Molecular jets from low-mass young protostellar objects

Abstract

Molecular jets are seen coming from the youngest protostars in the early phase of low-mass star formation. They are detected in CO, SiO, and SO at (sub)millimeter wavelengths down to the innermost regions, where their associated protostars and accretion disks are deeply embedded and where they are launched and collimated. They are not only the fossil records of accretion history of the protostars but also are expected to play an important role in facilitating the accretion process. Studying their physical properties (e.g., mass-loss rate, velocity, rotation, radius, wiggle, molecular content, shock formation, periodical variation, magnetic field, etc) allows us to probe not only the jet launching and collimation, but also the disk accretion and evolution, and potentially binary formation and planetary formation in the disks. Here, the recent exciting results obtained with high-spatial and high-velocity resolution observations of molecular jets in comparison to those obtained in the optical jets in the later phase of star formation are reviewed. Future observations of molecular jets with a large sample at high spatial and velocity resolution with ALMA are expected to lead to a breakthrough in our understanding of jets from young stars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Agra-Amboage V, Dougados C, Cabrit S, Reunanen J (2011) Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet. Periodic bubbles and a dusty disk wind? A&A 532:A59. https://doi.org/10.1051/0004-6361/201015886

  2. Anderson JM, Li Z-Y, Krasnopolsky R, Blandford RD (2003) Locating the launching region of T Tauri winds: the case of DG Tauri. ApJ 590:L107–L110. https://doi.org/10.1086/376824

    ADS  Article  Google Scholar 

  3. Anglada G, López R, Estalella R, Masegosa J, Riera A, Raga AC (2007) Proper motions of the jets in the region of HH 30 and HL/XZ tau: evidence for a binary exciting source of the HH 30 Jet. AJ 133:2799–2814. https://doi.org/10.1086/517493

    ADS  Article  Google Scholar 

  4. Anglada G, Rodríguez LF, Carrasco-González C (2018) Radio jets from young stellar objects. A&A Rev 26:3. https://doi.org/10.1007/s00159-018-0107-z

    ADS  Article  Google Scholar 

  5. Arce HG, Mardones D, Corder SA, Garay G, Noriega-Crespo A, Raga AC (2013) ALMA observations of the HH 46/47 molecular outflow. ApJ 774:39. https://doi.org/10.1088/0004-637X/774/1/39

    ADS  Article  Google Scholar 

  6. Arce HG, Shepherd D, Gueth F, Lee C-F, Bachiller R, Rosen A, Beuther H (2007) Molecular outflows in low- and high-mass star-forming regions. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 245–260

    Google Scholar 

  7. Audard M, Ábrahám P, Dunham MM, et al. (2014) Episodic accretion in young stars. In: Beuther H, Klessen RS, Dullemond CP, Henning TK (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 387–410. https://doi.org/10.2458/azu_uapress_9780816531240-ch017

  8. Bacciotti F, Ray TP, Mundt R, Eislöffel J, Solf J (2002) Hubble space telescope/STIS spectroscopy of the optical outflow from DG Tauri: indications for rotation in the initial Jet channel. ApJ 576:222–231. https://doi.org/10.1086/341725

    ADS  Article  Google Scholar 

  9. Bachiller R, Pérez GM, Kumar MSN, Tafalla M (2001) Chemically active outflow L 1157. A&A 372:899–912. https://doi.org/10.1051/0004-6361:20010519

    ADS  Article  Google Scholar 

  10. Balbus SA, Hawley JF (2006) An exact, three-dimensional, time-dependent wave solution in local Keplerian flow. ApJ 652:1020–1027. https://doi.org/10.1086/508320

    ADS  Article  Google Scholar 

  11. Bally J (2016) Protostellar outflows. ARA&A 54:491–528. https://doi.org/10.1146/annurev-astro-081915-023341

    ADS  Article  Google Scholar 

  12. Bate MR (1998) Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. ApJ 508:L95–L98. https://doi.org/10.1086/311719

    ADS  Article  Google Scholar 

  13. Bateman G (1978) MHD instabilities. MIT Press, Cambridge

    Google Scholar 

  14. Benisty M, Perraut K, Mourard D et al (2013) Enhanced \(\text{ H }_{{\alpha }}\) activity at periastron in the young and massive spectroscopic binary HD 200775. A&A 555:A113. https://doi.org/10.1051/0004-6361/201219893

    ADS  Article  Google Scholar 

  15. Bjerkeli P, van der Wiel MHD, Harsono D, Ramsey JP, Jørgensen JK (2016) Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540:406–409. https://doi.org/10.1038/nature20600

    ADS  Article  Google Scholar 

  16. Bjerkeli P, Ramsey JP, Harsono D, Calcutt H, Kristensen LE, van der Wiel MHD, Jørgensen JK, Muller S, Persson MV (2019) Kinematics around the B335 protostar down to au scales. A&A 631:A64. https://doi.org/10.1051/0004-6361/201935948

    ADS  Article  Google Scholar 

  17. Cabrit S, Codella C, Gueth F, Nisini B, Gusdorf A, Dougados C, Bacciotti F (2007) PdBI sub-arcsecond study of the SiO microjet in HH212. Origin and collimation of class 0 jets. A&A 468:L29–L32. https://doi.org/10.1051/0004-6361:20077387

    ADS  Article  Google Scholar 

  18. Cabrit S, Codella C, Gueth F, Gusdorf A (2012) High SiO abundance in the HH212 protostellar jet. A&A 548:L2. https://doi.org/10.1051/0004-6361/201219784

    ADS  Article  Google Scholar 

  19. Caratti o Garatti A, Stecklum B, Linz H, Garcia Lopez R, Sanna A (2015) A near-infrared spectroscopic survey of massive jets towards extended green objects. A&A 573:A82. https://doi.org/10.1051/0004-6361/201423992

    ADS  Article  Google Scholar 

  20. Carrasco-González C, Rodríguez LF, Anglada G, Martí J, Torrelles JM, Osorio M (2010) A magnetized jet from a massive protostar. Science 330:1209. https://doi.org/10.1126/science.1195589

    ADS  Article  Google Scholar 

  21. Caselli P, Hartquist TW, Havnes O (1997) Grain-grain collisions and sputtering in oblique C-type shocks. A&A 322:296–301

    ADS  Google Scholar 

  22. Cazzoli G, Lattanzi V, Coriani S, Gauss J, Codella C, Ramos AA, Cernicharo J, Puzzarini C (2017) Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions. A&A 605:A20. https://doi.org/10.1051/0004-6361/201730858

  23. Cerqueira AH, de Gouveia Dal Pino EM (2001) Three-dimensional magnetohydrodynamic simulations of radiatively cooling, pulsed jets. ApJ 560:779–791. https://doi.org/10.1086/322245

    ADS  Article  Google Scholar 

  24. Ching T-C, Lai S-P, Zhang Q, Yang L, Girart JM, Rao R (2016) Helical magnetic fields in the NGC 1333 IRAS 4A protostellar outflows. ApJ 819:159. https://doi.org/10.3847/0004-637X/819/2/159

    ADS  Article  Google Scholar 

  25. Choi M, Hodapp KW, Hayashi M, Motohara K, Pak S, Pyo T-S (2006) Variability of the NGC 1333 IRAS 4A outflow: molecular hydrogen and silicon monoxide images. ApJ 646:1050–1058. https://doi.org/10.1086/505037

    ADS  Article  Google Scholar 

  26. Choi M, Tatematsu K, Kang M (2010) Kinematics of the ammonia disk around the protostar NGC 1333 IRAS 4A2. ApJ 723:L34–L37. https://doi.org/10.1088/2041-8205/723/1/L34

    ADS  Article  Google Scholar 

  27. Choi M, Kang M, Tatematsu K (2011) Rotation of the NGC 1333 IRAS 4A2 protostellar jet. ApJ 728:L34. https://doi.org/10.1088/2041-8205/728/2/L34

    ADS  Article  Google Scholar 

  28. Chrysostomou A, Bacciotti F, Nisini B, Ray TP, Eislöffel J, Davis CJ, Takami M (2008) Investigating the transport of angular momentum from young stellar objects. Do H2 jets from class I YSOs rotate? A&A 482:575–583. https://doi.org/10.1051/0004-6361:20078494

    ADS  Article  Google Scholar 

  29. Codella C, Cabrit S, Gueth F, Cesaroni R, Bacciotti F, Lefloch B, McCaughrean MJ (2007) A highly-collimated SiO jet in the HH212 protostellar outflow. A&A 462:L53–L56. https://doi.org/10.1051/0004-6361:20066800

    ADS  Article  Google Scholar 

  30. Codella C, Maury AJ, Gueth F, Maret S, Belloche A, Cabrit S, André P (2014) First results from the CALYPSO IRAM-PdBI survey. III. Monopolar jets driven by a proto-binary system in NGC 1333-IRAS2A. A&A 563:L3. https://doi.org/10.1051/0004-6361/201323024

  31. Coffey D, Bacciotti F, Ray TP, Eislöffel J, Woitas J (2007) Further indications of jet rotation in new ultraviolet and optical hubble space telescope STIS spectra. ApJ 663:350–364. https://doi.org/10.1086/518100

    ADS  Article  Google Scholar 

  32. Coffey D, Rigliaco E, Bacciotti F, Ray TP, Eislöffel J (2012) Jet rotation investigated in the near-ultraviolet with the hubble space telescope imaging spectrograph. ApJ 749:139. https://doi.org/10.1088/0004-637X/749/2/139

    ADS  Article  Google Scholar 

  33. Eislöffel J, Froebrich D, Stanke T, McCaughrean MJ (2003) Molecular outflows in the young open cluster IC 348. ApJ 595:259–265. https://doi.org/10.1086/377216

    ADS  Article  Google Scholar 

  34. Ellerbroek LE, Podio L, Kaper L, Sana H, Huppenkothen D, de Koter A, Monaco L (2013) The outflow history of two Herbig–Haro jets in RCW 36: HH 1042 and HH 1043. A&A 551:A5. https://doi.org/10.1051/0004-6361/201220635

    ADS  Article  Google Scholar 

  35. Evans NJ, Dunham MM, Jørgensen JK et al (2009) The spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. ApJS 181:321–350. https://doi.org/10.1088/0067-0049/181/2/321

    ADS  Article  Google Scholar 

  36. Fendt C, Zinnecker H (1998) Possible bending mechanisms of protostellar jets. A&A 334:750–755

    ADS  Google Scholar 

  37. Frank A, Ray TP, Cabrit S et al (2014) Jets and outflows from star to cloud: observations confront theory. In: Beuther H, Klessen RS, Dullemond CP, Henning TK (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 451–474. https://doi.org/10.2458/azu_uapress_9780816531240-ch020

  38. Froebrich D (2005) Which are the youngest protostars? Determining properties of confirmed and candidate Class 0 sources by broadband photometry. ApJS 156:169–177. https://doi.org/10.1086/426441

    ADS  Article  Google Scholar 

  39. Glassgold AE, Mamon GA, Huggins PJ (1991) The formation of molecules in protostellar winds. ApJ 373:254. https://doi.org/10.1086/170045

    ADS  Article  Google Scholar 

  40. Goddi C, Surcis G, Moscadelli L, Imai H, Vlemmings WHT, van Langevelde HJ, Sanna A (2017) Measuring magnetic fields from water masers in the synchrotron protostellar jet in W3(\(\text{ H }_{{2}}\)O). A&A 597:A43. https://doi.org/10.1051/0004-6361/201629321

    ADS  Article  Google Scholar 

  41. Goldreich P, Kylafis ND (1981) On mapping the magnetic field direction in molecular clouds by polarization measurements. ApJ 243:L75–L78. https://doi.org/10.1086/183446

    ADS  Article  Google Scholar 

  42. Goldreich P, Kylafis ND (1982) Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes. ApJ 253:606–621. https://doi.org/10.1086/159663

    ADS  Article  Google Scholar 

  43. Green JD, Evans NJ, Jørgensen JK et al (2013) Embedded protostars in the dust, ice, and gas in time (DIGIT) Herschel key program: continuum SEDs, and an inventory of characteristic far-infrared lines from PACS spectroscopy. ApJ 770:123. https://doi.org/10.1088/0004-637X/770/2/123

    ADS  Article  Google Scholar 

  44. Greenhill LJ, Goddi C, Chandler CJ, Matthews LD, Humphreys EML (2013) Dynamical evidence for a magnetocentrifugal wind from a \(20\, M_\odot\) binary Young Stellar Object. ApJ 770:L32. https://doi.org/10.1088/2041-8205/770/2/L32

    ADS  Article  Google Scholar 

  45. Gueth F, Guilloteau S, Bachiller R (1996) A precessing jet in the L1157 molecular outflow. A&A 307:891–897

    ADS  Google Scholar 

  46. Gueth F, Guilloteau S, Bachiller R (1998) SiO shocks in the L1157 molecular outflow. A&A 333:287–297

    ADS  Google Scholar 

  47. Gueth F, Guilloteau S (1999) The jet-driven molecular outflow of HH 211. A&A 343:571–584

    ADS  Google Scholar 

  48. Gusdorf A, Pineau Des Forêts G, Cabrit S, Flower DR (2008) SiO line emission from interstellar jets and outflows: silicon-containing mantles and non-stationary shock waves. A&A 490:695–706. https://doi.org/10.1051/0004-6361:200810443

    ADS  Article  Google Scholar 

  49. Hartigan P, Heathcote S, Morse JA, Reipurth B, Bally J (2005) Proper motions of the HH 47 jet observed with the Hubble space telescope. AJ 130:2197–2205. https://doi.org/10.1086/491673

    ADS  Article  Google Scholar 

  50. Hartigan P, Frank A, Foster JM, Wilde BH, Douglas M, Rosen PA, Coker RF, Blue BE, Hansen JF (2011) Fluid dynamics of stellar jets in real time: third Epoch Hubble space telescope images of HH 1, HH 34, and HH 47. ApJ 736:29. https://doi.org/10.1088/0004-637X/736/1/29

    ADS  Article  Google Scholar 

  51. Hirano N, Liu S-Y, Shang H, Ho PTP, Huang H-C, Kuan Y-J, McCaughrean MJ, Zhang Q (2006) SiO J = 5–4 in the HH 211 protostellar jet imaged with the submillimeter array. ApJ 636:L141–L144. https://doi.org/10.1086/500201

    ADS  Article  Google Scholar 

  52. Hirano N, Ho PPT, Liu S-Y, Shang H, Lee C-F, Bourke TL (2010) Extreme active molecular jets in L1448C. ApJ 717:58–73. https://doi.org/10.1088/0004-637X/717/1/58

    ADS  Article  Google Scholar 

  53. Hirano S, Machida MN (2019) Origin of misalignments: protostellar jet, outflow, circumstellar disc, and magnetic field. MNRAS 485:4667–4674. https://doi.org/10.1093/mnras/stz740

    ADS  Article  Google Scholar 

  54. Hirota T, Machida MN, Matsushita Y, Motogi K, Matsumoto N, Kim MK, Burns RA, Honma M (2017) Disk-driven rotating bipolar outflow in Orion Source I. Nat Astron 1:0146. https://doi.org/10.1038/s41550-017-0146

    ADS  Article  Google Scholar 

  55. Jhan K-S, Lee C-F (2016) A multi-epoch SMA study of the HH 211 protostellar jet: jet motion and knot formation. ApJ 816:32. https://doi.org/10.3847/0004-637X/816/1/32

    ADS  Article  Google Scholar 

  56. Jiménez-Serra I, Martín-Pintado J, Rodríguez-Franco A, Martín S (2005) Grain evolution across the shocks in the L1448-mm Outflow. ApJ 627:L121–L124. https://doi.org/10.1086/432467

    ADS  Article  Google Scholar 

  57. Kennicutt RC, Evans NJ (2012) Star formation in the Milky Way and nearby galaxies. ARA&A 50:531–608. https://doi.org/10.1146/annurev-astro-081811-125610

    ADS  Article  Google Scholar 

  58. Königl A, Pudritz RE (2000) Disk winds and the accretion-outflow connection. In: Mannings V, Boss A, Russell S (eds) Protostars and Planets IV. University of Arizona Press, Tucson, pp 759–787

    Google Scholar 

  59. Kwon W, Fernández-López M, Stephens IW, Looney LW (2015) Kinematics of the envelope and two bipolar jets in the Class 0 protostellar system L1157. ApJ 814:43. https://doi.org/10.1088/0004-637X/814/1/43

    ADS  Article  Google Scholar 

  60. Larson RB (1969) Numerical calculations of the dynamics of collapsing proto-star. MNRAS 145:271. https://doi.org/10.1093/mnras/145.3.271

    ADS  Article  Google Scholar 

  61. Launhardt R, Pavlyuchenkov Y, Gueth F, Chen X, Dutrey A, Guilloteau S, Henning T, Piétu V, Schreyer K, Semenov D (2009) Rotating molecular outflows: the young T Tauri star in CB 26. A&A 494:147–156. https://doi.org/10.1051/0004-6361:200810835

    ADS  Article  Google Scholar 

  62. Lee C-F, Mundy LG, Reipurth B, Ostriker EC, Stone JM (2000) CO outflows from young stars: confronting the jet and wind models. ApJ 542:925–945. https://doi.org/10.1086/317056

    ADS  Article  Google Scholar 

  63. Lee C-F, Stone JM, Ostriker EC, Mundy LG (2001) Hydrodynamic simulations of jet- and wind-driven protostellar outflows. ApJ 557:429–442. https://doi.org/10.1086/321648

    ADS  Article  Google Scholar 

  64. Lee C-F, Ho PTP (2005) Outflow interaction in the late stages of star formation. ApJ 624:841–852. https://doi.org/10.1086/429535

    ADS  Article  Google Scholar 

  65. Lee C-F, Ho PTP, Hirano N, Beuther H, Bourke TL, Shang H, Zhang Q (2007) HH 212: submillimeter array observations of a remarkable protostellar jet. ApJ 659:499–511. https://doi.org/10.1086/512540

    ADS  Article  Google Scholar 

  66. Lee C-F, Ho PTP, Bourke TL, Hirano N, Shang H, Zhang Q (2008) SiO shocks of the protostellar jet HH 212: a search for jet rotation. ApJ 685:1026–1032. https://doi.org/10.1086/591177

    ADS  Article  Google Scholar 

  67. Lee C-F, Hirano N, Palau A, Ho PTP, Bourke TL, Zhang Q, Shang H (2009) Rotation and outflow motions in the very low-mass Class 0 protostellar system HH 211 at subarcsecond resolution. ApJ 699:1584–1594. https://doi.org/10.1088/0004-637X/699/2/1584

    ADS  Article  Google Scholar 

  68. Lee C-F, Hasegawa TI, Hirano N, Palau A, Shang H, Ho PTP, Zhang Q (2010) The reflection-symmetric wiggle of the young protostellar Jet HH 211. ApJ 713:731–737. https://doi.org/10.1088/0004-637X/713/2/731

    ADS  Article  Google Scholar 

  69. Lee C-F (2010) A change of rotation profile in the envelope in the HH 111 protostellar system: a transition to a disk? ApJ 725:712–720. https://doi.org/10.1088/0004-637X/725/1/712

    ADS  Article  Google Scholar 

  70. Lee C-F, Hirano N, Zhang Q, Shang H, Ho PTP, Mizuno Y (2015) Jet motion, internal working surfaces, and nested shells in the protostellar system HH 212. ApJ 805:186. https://doi.org/10.1088/0004-637X/805/2/186

    ADS  Article  Google Scholar 

  71. Lee C-F, Hwang H-C, Li Z-Y (2016) Angular momentum loss in the envelope-disk transition region of the HH 111 protostellar system: evidence for magnetic braking? ApJ 826:213. https://doi.org/10.3847/0004-637X/826/2/213

    ADS  Article  Google Scholar 

  72. Lee C-F, Li Z-Y, Ho PTP, Hirano N, Zhang Q, Shang H (2017a) First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci Adv 3:e1602935. https://doi.org/10.1126/sciadv.1602935

    ADS  Article  Google Scholar 

  73. Lee C-F, Li Z-Y, Ho PTP, Hirano N, Zhang Q, Shang H (2017b) Formation and atmosphere of complex organic molecules of the HH 212 protostellar disk. ApJ 843:27. https://doi.org/10.3847/1538-4357/aa7757

    ADS  Article  Google Scholar 

  74. Lee C-F, Ho PTP, Li Z-Y, Hirano N, Zhang Q, Shang H (2017c) A rotating protostellar jet launched from the innermost disk of HH 212. Nat Astron 1:0152. https://doi.org/10.1038/s41550-017-0152

    ADS  Article  Google Scholar 

  75. Lee C-F, Li Z-Y, Codella C, Ho PTP, Podio L, Hirano N, Shang H, Turner NJ, Zhang Q (2018a) A 100 au wide bipolar rotating shell emanating from the HH 212 protostellar disk: a disk wind? ApJ 856:14. https://doi.org/10.3847/1538-4357/aaae6d

    ADS  Article  Google Scholar 

  76. Lee C-F, Li Z-Y, Hirano N, Shang H, Ho PTP, Zhang Q (2018b) ALMA observations of the very young Class 0 protostellar system HH211-mms: A 30 au dusty disk with a disk wind traced by SO? ApJ 863:94. https://doi.org/10.3847/1538-4357/aad2da

    ADS  Article  Google Scholar 

  77. Lee C-F, Hwang H-C, Ching T-C, Hirano N, Lai S-P, Rao R, Ho PTP (2018c) Unveiling a magnetized jet from a low-mass protostar. Nat Commun 9:4636. https://doi.org/10.1038/s41467-018-07143-8

    ADS  Article  Google Scholar 

  78. Lee C-F, Kwon W, Jhan K-S, Hirano N, Hwang H-C, Lai S-P, Ching T-C, Rao R, Ho PTP (2019a) A pseudodisk threaded with a toroidal and pinched poloidal magnetic field morphology in the HH 211 protostellar system. ApJ 879:101. https://doi.org/10.3847/1538-4357/ab2458

    ADS  Article  Google Scholar 

  79. Lee C-F, Li Z-Y, Turner NJ (2019b) Spiral structures in an embedded protostellar disk driven by envelope accretion. Nat Astron. https://doi.org/10.1038/s41550-019-0905-x

  80. Louvet F, Dougados C, Cabrit S, Mardones D, Ménard F, Tabone B, Pinte C, Dent WRF (2018) The HH30 edge-on T Tauri star. A rotating and precessing monopolar outflow scrutinized by ALMA. A&A 618:A120. https://doi.org/10.1051/0004-6361/201731733

  81. Machida MN, Inutsuka S, Matsumoto T (2008) High- and low-velocity magnetized outflows in the star formation process in a gravitationally collapsing cloud. ApJ 676:1088–1108. https://doi.org/10.1086/528364

    ADS  Article  Google Scholar 

  82. Marti J, Rodriguez LF, Reipurth B (1993) HH 80–81: a highly collimated Herbig–Haro complex powered by a massive Young Star. ApJ 416:208. https://doi.org/10.1086/173227

    ADS  Article  Google Scholar 

  83. Masciadri E, Raga AC (2002) Herbig–Haro jets from orbiting sources. ApJ 568:733–742. https://doi.org/10.1086/338767

    ADS  Article  Google Scholar 

  84. Masunaga H, Inutsuka S (2000) A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. ApJ 531:350–365. https://doi.org/10.1086/308439

    ADS  Article  Google Scholar 

  85. Maury AJ, André P, Testi L et al (2019) Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare. A&A 621:A76. https://doi.org/10.1051/0004-6361/201833537

    ADS  Article  Google Scholar 

  86. McCaughrean MJ, Rayner JT, Zinnecker H (1994) Discovery of a molecular hydrogen Jet near IC 348. ApJ 436:L189. https://doi.org/10.1086/187664

    ADS  Article  Google Scholar 

  87. McCaughrean M, Zinnecker H, Andersen M, Meeus G, Lodieu N (2002) Standing on the shoulder of a giant: ISAAC, Antu, and star formation. Messenger 109:28–36

    ADS  Google Scholar 

  88. McKee CF, Ostriker EC (2007) Theory of star formation. ARA&A 45:565–687. https://doi.org/10.1146/annurev.astro.45.051806.110602

    ADS  Article  Google Scholar 

  89. Millan-Gabet R, Malbet F, Akeson R, Leinert C, Monnier J, Waters R (2007) The circumstellar environments of young stars at AU scales. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 539–554

    Google Scholar 

  90. Mizuno Y, Hardee PE, Nishikawa K-I (2014) Spatial growth of the current-driven instability in relativistic jets. ApJ 784:167. https://doi.org/10.1088/0004-637X/784/2/167

    ADS  Article  Google Scholar 

  91. Moraghan A, Lee C-F, Huang P-S, Vaidya B (2016) A study of the wiggle morphology of HH 211 through numerical simulations. MNRAS 460:1829–1838. https://doi.org/10.1093/mnras/stw1089

    ADS  Article  Google Scholar 

  92. Noriega-Crespo A, Raga AC, Lora V, Stapelfeldt KR, Carey SJ (2011) The precession of the Herbig–Haro 111 Flow in the infrared. ApJ 732:L16. https://doi.org/10.1088/2041-8205/732/1/L16

    ADS  Article  Google Scholar 

  93. Ostriker EC, Lee C-F, Stone JM, Mundy LG (2001) A ballistic bow shock model for jet-driven protostellar outflow shells. ApJ 557:443–450. https://doi.org/10.1086/321649

    ADS  Article  Google Scholar 

  94. Ouyed R, Clarke DA, Pudritz RE (2003) Three-dimensional simulations of jets from keplerian disks: self-regulatory stability. ApJ 582:292–319. https://doi.org/10.1086/344507

    ADS  Article  Google Scholar 

  95. Palau A, Ho PTP, Zhang Q, Estalella R, Hirano N, Shang H, Lee C-F, Bourke TL, Beuther H, Kuan Y-J (2006) Submillimeter emission from the hot molecular jet HH 211. ApJ 636:L137–L140. https://doi.org/10.1086/500242

    ADS  Article  Google Scholar 

  96. Pérez LM, Carpenter JM, Andrews SM et al (2016) Spiral density waves in a young protoplanetary disk. Science 353:1519–1521. https://doi.org/10.1126/science.aaf8296

    ADS  MathSciNet  Article  MATH  Google Scholar 

  97. Plunkett AL, Arce HG, Mardones D, van Dokkum P, Dunham MM, Fernández-López M, Gallardo J, Corder SA (2015) Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature 527:70–73. https://doi.org/10.1038/nature15702

    ADS  Article  Google Scholar 

  98. Podio L, Codella C, Gueth F et al (2015) The jet and the disk of the HH 212 low-mass protostar imaged by ALMA: SO and \(\text{ SO }_{{2}}\) emission. A&A 581:A85. https://doi.org/10.1051/0004-6361/201525778

    ADS  Article  Google Scholar 

  99. Podio L, Codella C, Gueth F et al (2016) First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey. A&A 593:L4. https://doi.org/10.1051/0004-6361/201628876

    ADS  Article  Google Scholar 

  100. Podio L (2017) Protostellar Jets: the revolution with ALMA. Workshop sull’Astronomia Millimetrica in Italia. https://doi.org/10.5281/zenodo.1117656

  101. Pudritz RE, Ouyed R, Fendt C, Brandenburg A (2007) Disk winds, jets, and outflows: theoretical and computational foundations. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 277–294

  102. Pudritz RE, Hardcastle MJ, Gabuzda DC (2012) Magnetic fields in astrophysical jets: from launch to termination. Space Sci Rev 169:27–72. https://doi.org/10.1007/s11214-012-9895-z

    ADS  Article  Google Scholar 

  103. Pudritz RE, Ray TP (2019) The role of magnetic fields in protostellar outflows and star formation. Front Astron Space Sci 6:54. https://doi.org/10.3389/fspas.2019.00054

    ADS  Article  Google Scholar 

  104. Raga AC, Canto J, Binette L, Calvet N (1990) Stellar jets with intrinsically variable sources. ApJ 364:601. https://doi.org/10.1086/169443

    ADS  Article  Google Scholar 

  105. Raga AC, Canto J, Biro S (1993) Ballistic stellar jets from sources with a time-dependent ejection direction. MNRAS 260:163–170. https://doi.org/10.1093/mnras/260.1.163

    ADS  Article  Google Scholar 

  106. Raga AC, Velázquez PF, Cantó J, Masciadri E (2002) The time-dependent ejection velocity histories of HH 34 and HH 111. A&A 395:647–656. https://doi.org/10.1051/0004-6361:20021180

    ADS  Article  Google Scholar 

  107. Raga AC, Esquivel A, Velázquez PF, Cantó J, Haro-Corzo S, Riera A, Rodríguez-González A (2009) Mirror and point symmetries in a ballistic jet from a binary system. ApJ 707:L6–L11. https://doi.org/10.1088/0004-637X/707/1/L6

    ADS  Article  Google Scholar 

  108. Ray T, Dougados C, Bacciotti F, Eislöffel J, Chrysostomou A (2007) Toward resolving the outflow engine: an observational perspective. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 231–244

    Google Scholar 

  109. Reipurth B (2000) Disintegrating multiple systems in early stellar evolution. AJ 120:3177–3191. https://doi.org/10.1086/316865

    ADS  Article  Google Scholar 

  110. Reipurth B, Bally J (2001) Herbig–Haro flows: probes of early stellar evolution. ARA&A 39:403–455. https://doi.org/10.1146/annurev.astro.39.1.403

    ADS  Article  Google Scholar 

  111. Reipurth B, Rodríguez LF, Anglada G, Bally J (2002) Radio continuum maps of deeply embedded protostars: thermal jets, multiplicity, and variability. AJ 124:1045–1053. https://doi.org/10.1086/341172

    ADS  Article  Google Scholar 

  112. Reipurth B, Rodríguez LF, Anglada G, Bally J (2004) Radio continuum jets from protostellar objects. AJ 127:1736–1746. https://doi.org/10.1086/381062

    ADS  Article  Google Scholar 

  113. Reipurth B, Davis CJ, Bally J, Raga AC, Bowler BP, Geballe TR, Aspin C, Chiang H-F (2019) The giant Herbig–Haro flow HH 212 and associated star formation. AJ 158:107. https://doi.org/10.3847/1538-3881/ab2d25

    ADS  Article  Google Scholar 

  114. Reiter M, Kiminki MM, Smith N, Bally J (2017) Proper motions of collimated jets from intermediate-mass protostars in the Carina Nebula. MNRAS 470:4671–4697. https://doi.org/10.1093/mnras/stx1489

    ADS  Article  Google Scholar 

  115. Riaz B, Briceño C, Whelan ET, Heathcote S (2017) First large-scale Herbig–Haro jet driven by a Proto-brown Dwarf. ApJ 844:47. https://doi.org/10.3847/1538-4357/aa70e8

    ADS  Article  Google Scholar 

  116. Rodríguez LF (1997) Thermal radio jets. Herbig Haro Flows Birth Stars 182:83–92

    ADS  Article  Google Scholar 

  117. Rodríguez LF, Zapata LA, Palau A (2014) JVLA observations of IC 348 SW: compact radio sources and their nature. ApJ 790:80. https://doi.org/10.1088/0004-637X/790/1/80

    ADS  Article  Google Scholar 

  118. Rodríguez-Kamenetzky A, Carrasco-González C, Araudo A, Romero GE, Torrelles JM, Rodríguez LF, Anglada G, Martí J, Perucho M, Valotto C (2017) The highly collimated radio jet of HH 80–81: structure and nonthermal emission. ApJ 851:16. https://doi.org/10.3847/1538-4357/aa9895

    ADS  Article  Google Scholar 

  119. Santiago-García J, Tafalla M, Johnstone D, Bachiller R (2009) Shells, jets, and internal working surfaces in the molecular outflow from IRAS 04166+2706. A&A 495:169–181. https://doi.org/10.1051/0004-6361:200810739

    ADS  Article  Google Scholar 

  120. Schilke P, Walmsley CM, Pineau des Forets G, Flower DR (1997) SiO production in interstellar shocks. A&A 321:293–304

    ADS  Google Scholar 

  121. Shang H, Allen A, Li Z-Y, Liu C-F, Chou M-Y, Anderson J (2006) A unified model for bipolar outflows from young stars. ApJ 649:845–855. https://doi.org/10.1086/506513

    ADS  Article  Google Scholar 

  122. Shu FH, Najita J, Ostriker EC, Shang H (1995) Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. ApJ 455:L155. https://doi.org/10.1086/309838

    ADS  Article  Google Scholar 

  123. Shu FH, Najita JR, Shang H, Li Z-Y (2000) X-Winds theory and observations. In: Mannings V, Boss A, Russell S (eds) Protostars and Planets IV. University of Arizona Press, Tucson, pp 789–814

    Google Scholar 

  124. Simon M, Dutrey A, Guilloteau S (2000) Dynamical masses of T Tauri stars and calibration of pre-main-sequence evolution. ApJ 545:1034–1043. https://doi.org/10.1086/317838

    ADS  Article  Google Scholar 

  125. Stahler SW (1988) Deuterium and the stellar birthline. ApJ 332:804. https://doi.org/10.1086/166694

    ADS  Article  Google Scholar 

  126. Stone JM, Norman ML (1993) Numerical simulations of protostellar jets with nonequilibrium cooling. II. Models of pulsed jets. ApJ 413:210. https://doi.org/10.1086/172989

    ADS  Article  Google Scholar 

  127. Suttner G, Smith MD, Yorke HW, Zinnecker H (1997) Multi-dimensional numerical simulations of molecular jets. A&A 318:595–607

    ADS  Google Scholar 

  128. Tabone B, Cabrit S, Bianchi E, Ferreira J, Pineau des Forêts G, Codella C, Gusdorf A, Gueth F, Podio L, Chapillon E (2017) ALMA discovery of a rotating SO/\(\text{ SO }_{{2}}\) flow in HH212. A possible MHD disk wind? A&A 607:L6. https://doi.org/10.1051/0004-6361/201731691

  129. Tafalla M, Su Y-N, Shang H, Johnstone D, Zhang Q, Santiago-García J, Lee C-F, Hirano N, Wang L-Y (2017) Anatomy of the internal bow shocks in the IRAS 04166+2706 protostellar jet. A&A 597:A119. https://doi.org/10.1051/0004-6361/201629493

    ADS  Article  Google Scholar 

  130. Takahashi S, Machida MN, Tomisaka K, Ho PTP, Fomalont EB, Nakanishi K, Girart JM (2019) ALMA high angular resolution polarization study: an extremely young Class 0 source, OMC-3/MMS 6. ApJ 872:70. https://doi.org/10.3847/1538-4357/aaf6ed

    ADS  Article  Google Scholar 

  131. Takami M, Karr JL, Nisini B, Ray TP (2011) A detailed study of Spitzer-IRAC Emission in Herbig-Haro objects. II. Interaction between ejecta and ambient gas. ApJ 743:193. https://doi.org/10.1088/0004-637X/743/2/193

    ADS  Article  Google Scholar 

  132. Takami M, Fu G, Liu HB et al (2018) Near-infrared high-resolution imaging polarimetry of FU Ori-type objects: toward a unified scheme for low-mass protostellar evolution. ApJ 864:20. https://doi.org/10.3847/1538-4357/aad2e1

    ADS  Article  Google Scholar 

  133. Terquem C, Eislöffel J, Papaloizou JCB, Nelson RP (1999) Precession of collimated outflows from young stellar objects. ApJ 512:L131–L134. https://doi.org/10.1086/311880

    ADS  Article  Google Scholar 

  134. Tobin JJ, Looney LW, Li Z-Y et al (2016) The VLA nascent disk and multiplicity survey of perseus protostars (VANDAM). II. Multiplicity of protostars in the perseus molecular cloud. ApJ 818:73. https://doi.org/10.3847/0004-637X/818/1/73

    ADS  Article  Google Scholar 

  135. Tomida K, Machida MN, Hosokawa T, Sakurai Y, Lin CH (2017) Grand-design spiral arms in a young forming circumstellar disk. ApJ 835:L11. https://doi.org/10.3847/2041-8213/835/1/L11

    ADS  Article  Google Scholar 

  136. Vorobyov EI, Basu S (2005) The origin of episodic accretion bursts in the early stages of star formation. ApJ 633:L137–L140. https://doi.org/10.1086/498303

    ADS  Article  Google Scholar 

  137. Whelan ET, Ray TP, Bacciotti F, Natta A, Testi L, Randich S (2005) A resolved outflow of matter from a brown dwarf. Nature 435:652–654. https://doi.org/10.1038/nature03598

    ADS  Article  Google Scholar 

  138. Wilner DJ, Reid MJ, Menten KM (1999) The synchrotron jet from the \(\text{ H }_{{2}}\)O maser source in W3(OH). ApJ 513:775–779. https://doi.org/10.1086/306907

    ADS  Article  Google Scholar 

  139. Woitas J, Ray TP, Bacciotti F, Davis CJ, Eislöffel J (2002) Hubble space telescope space telescope imaging spectrograph observations of the bipolar jet from RW Aurigae: tracing outflow asymmetries close to the source. ApJ 580:336–342. https://doi.org/10.1086/343124

    ADS  Article  Google Scholar 

  140. Yen H-W, Takakuwa S, Ohashi N (2010) High-velocity jets and slowly rotating envelope in B335. ApJ 710:1786–1799. https://doi.org/10.1088/0004-637X/710/2/1786

    ADS  Article  Google Scholar 

  141. Yen H-W, Koch PM, Takakuwa S, Krasnopolsky R, Ohashi N, Aso Y (2017) Signs of early-stage disk growth revealed with ALMA. ApJ 834:178. https://doi.org/10.3847/1538-4357/834/2/178

    ADS  Article  Google Scholar 

  142. Zhang Y, Higuchi AE, Sakai N, Oya Y, López-Sepulcre A, Imai M, Sakai T, Watanabe Y, Ceccarelli C, Lefloch B, Yamamoto S (2018) Rotation in the NGC 1333 IRAS 4C Outflow. Astrophys J 864:76. https://doi.org/10.3847/1538-4357/aad7ba

    ADS  Article  Google Scholar 

  143. Zapata LA, Ho PTP, Rodríguez LF, O’Dell CR, Zhang Q, Muench A (2006) Silicon monoxide observations reveal a cluster of hidden compact outflows in the OMC 1 south region. ApJ 653:398–408. https://doi.org/10.1086/508319

    ADS  Article  Google Scholar 

  144. Zapata LA, Schmid-Burgk J, Muders D, Schilke P, Menten K, Guesten R (2010) A rotating molecular jet in Orion. A&A 510:A2. https://doi.org/10.1051/0004-6361/200810245

    ADS  Article  Google Scholar 

  145. Zinnecker H, McCaughrean MJ, Rayner JT (1998) A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394:862–865. https://doi.org/10.1038/29716

    ADS  Article  Google Scholar 

Download references

Acknowledgements

C.-F.L. acknowledges grants from the Ministry of Science and Technology of Taiwan (MoST 107-2119-M-001-040-MY3) and the Academia Sinica (Investigator Award). I thank the referee Bo Reipurth for carefully reading my manuscript and for his useful comments and suggestions. I also thank Anthony Moraghan for his helpful suggestions on English grammar.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chin-Fei Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, C. Molecular jets from low-mass young protostellar objects. Astron Astrophys Rev 28, 1 (2020). https://doi.org/10.1007/s00159-020-0123-7

Download citation

Keywords

  • Stars: formation
  • Stars: protostars
  • ISM: jets and outflows
  • ISM: Herbig–Haro objects
  • ISM: magnetic fields
  • Accretion, accretion disks