  Google Scholar 

  405. Slavin AJ, O’Brien TJ, Dunlop JS (1995) A deep optical imaging study of the nebular remnants of classical novae. MNRAS 276(2):353–371. https://doi.org/10.1093/mnras/276.2.353

    ADS  Article  Google Scholar 

  406. Smith DA, Dhillon VS, Marsh TR (1998) The mass of the white dwarf in the old nova BT MON. MNRAS 296(3):465–482. https://doi.org/10.1046/j.1365-8711.1998.00743.x. arXiv:astro-ph/9709186

    ADS  Article  Google Scholar 

  407. Sokoloski JL, Rupen MP, Mioduszewski AJ (2008) Uncovering the nature of nova jets: a radio image of highly collimated outflows from RS Ophiuchi. ApJ 685(2):L137. https://doi.org/10.1086/592602

    ADS  Article  Google Scholar 

  408. Soraisam MD (2016) Novae a theoretical and observational study. PhD thesis, Ludwig-Maximilians-Universität München

  409. Sparks WM (1969) Dynamical models of novae. ApJ 156:569. https://doi.org/10.1086/149990

    ADS  Article  Google Scholar 

  410. Sparks WM, Starrfield S, Truran JW (1977) A review of the thermonuclear runaway model of a nova outburst. In: Friedjung M (ed) Novae and related stars, Astrophysics and Space Science Library, vol 65. D. Reidel, Dordrecht, p 189. https://doi.org/10.1007/978-94-010-1217-1_45

  411. Sparks WM, Starrfield S, Truran JW (1978) A hydrodynamic study of a slow nova outburst. ApJ 220:1063–1075. https://doi.org/10.1086/155992

    ADS  Article  Google Scholar 

  412. Spite F (1990) Lithium in population II stars. Mem Soc Astron Ital 61:663–675

    ADS  Google Scholar 

  413. Spite F, Spite M (1982) Abundance of lithium in unevolved halo stars and old disk stars—interpretation and consequences. A&A 115:357–366

    ADS  Google Scholar 

  414. Starrfield S (1999) Recent advances in studies of the nova outburst. Phys Rep 311:371–381. https://doi.org/10.1016/S0370-1573(98)00116-1

    ADS  Article  Google Scholar 

  415. Starrfield S, Truran JW, Sparks WM, Arnould M (1978) On \(^{7}\)Li production in nova explosions. ApJ 222:600–603. https://doi.org/10.1086/156175

    ADS  Article  Google Scholar 

  416. Starrfield S, Schwarz GJ, Truran JW, Sparks WM (1998) Hydrodynamic Studies of the Evolution of the Extraordinary Nova LMC 1991. In: American Astronomical Society Meeting Abstracts, vol 193, p 101.06

  417. Starrfield S, Sparks WM, Truran JW, Wiescher MC (2000) The effects of new nuclear reaction rates and opacities on hydrodynamic simulations of the nova outburst. ApJS 127(2):485–495. https://doi.org/10.1086/313336

    ADS  Article  Google Scholar 

  418. Starrfield S, Iliadis C, Hix WR, Timmes FX, Sparks WM (2009) The effects of the pep nuclear reaction and other improvements in the nuclear reaction rate library on simulations of the classical nova outburst. ApJ 692(2):1532–1542. https://doi.org/10.1088/0004-637X/692/2/1532. arXiv:0811.0197

    ADS  Article  Google Scholar 

  419. Starrfield S, Bose M, Iliadis C, Hix WR, Woodward CE, Wagner RM (2019) Carbon-oxygen classical novae are galactic \(^7\)Li producers as well as potential supernova Ia progenitors. arXiv e-prints arXiv:1910.00575. arXiv:1910.00575

  420. Starrfield SG, Sparks WM, Truran JW (1975) Accretion and the nova outburst. Mem Soc R Sci Liege 8:413–424

    ADS  Google Scholar 

  421. Stickland DJ, Penn CJ, Seaton MJ, Snijders MAJ, Storey PJ (1981) Nova Cygni 1978—I. The nebular phase. MNRAS 197:107–138. https://doi.org/10.1093/mnras/197.1.107

    ADS  Article  Google Scholar 

  422. Subramaniam A, Anupama GC (2002) The local stellar population of nova regions in the Large Magellanic Cloud. A&A 390:449–471. https://doi.org/10.1051/0004-6361:20020742. arXiv:astro-ph/0203098

    ADS  Article  Google Scholar 

  423. Tajitsu A, Sadakane K, Naito H, Arai A, Aoki W (2015) Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013). Nature 518(7539):381–384. https://doi.org/10.1038/nature14161. arXiv:1502.05598

    ADS  Article  Google Scholar 

  424. Tajitsu A, Sadakane K, Naito H, Arai A, Kawakita H, Aoki W (2016) The \(^{7}\)Be II resonance lines in two classical novae V5668 Sgr and V2944 Oph. ApJ 818(2):191. https://doi.org/10.3847/0004-637X/818/2/191. arXiv:1601.05168

    ADS  Article  Google Scholar 

  425. Takei D, Ness JU, Tsujimoto M, Kitamoto S, Drake JJ, Osborne JP, Takahashi H, Kinugasa K (2011) X-ray study of rekindled accretion in the classical nova V2491 Cygni. PASJ 63:S729–S738. https://doi.org/10.1093/pasj/63.sp3.S729. arXiv:1102.2436

    ADS  Article  Google Scholar 

  426. Tappert C, Vogt N, Della Valle M, Schmidtobreick L, Ederoclite A (2014) Life after eruption—IV. Spectroscopy of 13 old novae. MNRAS 442(1):565–576. https://doi.org/10.1093/mnras/stu781. arXiv:1405.3635

    ADS  Article  Google Scholar 

  427. Taylor AR, Hjellming RM, Seaquist ER, Gehrz RD (1988) Radio images of the expanding ejecta of nova QU Vulpeculae 1984. Nature 335(6187):235–238. https://doi.org/10.1038/335235a0

    ADS  Article  Google Scholar 

  428. Tomaney AB, Shafter AW (1992) The spectroscopic and photometric evolution of novae in the bulge of M31. ApJS 81:683. https://doi.org/10.1086/191702

    ADS  Article  Google Scholar 

  429. Tornambe A, Matteucci F (1986) Type I SNe from double degenerate CO dwarfs and their rate in the solar neighbourhood. MNRAS 223:69–77. https://doi.org/10.1093/mnras/223.1.69

    ADS  Article  Google Scholar 

  430. Townsley DM, Bildsten L (2004) Physical interpretation of dwarf nova primary effective temperatures. In: Tovmassian G, Sion E (eds) Compact binaries in the galaxy and beyond. The Revista Mexicana de Astronomía y Astrofísica conference series, vol 20, pp 192–193

  431. Travaglio C, Randich S, Galli D, Lattanzio J, Elliott LM, Forestini M, Ferrini F (2001) Galactic chemical evolution of lithium: interplay between stellar sources. ApJ 559(2):909–924. https://doi.org/10.1086/322415. arXiv:astro-ph/0105558

    ADS  Article  Google Scholar 

  432. Truran JW, Livio M (1986) On the frequency of occurrence of oxygen-neon-magnesium white dwarfs in classical nova systems. ApJ 308:721. https://doi.org/10.1086/164544

    ADS  Article  Google Scholar 

  433. Vainu Bappu MK, Menzel DH (1954) Emission-line profiles from expanding envelopes. ApJ 119:508. https://doi.org/10.1086/145857

    ADS  Article  Google Scholar 

  434. van den Bergh S (1988) Novae, supernovae, and the island universe hypothesis. PASP 100:8. https://doi.org/10.1086/132129

    ADS  Article  Google Scholar 

  435. van den Bergh S (1991) The stellar populations of M31. PASP 103:1053. https://doi.org/10.1086/132925

    ADS  Article  Google Scholar 

  436. van den Bergh S (1996) The extragalactic distance scale. PASP 108:1091–1096. https://doi.org/10.1086/133839. arXiv:astro-ph/9604070

    ADS  Article  Google Scholar 

  437. van den Bergh S, Younger PF (1987) UBV photometry of novae. A&AS 70:125–140

    ADS  Google Scholar 

  438. Vanlandingham KM, Starrfield S, Wagner RM, Shore SN, Sonneborn G (1996) Optical and ultraviolet spectrophotometry of the ONeMg Nova V838 Herculis 1991. MNRAS 282(2):563–579. https://doi.org/10.1093/mnras/282.2.563

    ADS  Article  Google Scholar 

  439. Vanlandingham KM, Starrfield S, Shore SN (1997) Elemental abundances for Nova V693 Coronae Austrinae 1981. MNRAS 290(1):87–98. https://doi.org/10.1093/mnras/290.1.87

    ADS  Article  Google Scholar 

  440. Vanlandingham KM, Schwarz GJ, Shore SN, Starrfield S (2001) Nuclear turnoff times for ONEMG novae determined using ultraviolet spectral evolution. AJ 121(2):1126–1135. https://doi.org/10.1086/318778

    ADS  Article  Google Scholar 

  441. Vlasov A, Vurm I, Metzger BD (2016) Shocks in nova outflows—II. Synchrotron radio emission. MNRAS 463(1):394–412. https://doi.org/10.1093/mnras/stw1949. arXiv:1603.05194

    ADS  Article  Google Scholar 

  442. Vogt N (1990) Evidence for hibernation from a statistical analysis of nova eruption amplitudes. ApJ 356:609. https://doi.org/10.1086/168866

    ADS  Article  Google Scholar 

  443. Vorontsov-Velyaminov B (1947) The blue-white sequence. Observatory 67:224–226

    ADS  Google Scholar 

  444. Vurm I, Metzger BD (2018) High-energy emission from nonrelativistic radiative shocks: application to gamma-ray novae. ApJ 852(1):62. https://doi.org/10.3847/1538-4357/aa9c4a. arXiv:1611.04532

    ADS  Article  Google Scholar 

  445. Wade CM, Hjellming RM (1971) Further radio observations of novae. ApJ 163:L65. https://doi.org/10.1086/180668

    ADS  Article  Google Scholar 

  446. Wade RA, Harlow JJB, Ciardullo R (2000) Biases in expansion distances of novae arising from the prolate geometry of nova shells. PASP 112(771):614–624. https://doi.org/10.1086/316566. arXiv:astro-ph/0003296

    ADS  Article  Google Scholar 

  447. Wagner RM, Woodward CE, Starrfield S, Ilyin I, Strassmeier K (2018) High resolution optical spectroscopy of the classical nova V5668 Sgr showing the presence of lithium. In: American Astronomical Society meeting abstracts, vol 231, p 358.10

  448. Walker MF (1954) Nova DQ Herculis (1934): an eclipsing binary with very short period. PASP 66(392):230. https://doi.org/10.1086/126703

    ADS  Article  Google Scholar 

  449. Walterbos RAM (1986) The relation between dust and gas in the andromeda galaxy. Bull Am Astron Soc 18:15

  450. Warner B (2001) Cataclysmic variables: a ’SWOT’ analysis. In: Paczynski B, Chen WP, Lemme C (eds) Small telescope astronomy on global scales, ASP conference series, vol 246. Astronomical Society of the Pacific, p 159

  451. Warner B (2003) Cataclysmic variable stars, Cambridge astrophysics series, vol 28. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511586491

    Google Scholar 

  452. Webbink RF (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. ApJ 277:355–360. https://doi.org/10.1086/161701

    ADS  Article  Google Scholar 

  453. Welch DL, MACHO Collaboration (1999a) Nova in the Small Magellanic Cloud. IAU Circ. 7121

  454. Welch DL, MACHO Collaboration (1999b) Nova in the Small Magellanic Cloud 1999 No. 4. IAU Circ. 7308

  455. Wendeln C, Chomiuk L, Finzell T, Linford JD, Strader J (2017) A radio emission analysis of classical nova V351 pup (1991). ApJ 840(2):110. https://doi.org/10.3847/1538-4357/aa6fab. arXiv:1705.02926

    ADS  Article  Google Scholar 

  456. Wenzel W, Meinunger I (1978) Note on the population type of novae. Astron Nachr 299:239. https://doi.org/10.1002/asna.19782990504

    ADS  Article  Google Scholar 

  457. Weston JHS, Sokoloski JL, Chomiuk L, Linford JD, Nelson T, Mukai K, Finzell T, Mioduszewski A, Rupen MP, Walter FM (2016a) Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1). MNRAS 460(3):2687–2697. https://doi.org/10.1093/mnras/stw1161. arXiv:1510.06751

    ADS  Article  Google Scholar 

  458. Weston JHS, Sokoloski JL, Metzger BD, Zheng Y, Chomiuk L, Krauss MI, Linford JD, Nelson T, Mioduszewski AJ, Rupen MP, Finzell T, Mukai K (2016b) Non-thermal radio emission from colliding flows in classical nova V1723 Aql. MNRAS 457(1):887–901. https://doi.org/10.1093/mnras/stv3019. arXiv:1505.05879

    ADS  Article  Google Scholar 

  459. Whelan J, Icko Iben J (1973) Binaries and supernovae of type I. ApJ 186:1007–1014. https://doi.org/10.1086/152565

    ADS  Article  Google Scholar 

  460. Wickramasinghe DT, Tout CA, Ferrario L (2014) The most magnetic stars. MNRAS 437(1):675–681. https://doi.org/10.1093/mnras/stt1910. arXiv:1310.2696

    ADS  Article  Google Scholar 

  461. Williams R (2012) Origin of the “He/N” and “Fe II” spectral classes of novae. AJ 144(4):98. https://doi.org/10.1088/0004-6256/144/4/98. arXiv:1208.0380

    ADS  Article  Google Scholar 

  462. Williams R (2016) Transient classification and novae ejecta. J Phys Conf Ser 728:042001. https://doi.org/10.1088/1742-6596/728/4/042001

    Article  Google Scholar 

  463. Williams R, Mason E, Della Valle M, Ederoclite A (2008) Transient heavy element absorption systems in novae: episodic mass ejection from the secondary star. ApJ 685(1):451–462. https://doi.org/10.1086/590056. arXiv:0805.1372

    ADS  Article  Google Scholar 

  464. Williams RE (1977) Element abundance analyses of novae. In: Kippenhahn R, Rahe J, Strohmeier W (eds) IAU Colloq. 42: the interaction of variable stars with their environment, p 242

  465. Williams RE (1985) CNO abundances in novae ejecta. In: ESO workshop on production and distribution of C, N, O elements, European Southern Observatory, Garching, ESO conference and workshop proceedings, vol 21, pp 225–232

  466. Williams RE (1992) The formation of novae spectra. AJ 104:725. https://doi.org/10.1086/116268

    ADS  Article  Google Scholar 

  467. Williams RE (1994) Extinction, ejecta masses, and radial velocities of novae. ApJ 426:279. https://doi.org/10.1086/174062

    ADS  Article  Google Scholar 

  468. Williams RE, Hamuy M, Phillips MM, Heathcote SR, Wells L, Navarrete M (1991) The evolution and classification of postoutburst novae spectra. ApJ 376:721. https://doi.org/10.1086/170319

    ADS  Article  Google Scholar 

  469. Williams RE, Phillips MM, Hamuy M (1994) The Tololo nova survey: spectra of recent novae. ApJS 90:297. https://doi.org/10.1086/191864

    ADS  Article  Google Scholar 

  470. Williams SJ, Shafter AW (2004) On the nova rate in M33. ApJ 612(2):867–876. https://doi.org/10.1086/422833

    ADS  Article  Google Scholar 

  471. Woodward CE, Starrfield S (2011) Recent observational and theoretical studies of the classical nova outburst. Can J Phys 89(4):333–343. https://doi.org/10.1139/p11-010

    ADS  Article  Google Scholar 

  472. Woodward CE, Greenhouse MA, Gehrz RD, Pendleton YJ, Joyce RR, van Buren D, Fischer J, Jennerjohn NJ, Kaminski CD (1995) The temporal evolution of the 1–5 micron spectrum of V1974 Cygni (Nova Cygni 1992). ApJ 438:921. https://doi.org/10.1086/175134

    ADS  Article  Google Scholar 

  473. Woodward CE, Gehrz RD, Jones TJ, Lawrence GF, Skrutskie MF (1997) The temporal evolution of the near-infrared light curves of V1974 Cygni (Nova Cygni 1992). ApJ 477(2):817–824. https://doi.org/10.1086/303739

    ADS  Article  Google Scholar 

  474. Woudt PA, Warner B, Pretorius ML (2004) High-speed photometry of faint cataclysmic variables– IV. V356 Aql, Aqr1, FIRST J1023+0038, \(\text{ H }{\alpha }\) 0242-2802, GI Mon, AO Oct, V972 Oph, SDSS 0155+00, SDSS 0233+00, SDSS 1240-01, SDSS 1556-00, SDSS 2050-05, FH Ser. MNRAS 351(3):1015–1025. https://doi.org/10.1111/j.1365-2966.2004.07843.x. arXiv:astro-ph/0403435

    ADS  Article