Abstract
Molecular jets are seen coming from the youngest protostars in the early phase of low-mass star formation. They are detected in CO, SiO, and SO at (sub)millimeter wavelengths down to the innermost regions, where their associated protostars and accretion disks are deeply embedded and where they are launched and collimated. They are not only the fossil records of accretion history of the protostars but also are expected to play an important role in facilitating the accretion process. Studying their physical properties (e.g., mass-loss rate, velocity, rotation, radius, wiggle, molecular content, shock formation, periodical variation, magnetic field, etc) allows us to probe not only the jet launching and collimation, but also the disk accretion and evolution, and potentially binary formation and planetary formation in the disks. Here, the recent exciting results obtained with high-spatial and high-velocity resolution observations of molecular jets in comparison to those obtained in the optical jets in the later phase of star formation are reviewed. Future observations of molecular jets with a large sample at high spatial and velocity resolution with ALMA are expected to lead to a breakthrough in our understanding of jets from young stars.
Similar content being viewed by others
References
Agra-Amboage V, Dougados C, Cabrit S, Reunanen J (2011) Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet. Periodic bubbles and a dusty disk wind? A&A 532:A59. https://doi.org/10.1051/0004-6361/201015886
Anderson JM, Li Z-Y, Krasnopolsky R, Blandford RD (2003) Locating the launching region of T Tauri winds: the case of DG Tauri. ApJ 590:L107–L110. https://doi.org/10.1086/376824
Anglada G, López R, Estalella R, Masegosa J, Riera A, Raga AC (2007) Proper motions of the jets in the region of HH 30 and HL/XZ tau: evidence for a binary exciting source of the HH 30 Jet. AJ 133:2799–2814. https://doi.org/10.1086/517493
Anglada G, Rodríguez LF, Carrasco-González C (2018) Radio jets from young stellar objects. A&A Rev 26:3. https://doi.org/10.1007/s00159-018-0107-z
Arce HG, Mardones D, Corder SA, Garay G, Noriega-Crespo A, Raga AC (2013) ALMA observations of the HH 46/47 molecular outflow. ApJ 774:39. https://doi.org/10.1088/0004-637X/774/1/39
Arce HG, Shepherd D, Gueth F, Lee C-F, Bachiller R, Rosen A, Beuther H (2007) Molecular outflows in low- and high-mass star-forming regions. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 245–260
Audard M, Ábrahám P, Dunham MM, et al. (2014) Episodic accretion in young stars. In: Beuther H, Klessen RS, Dullemond CP, Henning TK (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 387–410. https://doi.org/10.2458/azu_uapress_9780816531240-ch017
Bacciotti F, Ray TP, Mundt R, Eislöffel J, Solf J (2002) Hubble space telescope/STIS spectroscopy of the optical outflow from DG Tauri: indications for rotation in the initial Jet channel. ApJ 576:222–231. https://doi.org/10.1086/341725
Bachiller R, Pérez GM, Kumar MSN, Tafalla M (2001) Chemically active outflow L 1157. A&A 372:899–912. https://doi.org/10.1051/0004-6361:20010519
Balbus SA, Hawley JF (2006) An exact, three-dimensional, time-dependent wave solution in local Keplerian flow. ApJ 652:1020–1027. https://doi.org/10.1086/508320
Bally J (2016) Protostellar outflows. ARA&A 54:491–528. https://doi.org/10.1146/annurev-astro-081915-023341
Bate MR (1998) Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. ApJ 508:L95–L98. https://doi.org/10.1086/311719
Bateman G (1978) MHD instabilities. MIT Press, Cambridge
Benisty M, Perraut K, Mourard D et al (2013) Enhanced \(\text{ H }_{{\alpha }}\) activity at periastron in the young and massive spectroscopic binary HD 200775. A&A 555:A113. https://doi.org/10.1051/0004-6361/201219893
Bjerkeli P, van der Wiel MHD, Harsono D, Ramsey JP, Jørgensen JK (2016) Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540:406–409. https://doi.org/10.1038/nature20600
Bjerkeli P, Ramsey JP, Harsono D, Calcutt H, Kristensen LE, van der Wiel MHD, Jørgensen JK, Muller S, Persson MV (2019) Kinematics around the B335 protostar down to au scales. A&A 631:A64. https://doi.org/10.1051/0004-6361/201935948
Cabrit S, Codella C, Gueth F, Nisini B, Gusdorf A, Dougados C, Bacciotti F (2007) PdBI sub-arcsecond study of the SiO microjet in HH212. Origin and collimation of class 0 jets. A&A 468:L29–L32. https://doi.org/10.1051/0004-6361:20077387
Cabrit S, Codella C, Gueth F, Gusdorf A (2012) High SiO abundance in the HH212 protostellar jet. A&A 548:L2. https://doi.org/10.1051/0004-6361/201219784
Caratti o Garatti A, Stecklum B, Linz H, Garcia Lopez R, Sanna A (2015) A near-infrared spectroscopic survey of massive jets towards extended green objects. A&A 573:A82. https://doi.org/10.1051/0004-6361/201423992
Carrasco-González C, Rodríguez LF, Anglada G, Martí J, Torrelles JM, Osorio M (2010) A magnetized jet from a massive protostar. Science 330:1209. https://doi.org/10.1126/science.1195589
Caselli P, Hartquist TW, Havnes O (1997) Grain-grain collisions and sputtering in oblique C-type shocks. A&A 322:296–301
Cazzoli G, Lattanzi V, Coriani S, Gauss J, Codella C, Ramos AA, Cernicharo J, Puzzarini C (2017) Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions. A&A 605:A20. https://doi.org/10.1051/0004-6361/201730858
Cerqueira AH, de Gouveia Dal Pino EM (2001) Three-dimensional magnetohydrodynamic simulations of radiatively cooling, pulsed jets. ApJ 560:779–791. https://doi.org/10.1086/322245
Ching T-C, Lai S-P, Zhang Q, Yang L, Girart JM, Rao R (2016) Helical magnetic fields in the NGC 1333 IRAS 4A protostellar outflows. ApJ 819:159. https://doi.org/10.3847/0004-637X/819/2/159
Choi M, Hodapp KW, Hayashi M, Motohara K, Pak S, Pyo T-S (2006) Variability of the NGC 1333 IRAS 4A outflow: molecular hydrogen and silicon monoxide images. ApJ 646:1050–1058. https://doi.org/10.1086/505037
Choi M, Tatematsu K, Kang M (2010) Kinematics of the ammonia disk around the protostar NGC 1333 IRAS 4A2. ApJ 723:L34–L37. https://doi.org/10.1088/2041-8205/723/1/L34
Choi M, Kang M, Tatematsu K (2011) Rotation of the NGC 1333 IRAS 4A2 protostellar jet. ApJ 728:L34. https://doi.org/10.1088/2041-8205/728/2/L34
Chrysostomou A, Bacciotti F, Nisini B, Ray TP, Eislöffel J, Davis CJ, Takami M (2008) Investigating the transport of angular momentum from young stellar objects. Do H2 jets from class I YSOs rotate? A&A 482:575–583. https://doi.org/10.1051/0004-6361:20078494
Codella C, Cabrit S, Gueth F, Cesaroni R, Bacciotti F, Lefloch B, McCaughrean MJ (2007) A highly-collimated SiO jet in the HH212 protostellar outflow. A&A 462:L53–L56. https://doi.org/10.1051/0004-6361:20066800
Codella C, Maury AJ, Gueth F, Maret S, Belloche A, Cabrit S, André P (2014) First results from the CALYPSO IRAM-PdBI survey. III. Monopolar jets driven by a proto-binary system in NGC 1333-IRAS2A. A&A 563:L3. https://doi.org/10.1051/0004-6361/201323024
Coffey D, Bacciotti F, Ray TP, Eislöffel J, Woitas J (2007) Further indications of jet rotation in new ultraviolet and optical hubble space telescope STIS spectra. ApJ 663:350–364. https://doi.org/10.1086/518100
Coffey D, Rigliaco E, Bacciotti F, Ray TP, Eislöffel J (2012) Jet rotation investigated in the near-ultraviolet with the hubble space telescope imaging spectrograph. ApJ 749:139. https://doi.org/10.1088/0004-637X/749/2/139
Eislöffel J, Froebrich D, Stanke T, McCaughrean MJ (2003) Molecular outflows in the young open cluster IC 348. ApJ 595:259–265. https://doi.org/10.1086/377216
Ellerbroek LE, Podio L, Kaper L, Sana H, Huppenkothen D, de Koter A, Monaco L (2013) The outflow history of two Herbig–Haro jets in RCW 36: HH 1042 and HH 1043. A&A 551:A5. https://doi.org/10.1051/0004-6361/201220635
Evans NJ, Dunham MM, Jørgensen JK et al (2009) The spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. ApJS 181:321–350. https://doi.org/10.1088/0067-0049/181/2/321
Fendt C, Zinnecker H (1998) Possible bending mechanisms of protostellar jets. A&A 334:750–755
Frank A, Ray TP, Cabrit S et al (2014) Jets and outflows from star to cloud: observations confront theory. In: Beuther H, Klessen RS, Dullemond CP, Henning TK (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 451–474. https://doi.org/10.2458/azu_uapress_9780816531240-ch020
Froebrich D (2005) Which are the youngest protostars? Determining properties of confirmed and candidate Class 0 sources by broadband photometry. ApJS 156:169–177. https://doi.org/10.1086/426441
Glassgold AE, Mamon GA, Huggins PJ (1991) The formation of molecules in protostellar winds. ApJ 373:254. https://doi.org/10.1086/170045
Goddi C, Surcis G, Moscadelli L, Imai H, Vlemmings WHT, van Langevelde HJ, Sanna A (2017) Measuring magnetic fields from water masers in the synchrotron protostellar jet in W3(\(\text{ H }_{{2}}\)O). A&A 597:A43. https://doi.org/10.1051/0004-6361/201629321
Goldreich P, Kylafis ND (1981) On mapping the magnetic field direction in molecular clouds by polarization measurements. ApJ 243:L75–L78. https://doi.org/10.1086/183446
Goldreich P, Kylafis ND (1982) Linear polarization of radio frequency lines in molecular clouds and circumstellar envelopes. ApJ 253:606–621. https://doi.org/10.1086/159663
Green JD, Evans NJ, Jørgensen JK et al (2013) Embedded protostars in the dust, ice, and gas in time (DIGIT) Herschel key program: continuum SEDs, and an inventory of characteristic far-infrared lines from PACS spectroscopy. ApJ 770:123. https://doi.org/10.1088/0004-637X/770/2/123
Greenhill LJ, Goddi C, Chandler CJ, Matthews LD, Humphreys EML (2013) Dynamical evidence for a magnetocentrifugal wind from a \(20\, M_\odot\) binary Young Stellar Object. ApJ 770:L32. https://doi.org/10.1088/2041-8205/770/2/L32
Gueth F, Guilloteau S, Bachiller R (1996) A precessing jet in the L1157 molecular outflow. A&A 307:891–897
Gueth F, Guilloteau S, Bachiller R (1998) SiO shocks in the L1157 molecular outflow. A&A 333:287–297
Gueth F, Guilloteau S (1999) The jet-driven molecular outflow of HH 211. A&A 343:571–584
Gusdorf A, Pineau Des Forêts G, Cabrit S, Flower DR (2008) SiO line emission from interstellar jets and outflows: silicon-containing mantles and non-stationary shock waves. A&A 490:695–706. https://doi.org/10.1051/0004-6361:200810443
Hartigan P, Heathcote S, Morse JA, Reipurth B, Bally J (2005) Proper motions of the HH 47 jet observed with the Hubble space telescope. AJ 130:2197–2205. https://doi.org/10.1086/491673
Hartigan P, Frank A, Foster JM, Wilde BH, Douglas M, Rosen PA, Coker RF, Blue BE, Hansen JF (2011) Fluid dynamics of stellar jets in real time: third Epoch Hubble space telescope images of HH 1, HH 34, and HH 47. ApJ 736:29. https://doi.org/10.1088/0004-637X/736/1/29
Hirano N, Liu S-Y, Shang H, Ho PTP, Huang H-C, Kuan Y-J, McCaughrean MJ, Zhang Q (2006) SiO J = 5–4 in the HH 211 protostellar jet imaged with the submillimeter array. ApJ 636:L141–L144. https://doi.org/10.1086/500201
Hirano N, Ho PPT, Liu S-Y, Shang H, Lee C-F, Bourke TL (2010) Extreme active molecular jets in L1448C. ApJ 717:58–73. https://doi.org/10.1088/0004-637X/717/1/58
Hirano S, Machida MN (2019) Origin of misalignments: protostellar jet, outflow, circumstellar disc, and magnetic field. MNRAS 485:4667–4674. https://doi.org/10.1093/mnras/stz740
Hirota T, Machida MN, Matsushita Y, Motogi K, Matsumoto N, Kim MK, Burns RA, Honma M (2017) Disk-driven rotating bipolar outflow in Orion Source I. Nat Astron 1:0146. https://doi.org/10.1038/s41550-017-0146
Jhan K-S, Lee C-F (2016) A multi-epoch SMA study of the HH 211 protostellar jet: jet motion and knot formation. ApJ 816:32. https://doi.org/10.3847/0004-637X/816/1/32
Jiménez-Serra I, Martín-Pintado J, Rodríguez-Franco A, Martín S (2005) Grain evolution across the shocks in the L1448-mm Outflow. ApJ 627:L121–L124. https://doi.org/10.1086/432467
Kennicutt RC, Evans NJ (2012) Star formation in the Milky Way and nearby galaxies. ARA&A 50:531–608. https://doi.org/10.1146/annurev-astro-081811-125610
Königl A, Pudritz RE (2000) Disk winds and the accretion-outflow connection. In: Mannings V, Boss A, Russell S (eds) Protostars and Planets IV. University of Arizona Press, Tucson, pp 759–787
Kwon W, Fernández-López M, Stephens IW, Looney LW (2015) Kinematics of the envelope and two bipolar jets in the Class 0 protostellar system L1157. ApJ 814:43. https://doi.org/10.1088/0004-637X/814/1/43
Larson RB (1969) Numerical calculations of the dynamics of collapsing proto-star. MNRAS 145:271. https://doi.org/10.1093/mnras/145.3.271
Launhardt R, Pavlyuchenkov Y, Gueth F, Chen X, Dutrey A, Guilloteau S, Henning T, Piétu V, Schreyer K, Semenov D (2009) Rotating molecular outflows: the young T Tauri star in CB 26. A&A 494:147–156. https://doi.org/10.1051/0004-6361:200810835
Lee C-F, Mundy LG, Reipurth B, Ostriker EC, Stone JM (2000) CO outflows from young stars: confronting the jet and wind models. ApJ 542:925–945. https://doi.org/10.1086/317056
Lee C-F, Stone JM, Ostriker EC, Mundy LG (2001) Hydrodynamic simulations of jet- and wind-driven protostellar outflows. ApJ 557:429–442. https://doi.org/10.1086/321648
Lee C-F, Ho PTP (2005) Outflow interaction in the late stages of star formation. ApJ 624:841–852. https://doi.org/10.1086/429535
Lee C-F, Ho PTP, Hirano N, Beuther H, Bourke TL, Shang H, Zhang Q (2007) HH 212: submillimeter array observations of a remarkable protostellar jet. ApJ 659:499–511. https://doi.org/10.1086/512540
Lee C-F, Ho PTP, Bourke TL, Hirano N, Shang H, Zhang Q (2008) SiO shocks of the protostellar jet HH 212: a search for jet rotation. ApJ 685:1026–1032. https://doi.org/10.1086/591177
Lee C-F, Hirano N, Palau A, Ho PTP, Bourke TL, Zhang Q, Shang H (2009) Rotation and outflow motions in the very low-mass Class 0 protostellar system HH 211 at subarcsecond resolution. ApJ 699:1584–1594. https://doi.org/10.1088/0004-637X/699/2/1584
Lee C-F, Hasegawa TI, Hirano N, Palau A, Shang H, Ho PTP, Zhang Q (2010) The reflection-symmetric wiggle of the young protostellar Jet HH 211. ApJ 713:731–737. https://doi.org/10.1088/0004-637X/713/2/731
Lee C-F (2010) A change of rotation profile in the envelope in the HH 111 protostellar system: a transition to a disk? ApJ 725:712–720. https://doi.org/10.1088/0004-637X/725/1/712
Lee C-F, Hirano N, Zhang Q, Shang H, Ho PTP, Mizuno Y (2015) Jet motion, internal working surfaces, and nested shells in the protostellar system HH 212. ApJ 805:186. https://doi.org/10.1088/0004-637X/805/2/186
Lee C-F, Hwang H-C, Li Z-Y (2016) Angular momentum loss in the envelope-disk transition region of the HH 111 protostellar system: evidence for magnetic braking? ApJ 826:213. https://doi.org/10.3847/0004-637X/826/2/213
Lee C-F, Li Z-Y, Ho PTP, Hirano N, Zhang Q, Shang H (2017a) First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci Adv 3:e1602935. https://doi.org/10.1126/sciadv.1602935
Lee C-F, Li Z-Y, Ho PTP, Hirano N, Zhang Q, Shang H (2017b) Formation and atmosphere of complex organic molecules of the HH 212 protostellar disk. ApJ 843:27. https://doi.org/10.3847/1538-4357/aa7757
Lee C-F, Ho PTP, Li Z-Y, Hirano N, Zhang Q, Shang H (2017c) A rotating protostellar jet launched from the innermost disk of HH 212. Nat Astron 1:0152. https://doi.org/10.1038/s41550-017-0152
Lee C-F, Li Z-Y, Codella C, Ho PTP, Podio L, Hirano N, Shang H, Turner NJ, Zhang Q (2018a) A 100 au wide bipolar rotating shell emanating from the HH 212 protostellar disk: a disk wind? ApJ 856:14. https://doi.org/10.3847/1538-4357/aaae6d
Lee C-F, Li Z-Y, Hirano N, Shang H, Ho PTP, Zhang Q (2018b) ALMA observations of the very young Class 0 protostellar system HH211-mms: A 30 au dusty disk with a disk wind traced by SO? ApJ 863:94. https://doi.org/10.3847/1538-4357/aad2da
Lee C-F, Hwang H-C, Ching T-C, Hirano N, Lai S-P, Rao R, Ho PTP (2018c) Unveiling a magnetized jet from a low-mass protostar. Nat Commun 9:4636. https://doi.org/10.1038/s41467-018-07143-8
Lee C-F, Kwon W, Jhan K-S, Hirano N, Hwang H-C, Lai S-P, Ching T-C, Rao R, Ho PTP (2019a) A pseudodisk threaded with a toroidal and pinched poloidal magnetic field morphology in the HH 211 protostellar system. ApJ 879:101. https://doi.org/10.3847/1538-4357/ab2458
Lee C-F, Li Z-Y, Turner NJ (2019b) Spiral structures in an embedded protostellar disk driven by envelope accretion. Nat Astron. https://doi.org/10.1038/s41550-019-0905-x
Louvet F, Dougados C, Cabrit S, Mardones D, Ménard F, Tabone B, Pinte C, Dent WRF (2018) The HH30 edge-on T Tauri star. A rotating and precessing monopolar outflow scrutinized by ALMA. A&A 618:A120. https://doi.org/10.1051/0004-6361/201731733
Machida MN, Inutsuka S, Matsumoto T (2008) High- and low-velocity magnetized outflows in the star formation process in a gravitationally collapsing cloud. ApJ 676:1088–1108. https://doi.org/10.1086/528364
Marti J, Rodriguez LF, Reipurth B (1993) HH 80–81: a highly collimated Herbig–Haro complex powered by a massive Young Star. ApJ 416:208. https://doi.org/10.1086/173227
Masciadri E, Raga AC (2002) Herbig–Haro jets from orbiting sources. ApJ 568:733–742. https://doi.org/10.1086/338767
Masunaga H, Inutsuka S (2000) A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. ApJ 531:350–365. https://doi.org/10.1086/308439
Maury AJ, André P, Testi L et al (2019) Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare. A&A 621:A76. https://doi.org/10.1051/0004-6361/201833537
McCaughrean MJ, Rayner JT, Zinnecker H (1994) Discovery of a molecular hydrogen Jet near IC 348. ApJ 436:L189. https://doi.org/10.1086/187664
McCaughrean M, Zinnecker H, Andersen M, Meeus G, Lodieu N (2002) Standing on the shoulder of a giant: ISAAC, Antu, and star formation. Messenger 109:28–36
McKee CF, Ostriker EC (2007) Theory of star formation. ARA&A 45:565–687. https://doi.org/10.1146/annurev.astro.45.051806.110602
Millan-Gabet R, Malbet F, Akeson R, Leinert C, Monnier J, Waters R (2007) The circumstellar environments of young stars at AU scales. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 539–554
Mizuno Y, Hardee PE, Nishikawa K-I (2014) Spatial growth of the current-driven instability in relativistic jets. ApJ 784:167. https://doi.org/10.1088/0004-637X/784/2/167
Moraghan A, Lee C-F, Huang P-S, Vaidya B (2016) A study of the wiggle morphology of HH 211 through numerical simulations. MNRAS 460:1829–1838. https://doi.org/10.1093/mnras/stw1089
Noriega-Crespo A, Raga AC, Lora V, Stapelfeldt KR, Carey SJ (2011) The precession of the Herbig–Haro 111 Flow in the infrared. ApJ 732:L16. https://doi.org/10.1088/2041-8205/732/1/L16
Ostriker EC, Lee C-F, Stone JM, Mundy LG (2001) A ballistic bow shock model for jet-driven protostellar outflow shells. ApJ 557:443–450. https://doi.org/10.1086/321649
Ouyed R, Clarke DA, Pudritz RE (2003) Three-dimensional simulations of jets from keplerian disks: self-regulatory stability. ApJ 582:292–319. https://doi.org/10.1086/344507
Palau A, Ho PTP, Zhang Q, Estalella R, Hirano N, Shang H, Lee C-F, Bourke TL, Beuther H, Kuan Y-J (2006) Submillimeter emission from the hot molecular jet HH 211. ApJ 636:L137–L140. https://doi.org/10.1086/500242
Pérez LM, Carpenter JM, Andrews SM et al (2016) Spiral density waves in a young protoplanetary disk. Science 353:1519–1521. https://doi.org/10.1126/science.aaf8296
Plunkett AL, Arce HG, Mardones D, van Dokkum P, Dunham MM, Fernández-López M, Gallardo J, Corder SA (2015) Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature 527:70–73. https://doi.org/10.1038/nature15702
Podio L, Codella C, Gueth F et al (2015) The jet and the disk of the HH 212 low-mass protostar imaged by ALMA: SO and \(\text{ SO }_{{2}}\) emission. A&A 581:A85. https://doi.org/10.1051/0004-6361/201525778
Podio L, Codella C, Gueth F et al (2016) First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey. A&A 593:L4. https://doi.org/10.1051/0004-6361/201628876
Podio L (2017) Protostellar Jets: the revolution with ALMA. Workshop sull’Astronomia Millimetrica in Italia. https://doi.org/10.5281/zenodo.1117656
Pudritz RE, Ouyed R, Fendt C, Brandenburg A (2007) Disk winds, jets, and outflows: theoretical and computational foundations. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 277–294
Pudritz RE, Hardcastle MJ, Gabuzda DC (2012) Magnetic fields in astrophysical jets: from launch to termination. Space Sci Rev 169:27–72. https://doi.org/10.1007/s11214-012-9895-z
Pudritz RE, Ray TP (2019) The role of magnetic fields in protostellar outflows and star formation. Front Astron Space Sci 6:54. https://doi.org/10.3389/fspas.2019.00054
Raga AC, Canto J, Binette L, Calvet N (1990) Stellar jets with intrinsically variable sources. ApJ 364:601. https://doi.org/10.1086/169443
Raga AC, Canto J, Biro S (1993) Ballistic stellar jets from sources with a time-dependent ejection direction. MNRAS 260:163–170. https://doi.org/10.1093/mnras/260.1.163
Raga AC, Velázquez PF, Cantó J, Masciadri E (2002) The time-dependent ejection velocity histories of HH 34 and HH 111. A&A 395:647–656. https://doi.org/10.1051/0004-6361:20021180
Raga AC, Esquivel A, Velázquez PF, Cantó J, Haro-Corzo S, Riera A, Rodríguez-González A (2009) Mirror and point symmetries in a ballistic jet from a binary system. ApJ 707:L6–L11. https://doi.org/10.1088/0004-637X/707/1/L6
Ray T, Dougados C, Bacciotti F, Eislöffel J, Chrysostomou A (2007) Toward resolving the outflow engine: an observational perspective. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 231–244
Reipurth B (2000) Disintegrating multiple systems in early stellar evolution. AJ 120:3177–3191. https://doi.org/10.1086/316865
Reipurth B, Bally J (2001) Herbig–Haro flows: probes of early stellar evolution. ARA&A 39:403–455. https://doi.org/10.1146/annurev.astro.39.1.403
Reipurth B, Rodríguez LF, Anglada G, Bally J (2002) Radio continuum maps of deeply embedded protostars: thermal jets, multiplicity, and variability. AJ 124:1045–1053. https://doi.org/10.1086/341172
Reipurth B, Rodríguez LF, Anglada G, Bally J (2004) Radio continuum jets from protostellar objects. AJ 127:1736–1746. https://doi.org/10.1086/381062
Reipurth B, Davis CJ, Bally J, Raga AC, Bowler BP, Geballe TR, Aspin C, Chiang H-F (2019) The giant Herbig–Haro flow HH 212 and associated star formation. AJ 158:107. https://doi.org/10.3847/1538-3881/ab2d25
Reiter M, Kiminki MM, Smith N, Bally J (2017) Proper motions of collimated jets from intermediate-mass protostars in the Carina Nebula. MNRAS 470:4671–4697. https://doi.org/10.1093/mnras/stx1489
Riaz B, Briceño C, Whelan ET, Heathcote S (2017) First large-scale Herbig–Haro jet driven by a Proto-brown Dwarf. ApJ 844:47. https://doi.org/10.3847/1538-4357/aa70e8
Rodríguez LF (1997) Thermal radio jets. Herbig Haro Flows Birth Stars 182:83–92
Rodríguez LF, Zapata LA, Palau A (2014) JVLA observations of IC 348 SW: compact radio sources and their nature. ApJ 790:80. https://doi.org/10.1088/0004-637X/790/1/80
Rodríguez-Kamenetzky A, Carrasco-González C, Araudo A, Romero GE, Torrelles JM, Rodríguez LF, Anglada G, Martí J, Perucho M, Valotto C (2017) The highly collimated radio jet of HH 80–81: structure and nonthermal emission. ApJ 851:16. https://doi.org/10.3847/1538-4357/aa9895
Santiago-García J, Tafalla M, Johnstone D, Bachiller R (2009) Shells, jets, and internal working surfaces in the molecular outflow from IRAS 04166+2706. A&A 495:169–181. https://doi.org/10.1051/0004-6361:200810739
Schilke P, Walmsley CM, Pineau des Forets G, Flower DR (1997) SiO production in interstellar shocks. A&A 321:293–304
Shang H, Allen A, Li Z-Y, Liu C-F, Chou M-Y, Anderson J (2006) A unified model for bipolar outflows from young stars. ApJ 649:845–855. https://doi.org/10.1086/506513
Shu FH, Najita J, Ostriker EC, Shang H (1995) Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. ApJ 455:L155. https://doi.org/10.1086/309838
Shu FH, Najita JR, Shang H, Li Z-Y (2000) X-Winds theory and observations. In: Mannings V, Boss A, Russell S (eds) Protostars and Planets IV. University of Arizona Press, Tucson, pp 789–814
Simon M, Dutrey A, Guilloteau S (2000) Dynamical masses of T Tauri stars and calibration of pre-main-sequence evolution. ApJ 545:1034–1043. https://doi.org/10.1086/317838
Stahler SW (1988) Deuterium and the stellar birthline. ApJ 332:804. https://doi.org/10.1086/166694
Stone JM, Norman ML (1993) Numerical simulations of protostellar jets with nonequilibrium cooling. II. Models of pulsed jets. ApJ 413:210. https://doi.org/10.1086/172989
Suttner G, Smith MD, Yorke HW, Zinnecker H (1997) Multi-dimensional numerical simulations of molecular jets. A&A 318:595–607
Tabone B, Cabrit S, Bianchi E, Ferreira J, Pineau des Forêts G, Codella C, Gusdorf A, Gueth F, Podio L, Chapillon E (2017) ALMA discovery of a rotating SO/\(\text{ SO }_{{2}}\) flow in HH212. A possible MHD disk wind? A&A 607:L6. https://doi.org/10.1051/0004-6361/201731691
Tafalla M, Su Y-N, Shang H, Johnstone D, Zhang Q, Santiago-García J, Lee C-F, Hirano N, Wang L-Y (2017) Anatomy of the internal bow shocks in the IRAS 04166+2706 protostellar jet. A&A 597:A119. https://doi.org/10.1051/0004-6361/201629493
Takahashi S, Machida MN, Tomisaka K, Ho PTP, Fomalont EB, Nakanishi K, Girart JM (2019) ALMA high angular resolution polarization study: an extremely young Class 0 source, OMC-3/MMS 6. ApJ 872:70. https://doi.org/10.3847/1538-4357/aaf6ed
Takami M, Karr JL, Nisini B, Ray TP (2011) A detailed study of Spitzer-IRAC Emission in Herbig-Haro objects. II. Interaction between ejecta and ambient gas. ApJ 743:193. https://doi.org/10.1088/0004-637X/743/2/193
Takami M, Fu G, Liu HB et al (2018) Near-infrared high-resolution imaging polarimetry of FU Ori-type objects: toward a unified scheme for low-mass protostellar evolution. ApJ 864:20. https://doi.org/10.3847/1538-4357/aad2e1
Terquem C, Eislöffel J, Papaloizou JCB, Nelson RP (1999) Precession of collimated outflows from young stellar objects. ApJ 512:L131–L134. https://doi.org/10.1086/311880
Tobin JJ, Looney LW, Li Z-Y et al (2016) The VLA nascent disk and multiplicity survey of perseus protostars (VANDAM). II. Multiplicity of protostars in the perseus molecular cloud. ApJ 818:73. https://doi.org/10.3847/0004-637X/818/1/73
Tomida K, Machida MN, Hosokawa T, Sakurai Y, Lin CH (2017) Grand-design spiral arms in a young forming circumstellar disk. ApJ 835:L11. https://doi.org/10.3847/2041-8213/835/1/L11
Vorobyov EI, Basu S (2005) The origin of episodic accretion bursts in the early stages of star formation. ApJ 633:L137–L140. https://doi.org/10.1086/498303
Whelan ET, Ray TP, Bacciotti F, Natta A, Testi L, Randich S (2005) A resolved outflow of matter from a brown dwarf. Nature 435:652–654. https://doi.org/10.1038/nature03598
Wilner DJ, Reid MJ, Menten KM (1999) The synchrotron jet from the \(\text{ H }_{{2}}\)O maser source in W3(OH). ApJ 513:775–779. https://doi.org/10.1086/306907
Woitas J, Ray TP, Bacciotti F, Davis CJ, Eislöffel J (2002) Hubble space telescope space telescope imaging spectrograph observations of the bipolar jet from RW Aurigae: tracing outflow asymmetries close to the source. ApJ 580:336–342. https://doi.org/10.1086/343124
Yen H-W, Takakuwa S, Ohashi N (2010) High-velocity jets and slowly rotating envelope in B335. ApJ 710:1786–1799. https://doi.org/10.1088/0004-637X/710/2/1786
Yen H-W, Koch PM, Takakuwa S, Krasnopolsky R, Ohashi N, Aso Y (2017) Signs of early-stage disk growth revealed with ALMA. ApJ 834:178. https://doi.org/10.3847/1538-4357/834/2/178
Zhang Y, Higuchi AE, Sakai N, Oya Y, López-Sepulcre A, Imai M, Sakai T, Watanabe Y, Ceccarelli C, Lefloch B, Yamamoto S (2018) Rotation in the NGC 1333 IRAS 4C Outflow. Astrophys J 864:76. https://doi.org/10.3847/1538-4357/aad7ba
Zapata LA, Ho PTP, Rodríguez LF, O’Dell CR, Zhang Q, Muench A (2006) Silicon monoxide observations reveal a cluster of hidden compact outflows in the OMC 1 south region. ApJ 653:398–408. https://doi.org/10.1086/508319
Zapata LA, Schmid-Burgk J, Muders D, Schilke P, Menten K, Guesten R (2010) A rotating molecular jet in Orion. A&A 510:A2. https://doi.org/10.1051/0004-6361/200810245
Zinnecker H, McCaughrean MJ, Rayner JT (1998) A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394:862–865. https://doi.org/10.1038/29716
Acknowledgements
C.-F.L. acknowledges grants from the Ministry of Science and Technology of Taiwan (MoST 107-2119-M-001-040-MY3) and the Academia Sinica (Investigator Award). I thank the referee Bo Reipurth for carefully reading my manuscript and for his useful comments and suggestions. I also thank Anthony Moraghan for his helpful suggestions on English grammar.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lee, CF. Molecular jets from low-mass young protostellar objects. Astron Astrophys Rev 28, 1 (2020). https://doi.org/10.1007/s00159-020-0123-7
Received:
Published:
DOI: https://doi.org/10.1007/s00159-020-0123-7