Cool outflows in galaxies and their implications

Abstract

Neutral-atomic and molecular outflows are a common occurrence in galaxies, near and far. They operate over the full extent of their galaxy hosts, from the innermost regions of galactic nuclei to the outermost reaches of galaxy halos. They carry a substantial amount of material that would otherwise have been used to form new stars. These cool outflows may have a profound impact on the evolution of their host galaxies and environments. This article provides an overview of the basic physics of cool outflows, a comprehensive assessment of the observational techniques and diagnostic tools used to characterize them, a detailed description of the best-studied cases, and a more general discussion of the statistical properties of these outflows in the local and distant universe. The remaining outstanding issues that have not yet been resolved are summarized at the end of the review to inspire new research directions.

This is a preview of subscription content, log in to check access.

Fig. 1

Images reproduced with permission from (a, b) Rupke and Veilleux (2011), (c) Veilleux et al. (2009b), copyright by AAS; and (b) Cicone et al. (2015), copyright by ESO; and (d, e) Bolatto et al. (2013a), copyright by Macmillan

Fig. 2

Images reproduced with permission from (a, b) Tanner et al. (2016), copyright by AAS; and (c, d) Girichidis et al. (2018), copyright by the authors

Fig. 3

Images reproduced with permission from Richings and Faucher-Giguère (2018b) and Mukherjee et al. (2018b), copyright by the authors

Fig. 4

Images reproduced with permission from (a) Schneider and Robertson (2017), (c) Zhang and Davis (2017), copyright by AAS; and (b) Banda-Barragán et al. (2019), (d) Gronke and Oh (2018), copyright by the authors

Fig. 5

Images reproduced with permission from Lutz et al. (2020), copyright by the authors

Fig. 6

Images reproduced with permission from (a) Morganti et al. (2005), copyrightby ESO; and (b) Rupke et al. (2017), (c) Erb et al. (2012), (d) Janssen et al. (2016), (e) Cicone et al. (2018b), (f) Pettini et al. (2002), copyright by AAS

Fig. 7

Images reproduced with permission from (a) González-Alfonso et al. (2017b), (c) Rupke and Veilleux (2013a), copyright by AAS; and Cicone et al. (2014), copyright by ESO

Fig. 8

Images reproduced with permission from (a) Howk and Savage (2000), (b) Hoopes et al. (2005), (c) Jones et al. (2019b), and (d, e) Meléndez et al. (2015), copyright by AAS

Fig. 9

Images reproduced with permission from (a) Su et al. (2010), (d) Bland-Hawthorn and Cohen (2003), (e, f) Hsieh et al. (2016), (g) Lockman and McClure-Griffiths (2016), (h) Lockman et al. (2020), copyright by AAS; (b) Ponti et al. (2019), (c) Heywood et al. (2019), copyright by the author(s)

Fig. 10

Images reproduced with permission from (a) Barger et al. (2016), copyright by AAS; and (b) McClure-Griffiths et al. (2018), copyright by the authors

Fig. 11
Fig. 12
Fig. 13

Images reproduced with permission from (a) Veilleux et al. (2016), (b) Rupke and Veilleux (2011), (f) González-Alfonso et al. (2017b), copyright by AAS; and (c) Morganti et al. (2016), (d, g) Feruglio et al. (2015), (e) Aalto et al. (2015a), copyright by ESO

Fig. 14
Fig. 15

Images reproduced with permission from Roussel et al. (2006), copyright by AAS; and Aalto et al. (2016), copyright by ESO

Fig. 16

Images reproduced with permission from Roberts-Borsani and Saintonge (2019), copyright by the authors

Fig. 17

Images reproduced with permission from Rubin et al. (2014), copyright by AAS

Fig. 18

Images reproduced with permission from Chisholm et al. (2015), Heckman and Borthakur (2016), copyright by AAS

Fig. 19

Images reproduced with permission from (a) Rupke and Veilleux (2015), copyright by AAS; and (b) Finley et al. (2017), copyright by ESO; and (c) Rupke et al. (2019), copyright by the authors

Fig. 20

Images reproduced with permission from Lan et al. (2014) and Lan and Mo (2018), copyright by AAS

Fig. 21

Images reproduced with permission from Stone et al. (2016), copyright by AAS; and Lutz et al. (2020), copyright by the authors

Fig. 22

Images reproduced with permission from González-Alfonso et al. (2017b), copyright by AAS

Fig. 23

Images reproduced with permission from Fluetsch et al. (2019), copyright by the authors

Fig. 24

Images reproduced with permission from Ménard et al. (2010), copyright by the authors; and Peek et al. (2015), copyright by AAS

Fig. 25

Images reproduced with permission from McCormick et al. (2013), copyright by AAS

Fig. 26

Images reproduced with permission from McCormick et al. (2018), copyright by the authors

Fig. 27

Image reproduced with permission from Hodges-Kluck et al. 2016a, copyright by AAS

Fig. 28

Image reproduced with permission from Smith et al. (2019), copyright by AAS

Fig. 29
Fig. 30

Images reproduced with permission from (a) Carniani et al. (2017), (b) Feruglio et al. (2017), (cd) Brusa et al. (2018), copyright by ESO; and (e) Herrera-Camus et al. (2019b), copyright by AAS

Fig. 31

Images reproduced with permission from (a) George et al. (2014), copyright by the authors; (b) Herrera-Camus et al. 2020, copyrighty by ESO; (c, d) Spilker et al. (2018), copyright by the authors; (e, f) Jones et al. (2019a), copyright by ESO

Fig. 32
Fig. 33

Images reproduced with permission from Sugahara et al. (2019), copyright by AAS

Fig. 34

Images reproduced with permission from (a) Prochaska et al. (2014), (b) Lau et al. (2018), copyright by AAS; and (c) Cicone et al. (2015), (d, e) Bischetti et al. (2019a), copyright by ESO

Notes

  1. 1.

    Note that there is a typographical error in the numerical formulae of Rupke et al. (2005c): in their equations 13–18, the normalization factor of the column density N should be 10\(^{20}\) cm\(^{-2}\) rather than 10\(^{21}\) cm\(^{-2}\). The outflow energetics published in Rupke et al. (2005c) are based on the correct formulae and not affected by this error.

  2. 2.

    Both Eqs. (28) and (29) assume \(T \sim 10^4\) K, while Eq. (29) further assumes that \(n_\mathrm{e} \lesssim 7 \times 10^5\) cm,\(^{-3}\) the critical density associated with the [O III] 5007 transition above which collisional de-excitation becomes significant.

  3. 3.

    Just as for CO, high opacities can impact the critical density for e.g., HCN which may be very abundant in warm regions. In addition, the critical density can be strongly reduced (by factors 4–6) in regions of high temperature. This requires a multi-level treatment of the critical density.

  4. 4.

    Sarangi et al. (2019) have recently suggested that nuclear AGN winds may also be sites of dust formation.

  5. 5.

    There is also evidence that the AGN in the GC was \(\sim 10^5\) more active in the recent past (\(\sim 10^{2 -3}\) years), although still greatly sub-Eddington (\(L/L_{\mathrm{Edd}} \lesssim 10^{-5}\)), based on the detection of strong fluorescent \({\mathrm{Fe}}\,{\mathrm{K}}\alpha \) line emission off of molecular clouds near the GC (Sunyaev et al. 1993; Koyama et al. 1996; Ponti et al. 2010).

  6. 6.

    For instance, Krumholz et al. (2017a) argue that the average SFR is closer to \(\sim \) 1 \(M_\odot \) \({\mathrm{year}}^{-1}\), more in line with the estimated mass supply rate to the CMZ (\(\gtrsim \) 1 \(M_\odot \) \({\mathrm{year}}^{-1}\), Sormani and Barnes 2019).

  7. 7.

    As pointed out by Sparre et al. (2019), instabilities have a smaller effect in 3D than in 2D because a 3D flow has the freedom to use the z-direction to avoid disturbing dense clouds. As a result, the level of fragmentation is lower in 3D than in 2D, and the increase in covering fraction for large clouds in 3D is less than that seen in 2D.

References

  1. Aalto S (2015) Astrochemistry and star formation in nearby galaxies: from galaxy disks to hot nuclei. EAS Publ Ser 75–76:73–80. https://doi.org/10.1051/eas/1575013

    Article  Google Scholar 

  2. Aalto S, Spaans M, Wiedner MC, Hüttemeister S (2007) Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs? Astron Astrophys 464(1):193–200. https://doi.org/10.1051/0004-6361:20066473. arXiv:astro-ph/0612122

  3. Aalto S, Costagliola F, van der Tak F, Meijerink R (2011) \(\text{ H }_{3}\text{ O }^{+}\) line emission from starbursts and AGNs. Astron Astrophys 527:A69. https://doi.org/10.1051/0004-6361/201015878. arXiv:1101.0682

    Article  Google Scholar 

  4. Aalto S, Garcia-Burillo S, Muller S, Winters JM, van der Werf P, Henkel C, Costagliola F, Neri R (2012) Detection of HCN, \(\text{ HCO }^{+}\), and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind. Astron Astrophys 537:A44. https://doi.org/10.1051/0004-6361/201117919. arXiv:1111.6762

  5. Aalto S, Garcia-Burillo S, Muller S, Winters JM, Gonzalez-Alfonso E, van der Werf P, Henkel C, Costagliola F, Neri R (2015a) High resolution observations of HCN and \(\text{ HCO }^{+}\text{ J }\) = 3–2 in the disk and outflow of Mrk 231. Detection of vibrationally excited HCN in the warped nucleus. Astron Astrophys 574:A85. https://doi.org/10.1051/0004-6361/201423987. arXiv:1411.2474

  6. Aalto S, Martín S, Costagliola F, González-Alfonso E, Muller S, Sakamoto K, Fuller GA, García-Burillo S, van der Werf P, Neri R, Spaans M, Combes F, Viti S, Mühle S, Armus L, Evans A, Sturm E, Cernicharo J, Henkel C, Greve TR (2015b) Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN. Astron Astrophys 584:A42. https://doi.org/10.1051/0004-6361/201526410. arXiv:1504.06824

  7. Aalto S, Costagliola F, Muller S, Sakamoto K, Gallagher JS, Dasyra K, Wada K, Combes F, García-Burillo S, Kristensen LE, Martín S, van der Werf P, Evans AS, Kotilainen J (2016) A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377? Astron Astrophys 590:A73. https://doi.org/10.1051/0004-6361/201527664. arXiv:1510.08827

  8. Aalto S, Muller S, Costagliola F, Sakamoto K, Gallagher JS, Falstad N, König S, Dasyra K, Wada K, Combes F, García-Burillo S, Kristensen LE, Martín S, van der Werf P, Evans AS, Kotilainen J (2017) Luminous, pc-scale CO 6–5 emission in the obscured nucleus of NGC 1377. Astron Astrophys 608:A22. https://doi.org/10.1051/0004-6361/201730650. arXiv:1702.05458

  9. Aalto S, Muller S, König S, Falstad N, Mangum J, Sakamoto K, Privon GC, Gallagher J, Combes F, García-Burillo S, Martín S, Viti S, van der Werf P, Evans AS, Black JH, Varenius E, Beswick R, Fuller G, Henkel C, Kohno K, Alatalo K, Mühle S (2019) The hidden heart of the luminous infrared galaxy IC 860. I. A molecular inflow feeding opaque, extreme nuclear activity. Astron Astrophys 627:A147. https://doi.org/10.1051/0004-6361/201935480. arXiv:1905.07275

  10. Ackermann M, Albert A, Atwood WB, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bellazzini R, Bissaldi E, Blandford RD, Bloom ED, Bottacini E, Brandt TJ, Bregeon J, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caragiulo M, Caraveo PA, Cavazzuti E, Cecchi C, Charles E, Chekhtman A, Chiang J, Chiaro G, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, Cutini S, D’Ammando F, de Angelis A, de Palma F, Dermer CD, Digel SW, Di Venere L, EdCe Silva, Drell PS, Favuzzi C, Ferrara EC, Focke WB, Franckowiak A, Fukazawa Y, Funk S, Fusco P, Gargano F, Gasparrini D, Germani S, Giglietto N, Giordano F, Giroletti M, Godfrey G, Gomez-Vargas GA, Grenier IA, Guiriec S, Hadasch D, Harding AK, Hays E, Hewitt JW, Hou X, Jogler T, Jóhannesson G, Johnson AS, Johnson WN, Kamae T, Kataoka J, Knödlseder J, Kocevski D, Kuss M, Larsson S, Latronico L, Longo F, Loparco F, Lovellette MN, Lubrano P, Malyshev D, Manfreda A, Massaro F, Mayer M, Mazziotta MN, McEnery JE, Michelson PF, Mitthumsiri W, Mizuno T, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nemmen R, Nuss E, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Panetta JH, Perkins JS, Pesce-Rollins M, Petrosian V, Piron F, Pivato G, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Sánchez-Conde M, Schaal M, Schulz A, Sgrò C, Siskind EJ, Spandre G, Spinelli P, Stawarz Ł, Strong AW, Suson DJ, Tahara M, Takahashi H, Thayer JB, Tibaldo L, Tinivella M, Torres DF, Tosti G, Troja E, Uchiyama Y, Vianello G, Werner M, Winer BL, Wood KS, Wood M, Zaharijas G (2014) The spectrum and morphology of the Fermi bubbles. Astrophys J 793(1):64. https://doi.org/10.1088/0004-637X/793/1/64. arXiv:1407.7905

  11. Adelberger KL, Shapley AE, Steidel CC, Pettini M, Erb DK, Reddy NA (2005) The connection between galaxies and intergalactic absorption lines at redshift \(2\lesssim {z}\lesssim {3}\). Astrophys J 629(2):636–653. https://doi.org/10.1086/431753. arXiv:astro-ph/0505122

    ADS  Article  Google Scholar 

  12. Aditya JNHS, Kanekar N (2018) A giant metrewave radio telescope survey for associated H I 21 cm absorption in the Caltech–Jodrell flat-spectrum sample. Mon Not R Astron Soc 481(2):1578–1596. https://doi.org/10.1093/mnras/sty2184. arXiv:1808.03280

  13. Alatalo K (2015) Escape, accretion, or star formation? The competing depleters of gas in the Quasar Markarian 231. Astrophys J Lett 801(1):L17. https://doi.org/10.1088/2041-8205/801/1/L17. arXiv:1502.00624

  14. Alatalo K, Blitz L, Young LM, Davis TA, Bureau M, Lopez LA, Cappellari M, Scott N, Shapiro KL, Crocker AF, Martín S, Bois M, Bournaud F, Davies RL, de Zeeuw PT, Duc PA, Emsellem E, Falcón-Barroso J, Khochfar S, Krajnović D, Kuntschner H, Lablanche PY, McDermid RM, Morganti R, Naab T, Oosterloo T, Sarzi M, Serra P, Weijmans A (2011) Discovery of an active galactic nucleus driven molecular outflow in the local early-type Galaxy NGC 1266. Astrophys J 735(2):88. https://doi.org/10.1088/0004-637X/735/2/88. arXiv:1104.2326

    ADS  Article  Google Scholar 

  15. Alatalo K, Lacy M, Lanz L, Bitsakis T, Appleton PN, Nyland K, Cales SL, Chang P, Davis TA, de Zeeuw PT, Lonsdale CJ, Martín S, Meier DS, Ogle PM (2015) Suppression of star formation in NGC 1266. Astrophys J 798(1):31. https://doi.org/10.1088/0004-637X/798/1/31. arXiv:1410.4556

    ADS  Article  Google Scholar 

  16. Alatalo K, Cales SL, Rich JA, Appleton PN, Kewley LJ, Lacy M, Lanz L, Medling AM, Nyland K (2016) Shocked poststarbust galaxy survey. I. Candidate post-starbust galaxies with emission line ratios consistent with shocks. Astrophys J Suppl Ser 224(2):38. https://doi.org/10.3847/0067-0049/224/2/38. arXiv:1601.05085

  17. Alexandroff RM, Zakamska NL, Barth AJ, Hamann F, Strauss MA, Krolik J, Greene JE, Pâris I, Ross NP (2018) Spectropolarimetry of high-redshift obscured and red quasars. Mon Not R Astron Soc 479(4):4936–4957. https://doi.org/10.1093/mnras/sty1685. arXiv:1806.10138

  18. Anglés-Alcázar D, Faucher-Giguère CA, Quataert E, Hopkins PF, Feldmann R, Torrey P, Wetzel A, Kereš D (2017) Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Mon Not R Astron Soc 472(1):L109–L114. https://doi.org/10.1093/mnrasl/slx161. arXiv:1707.03832

  19. Aoki K, Oyabu S, Dunn JP, Arav N, Edmonds D, Korista KT, Matsuhara H, Toba Y (2011) Outflow in overlooked luminous quasar: Subaru observations of AKARI J1757+5907. Publ Astron Soc Japan 63:457. https://doi.org/10.1093/pasj/63.sp2.S457. arXiv:1101.4340

    ADS  Article  Google Scholar 

  20. Appleton PN, Diaz-Santos T, Fadda D, Ogle P, Togi A, Lanz L, Alatalo K, Fischer C, Rich J, Guillard P (2018) Jet-related excitation of the [C II] emission in the active galaxy NGC 4258 with SOFIA. Astrophys J 869(1):61. https://doi.org/10.3847/1538-4357/aaed2a. arXiv:1810.12883

  21. Arav N, Borguet B, Chamberlain C, Edmonds D, Danforth C (2013) Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238–1904. Mon Not R Astron Soc 436(4):3286–3305. https://doi.org/10.1093/mnras/stt1812. arXiv:1305.2181

    ADS  Article  Google Scholar 

  22. Arav N, Liu G, Xu X, Stidham J, Benn C, Chamberlain C (2018) Evidence that 50% of BALQSO outflows are situated at least 100 pc from the central source. Astrophys J 857(1):60. https://doi.org/10.3847/1538-4357/aab494. arXiv:1805.01543

  23. Arendt RG, Dwek E, Blair WP, Ghavamian P, Hwang U, Long KS, Petre R, Rho J, Winkler PF (2010) Spitzer observations of dust destruction in the Puppis A supernova remnant. Astrophys J 725(1):585–597. https://doi.org/10.1088/0004-637X/725/1/585

    ADS  Article  Google Scholar 

  24. Armillotta L, Fraternali F, Marinacci F (2016) Efficiency of gas cooling and accretion at the disc-corona interface. Mon Not R Astron Soc 462(4):4157–4170. https://doi.org/10.1093/mnras/stw1930. arXiv:1608.06290

  25. Armillotta L, Fraternali F, Werk JK, Prochaska JX, Marinacci F (2017) The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Mon Not R Astron Soc 470(1):114–125. https://doi.org/10.1093/mnras/stx1239. arXiv:1608.05416

  26. Armillotta L, Krumholz MR, Di Teodoro EM, McClure-Griffiths NM (2019) The life cycle of the central molecular zone. I: inflow, star formation, and winds. ArXiv e-prints arXiv:1905.01309

  27. Arrigoni Battaia F, Hennawi JF, Prochaska JX, O norbe J, Farina EP, Cantalupo S, Lusso E (2019) QSO MUSEUM I: a sample of 61 extended \(\text{ Ly }\alpha \)-emission nebulae surrounding \(z \sim 3\) quasars. Mon Not R Astron Soc 482(3):3162–3205. https://doi.org/10.1093/mnras/sty2827. arXiv:1808.10857

  28. Asano RS, Takeuchi TT, Hirashita H, Inoue AK (2013) Dust formation history of galaxies: a critical role of metallicity for the dust mass growth by accreting materials in the interstellar medium. Earth Planets Space 65(3):213–222. https://doi.org/10.5047/eps.2012.04.014. arXiv:1206.0817

    ADS  Article  Google Scholar 

  29. Asmus D, Gandhi P, Smette A, Hönig SF, Duschl WJ (2011) Mid-infrared properties of nearby low-luminosity AGN at high angular resolution. Astron Astrophys 536:A36. https://doi.org/10.1051/0004-6361/201116693. arXiv:1109.4873

    ADS  Article  Google Scholar 

  30. Asmus D, Hönig SF, Gandhi P (2016) The subarcsecond mid-infrared view of local active galactic nuclei. III. Polar dust emission. Astrophys J 822(2):109. https://doi.org/10.3847/0004-637X/822/2/109. arXiv:1603.02710

  31. Assef RJ, Eisenhardt PRM, Stern D, Tsai CW, Wu J, Wylezalek D, Blain AW, Bridge CR, Donoso E, Gonzales A, Griffith RL, Jarrett TH (2015) Half of the most luminous quasars may be obscured: investigating the nature of WISE-selected hot dust-obscured galaxies. Astrophys J 804(1):27. https://doi.org/10.1088/0004-637X/804/1/27. arXiv:1408.1092

    ADS  Article  Google Scholar 

  32. Baan WA, Haschick AD, Henkel C (1989) Molecular outflows in powerful OH megamasers. Astrophys J 346:680. https://doi.org/10.1086/168050

    ADS  Article  Google Scholar 

  33. Bachiller R, Martín-Pintado J, Fuente A (1991) High-velocity SiO emission in the L1448 outflow. Evidence for dense shocked gas in the molecular bullets. Astron Astrophys 243:L21

  34. Bae HJ, Woo JH, Karouzos M, Gallo E, Flohic H, Shen Y, Yoon SJ (2017) The limited impact of outflows: integral-field spectroscopy of 20 local AGNs. Astrophys J 837(1):91. https://doi.org/10.3847/1538-4357/aa5f5c. arXiv:1702.01900

  35. Baes M, Viaene S (2016) The nature of the UV halo around the spiral galaxy NGC 3628. Astron Astrophys 587:A86. https://doi.org/10.1051/0004-6361/201527812. arXiv:1601.06155

  36. Bahcall JN, Ekers RD (1969) On the possibility of detecting redshifted 21-CM absorption lines in the spectra of quasi-stellar sources. Astrophys J 157:1055. https://doi.org/10.1086/150135

    ADS  Article  Google Scholar 

  37. Bally J (2016) Protostellar outflows. Annu Rev Astron Astrophys 54:491–528. https://doi.org/10.1146/annurev-astro-081915-023341

  38. Balmaverde B, Marconi A, Brusa M, Carniani S, Cresci G, Lusso E, Maiolino R, Mannucci F, Nagao T (2016) Is there any evidence that ionized outflows quench star formation in type 1 quasars at \(z < 1\)? Astron Astrophys 585:A148. https://doi.org/10.1051/0004-6361/201526694. arXiv:1506.05984

  39. Bambic CJ, Reynolds CS (2019) Efficient production of sound waves by AGN jets in the intracluster medium. ArXiv e-prints arXiv:1906.03272

  40. Banda-Barragán WE, Parkin ER, Federrath C, Crocker RM, Bicknell GV (2016) Filament formation in wind-cloud interactions—I. Spherical clouds in uniform magnetic fields. Mon Not R Astron Soc 455(2):1309–1333. https://doi.org/10.1093/mnras/stv2405. arXiv:1510.05356

  41. Banda-Barragán WE, Federrath C, Crocker RM, Bicknell GV (2018) Filament formation in wind-cloud interactions—II. Clouds with turbulent density, velocity, and magnetic fields. Mon Not R Astron Soc 473(3):3454–3489. https://doi.org/10.1093/mnras/stx2541. arXiv:1706.06607

  42. Banda-Barragán WE, Zertuche FJ, Federrath C, García Del Valle J, Brüggen M, Wagner AY (2019) On the dynamics and survival of fractal clouds in galactic winds. Mon Not R Astron Soc 486(4):4526–4544. https://doi.org/10.1093/mnras/stz1040. arXiv:1901.06924

  43. Banerji M, Alaghband-Zadeh S, Hewett PC, McMahon RG (2015) Heavily reddened type 1 quasars at \(z >2\)—I. Evidence for significant obscured black hole growth at the highest quasar luminosities. Mon Not R Astron Soc 447(4):3368–3389. https://doi.org/10.1093/mnras/stu2649. arXiv:1501.00815

  44. Barbosa FKB, Storchi-Bergmann T, McGregor P, Vale TB, Rogemar Riffel A (2014) Modelling the [Fe II] \(\lambda 1.644\mu \text{ m }\) outflow and comparison with \(\text{ H }_{2}\) and \(\text{ H }^{+}\) kinematics in the inner 200 pc of NGC 1068. Mon Not R Astron Soc 445(3):2353–2370. https://doi.org/10.1093/mnras/stu1637. arXiv:1408.4750

  45. Barcos-Muñoz L, Aalto S, Thompson TA, Sakamoto K, Martín S, Leroy AK, Privon GC, Evans AS, Kepley A (2018) Fast, collimated outflow in the western nucleus of Arp 220. Astrophys J Lett 853(2):L28. https://doi.org/10.3847/2041-8213/aaa28d. arXiv:1712.06381

  46. Barger KA, Lehner N, Howk JC (2016) Down-the-barrel and transverse observations of the large magellanic cloud: evidence for a symmetric galactic wind on the near and far sides of the galaxy. Astrophys J 817(2):91. https://doi.org/10.3847/0004-637X/817/2/91. arXiv:1512.00461

  47. Barnes AT, Longmore SN, Battersby C, Bally J, Kruijssen JMD, Henshaw JD, Walker DL (2017) Star formation rates and efficiencies in the Galactic Centre. Mon Not R Astron Soc 469(2):2263–2285. https://doi.org/10.1093/mnras/stx941. arXiv:1704.03572

  48. Baron D, Netzer H (2019a) Discovering AGN-driven winds through their infrared emission—I. General method and wind location. Mon Not R Astron Soc 482(3):3915–3932. https://doi.org/10.1093/mnras/sty2935. arXiv:1810.06562

  49. Baron D, Netzer H (2019b) Discovering AGN-driven winds through their infrared emission—II. Mass outflow rate and energetics. Mon Not R Astron Soc 486(3):4290–4303. https://doi.org/10.1093/mnras/stz1070. arXiv:1903.11076

  50. Barvainis R (1987) Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei. Astrophys J 320:537. https://doi.org/10.1086/165571

    ADS  Article  Google Scholar 

  51. Bauer M, Pietsch W, Trinchieri G, Breitschwerdt D, Ehle M, Read A (2007) High-resolution X-ray spectroscopy and imaging of the nuclear outflow of the starburst galaxy NGC 253. Astron Astrophys 467(3):979–989. https://doi.org/10.1051/0004-6361:20066340. arXiv:astro-ph/0610302

    ADS  Article  Google Scholar 

  52. Bautista MA, Dunn JP, Arav N, Korista KT, Moe M, Benn C (2010) Distance to multiple kinematic components of quasar outflows: very large telescope observations of QSO 2359–1241 and SDSS J0318–0600. Astrophys J 713(1):25–31. https://doi.org/10.1088/0004-637X/713/1/25. arXiv:1003.0970

    ADS  Article  Google Scholar 

  53. Behroozi PS, Wechsler RH, Conroy C (2013) the average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys J 770(1):57. https://doi.org/10.1088/0004-637X/770/1/57. arXiv:1207.6105

    ADS  Article  Google Scholar 

  54. Beirão P, Armus L, Lehnert MD, Guillard P, Heckman T, Draine B, Hollenbach D, Walter F, Sheth K, Smith JD, Shopbell P, Boulanger F, Surace J, Hoopes C, Engelbracht C (2015) Spatially resolved Spitzer-IRS spectral maps of the superwind in M82. Mon Not R Astron Soc 451(3):2640–2655. https://doi.org/10.1093/mnras/stv1101. arXiv:1505.04069

  55. Belokurov V, Erkal D, Evans NW, Koposov SE, Deason AJ (2018) Co-formation of the disc and the stellar halo. Mon Not R Astron Soc 478(1):611–619. https://doi.org/10.1093/mnras/sty982. arXiv:1802.03414

  56. Belokurov V, Sanders JL, Fattahi A, Smith MC, Deason AJ, Evans NW, Grand RJJ (2019) The biggest splash. ArXiv e-prints arXiv:1909.04679

  57. Bendo GJ, Beswick RJ, D’Cruze MJ, Dickinson C, Fuller GA, Muxlow TWB (2015) ALMA observations of 99 GHz free-free and \(\text{ H }40\alpha \) line emission from star formation in the centre of NGC 253. Mon Not R Astron Soc 450(1):L80–L84. https://doi.org/10.1093/mnrasl/slv053. arXiv:1504.02142

  58. Bertoldi F, McKee CF (1990) The photoevaporation of interstellar clouds. II. Equilibrium cometary clouds. Astrophys J 354:529. https://doi.org/10.1086/168713

    Article  Google Scholar 

  59. Bianchi S (2013) Vindicating single-T modified blackbody fits to Herschel SEDs. Astron Astrophys 552:A89. https://doi.org/10.1051/0004-6361/201220866. arXiv:1302.5699

    ADS  Article  Google Scholar 

  60. Bieri R, Dubois Y, Silk J, Mamon GA (2015) Playing with positive feedback: external pressure-triggering of a star-forming disk galaxy. Astrophys J Lett 812(2):L36. https://doi.org/10.1088/2041-8205/812/2/L36. arXiv:1503.05823

  61. Bieri R, Dubois Y, Silk J, Mamon GA, Gaibler V (2016) External pressure-triggering of star formation in a disc galaxy: a template for positive feedback. Mon Not R Astron Soc 455(4):4166–4182. https://doi.org/10.1093/mnras/stv2551. arXiv:1507.00730

  62. Biernacki P, Teyssier R (2018) The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies. Mon Not R Astron Soc 475(4):5688–5703. https://doi.org/10.1093/mnras/sty216. arXiv:1712.02794

  63. Bigiel F, Leroy A, Walter F, Brinks E, de Blok WJG, Madore B, Thornley MD (2008) The star formation law in nearby galaxies on sub-Kpc scales. Astron J 136(6):2846–2871. https://doi.org/10.1088/0004-6256/136/6/2846. arXiv:0810.2541

    ADS  Article  Google Scholar 

  64. Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press

  65. Biscaro C, Cherchneff I (2014) Molecules and dust in Cassiopeia A. I. Synthesis in the supernova phase and processing by the reverse shock in the clumpy remnant. Astron Astrophys 564:A25. https://doi.org/10.1051/0004-6361/201322932. arXiv:1401.5594

  66. Biscaro C, Cherchneff I (2016) Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants. Astron Astrophys 589:A132. https://doi.org/10.1051/0004-6361/201527769. arXiv:1511.05487

  67. Bischetti M, Maiolino R, Fiore SCF, Piconcelli E, Fluetsch A (2019a) Widespread QSO-driven outflows in the early Universe. Astron Astrophys 630:A59. https://doi.org/10.1051/0004-6361/201833557. arXiv:1806.00786

    Article  Google Scholar 

  68. Bischetti M, Piconcelli E, Feruglio C, Fiore F, Carniani S, Brusa M, Cicone C, Vignali C, Bongiorno A, Cresci G, Mainieri V, Maiolino R, Marconi A, Nardini E, Zappacosta L (2019b) The gentle monster PDS 456. Kiloparsec-scale molecular outflow and its implications for QSO feedback. Astron Astrophys 628:A118. https://doi.org/10.1051/0004-6361/201935524. arXiv:1903.10528

  69. Bish HV, Werk JK, Prochaska JX, Rubin KHR, Zheng Y, O’Meara JM, Deason AJ (2019) Galactic gas flows from halo to disk: tomography and kinematics at the Milky Way’s disk-halo interface. Astrophys J 882(2):76. https://doi.org/10.3847/1538-4357/ab3414. arXiv:1907.09459

  70. Bland-Hawthorn J, Cohen M (2003) The large-scale bipolar wind in the galactic center. Astrophys J 582(1):246–256. https://doi.org/10.1086/344573. arXiv:astro-ph/0208553

    ADS  Article  Google Scholar 

  71. Bland-Hawthorn J, Gerhard O (2016) The galaxy in context: structural, kinematic, and integrated properties. Annu Rev Astron Astrophys 54:529–596. https://doi.org/10.1146/annurev-astro-081915-023441. arXiv:1602.07702

  72. Bland-Hawthorn J, Maloney PR, Sutherland RS, Madsen GJ (2013) Fossil imprint of a powerful flare at the galactic center along the magellanic stream. Astrophys J 778(1):58. https://doi.org/10.1088/0004-637X/778/1/58. arXiv:1309.5455

    ADS  Article  Google Scholar 

  73. Bland-Hawthorn J, Maloney P, Sutherland R, Groves B, Guglielmo M, Hao Li W, Curzons A, Cecil G, Fox A (2019) The large-scale ionization cones in the Galaxy. ArXiv e-prints arXiv:1910.02225

  74. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion disks and the production of radio jets. Mon Not R Astron Soc 199:883–903. https://doi.org/10.1093/mnras/199.4.883

    ADS  Article  MATH  Google Scholar 

  75. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. Mon Not R Astron Soc 179:433–456. https://doi.org/10.1093/mnras/179.3.433

    ADS  Article  Google Scholar 

  76. de Blok WJG, Walter F, Ferguson AMN, Bernard EJ, van der Hulst JM, Neeleman M, Leroy AK, Ott J, Zschaechner LK, Zwaan MA, Yun MS, Langston G, Keating KM (2018) A high-resolution mosaic of the neutral hydrogen in the M81 triplet. Astrophys J 865(1):26. https://doi.org/10.3847/1538-4357/aad557. arXiv:1808.02840

  77. Bluck AFL, Mendel JT, Ellison SL, Patton DR, Simard L, Henriques BMB, Torrey P, Teimoorinia H, Moreno J, Starkenburg E (2016) The impact of galactic properties and environment on the quenching of central and satellite galaxies: a comparison between SDSS, Illustris and L-Galaxies. Mon Not R Astron Soc 462(3):2559–2586. https://doi.org/10.1093/mnras/stw1665. arXiv:1607.03318

  78. Bluck AFL, Maiolino R, Sanchez S, Ellison SL, Thorp MD, Piotrowska JM, Teimoorinia H, Bundy KA (2019) Are galactic star formation and quenching governed by local, global or environmental phenomena? ArXiv e-prints arXiv:1911.08857

  79. Bocchio M, Bianchi S, Hunt LK, Schneider R (2016) Halo dust detection around NGC 891. Astron Astrophys 586:A8. https://doi.org/10.1051/0004-6361/201526950. arXiv:1509.07677

  80. Boksenberg A, Carswell RF, Allen DA, Fosbury RAE, Penston MV, Sargent WLW (1977) The remarkable Seyfert galaxy Markarian 231. Mon Not R Astron Soc 178:451–466. https://doi.org/10.1093/mnras/178.3.451

    ADS  Article  Google Scholar 

  81. Bolatto AD, Warren SR, Leroy AK, Walter F, Veilleux S, Ostriker EC, Ott J, Zwaan M, Fisher DB, Weiss A, Rosolowsky E, Hodge J (2013a) Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind. Nature 499(7459):450–453. https://doi.org/10.1038/nature12351. arXiv:1307.6259

    ADS  Article  Google Scholar 

  82. Bolatto AD, Wolfire M, Leroy AK (2013b) The CO-to-\(\text{ H }_{2}\) conversion factor. Annu Rev Astron Astrophys 51(1):207–268. https://doi.org/10.1146/annurev-astro-082812-140944. arXiv:1301.3498

    ADS  Article  Google Scholar 

  83. Bolatto AD, Armus L, Leroy AK, Veilleux S, Walter F, Mushotzky R (2018) How do cold gas outflows shape galaxies? In: Murphy E (ed) Science with a Next Generation Very Large Array, ASP Conference Series, Monograph 7. Astronomical Society of the Pacific, San Francisco, p 441

  84. Bonato M, De Zotti G, Leisawitz D, Negrello M, Massardi M, Baronchelli I, Cai ZY, Bradford CM, Pope A, Murphy EJ, Armus L, Cooray A (2019) Origins Space Telescope: predictions for far-IR spectroscopic surveys. Publ Astron Soc Australia 36:e017. https://doi.org/10.1017/pasa.2019.8. arXiv:1903.00946

  85. Bordoloi R, Lilly SJ, Knobel C, Bolzonella M, Kampczyk P, Carollo CM, Iovino A, Zucca E, Contini T, Kneib JP, Le Fevre O, Mainieri V, Renzini A, Scodeggio M, Zamorani G, Balestra I, Bardelli S, Bongiorno A, Caputi K, Cucciati O, de la Torre S, de Ravel L, Garilli B, Kovač K, Lamareille F, Le Borgne JF, Le Brun V, Maier C, Mignoli M, Pello R, Peng Y, Perez Montero E, Presotto V, Scarlata C, Silverman J, Tanaka M, Tasca L, Tresse L, Vergani D, Barnes L, Cappi A, Cimatti A, Coppa G, Diener C, Franzetti P, Koekemoer A, López-Sanjuan C, McCracken HJ, Moresco M, Nair P, Oesch P, Pozzetti L, Welikala N (2011) The radial and azimuthal profiles of Mg II absorption around \(0.5 < z < 0.9\) zCOSMOS galaxies of different colors, masses, and environments. Astrophys J 743(1):10. https://doi.org/10.1088/0004-637X/743/1/10. arXiv:1106.0616

  86. Bordoloi R, Lilly SJ, Hardmeier E, Contini T, Kneib JP, Le Fevre O, Mainieri V, Renzini A, Scodeggio M, Zamorani G, Bardelli S, Bolzonella M, Bongiorno A, Caputi K, Carollo CM, Cucciati O, de la Torre S, de Ravel L, Garilli B, Iovino A, Kampczyk P, Kovač K, Knobel C, Lamareille F, Le Borgne JF, Le Brun V, Maier C, Mignoli M, Oesch P, Pello R, Peng Y, Perez Montero E, Presotto V, Silverman J, Tanaka M, Tasca L, Tresse L, Vergani D, Zucca E, Cappi A, Cimatti A, Coppa G, Franzetti P, Koekemoer A, Moresco M, Nair P, Pozzetti L (2014a) The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at \(z \sim 1\). Astrophys J 794(2):130. https://doi.org/10.1088/0004-637X/794/2/130. arXiv:1307.6553

    ADS  Article  Google Scholar 

  87. Bordoloi R, Tumlinson J, Werk JK, Oppenheimer BD, Peeples MS, Prochaska JX, Tripp TM, Katz N, Davé R, Fox AJ, Thom C, Ford AB, Weinberg DH, Burchett JN, Kollmeier JA (2014b) The COS-dwarfs survey: the carbon reservoir around sub-L* galaxies. Astrophys J 796(2):136. https://doi.org/10.1088/0004-637X/796/2/136. arXiv:1406.0509

    ADS  Article  Google Scholar 

  88. Bordoloi R, Rigby JR, Tumlinson J, Bayliss MB, Sharon K, Gladders MG, Wuyts E (2016) Spatially resolved galactic wind in lensed galaxy RCSGA 032727–132609. Mon Not R Astron Soc 458(2):1891–1908. https://doi.org/10.1093/mnras/stw449. arXiv:1602.07700

  89. Bordoloi R, Fox AJ, Lockman FJ, Wakker BP, Jenkins EB, Savage BD, Hernandez S, Tumlinson J, Bland-Hawthorn J, Kim TS (2017a) Mapping the nuclear outflow of the milky way: studying the kinematics and spatial extent of the northern Fermi bubble. Astrophys J 834(2):191. https://doi.org/10.3847/1538-4357/834/2/191. arXiv:1612.01578

  90. Bordoloi R, Wagner AY, Heckman TM, Norman CA (2017b) The formation and physical origin of highly ionized cooling gas. Astrophys J 848(2):122. https://doi.org/10.3847/1538-4357/aa8e9c. arXiv:1605.07187

  91. Boreiko RT, Betz AL (1996) The 12C/13C isotopic ratio in photodissociated gas in M42. Astrophys J Lett 467:L113. https://doi.org/10.1086/310204. arXiv:astro-ph/9606143

    ADS  Article  Google Scholar 

  92. Borisova E, Cantalupo S, Lilly SJ, Marino RA, Gallego SG, Bacon R, Blaizot J, Bouché N, Brinchmann J, Carollo CM, Caruana J, Finley H, Herenz EC, Richard J, Schaye J, Straka LA, Turner ML, Urrutia T, Verhamme A, Wisotzki L (2016) Ubiquitous giant \(\text{ Ly }\alpha \) nebulae around the brightest quasars at \(z \sim 3.5\) revealed with MUSE. Astrophys J 831(1):39. https://doi.org/10.3847/0004-637X/831/1/39. arXiv:1605.01422

  93. Bouché N, Hohensee W, Vargas R, Kacprzak GG, Martin CL, Cooke J, Churchill CW (2012) Physical properties of galactic winds using background quasars. Mon Not R Astron Soc 426(2):801–815. https://doi.org/10.1111/j.1365-2966.2012.21114.x. arXiv:1110.5877

    ADS  Article  Google Scholar 

  94. Bourne MA, Sijacki D (2017) AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. Mon Not R Astron Soc 472(4):4707–4735. https://doi.org/10.1093/mnras/stx2269. arXiv:1705.07900

  95. Bouwman J, Meeus G, de Koter A, Hony S, Dominik C, Waters LBFM (2001) Processing of silicate dust grains in Herbig Ae/Be systems. Astron Astrophys 375:950–962. https://doi.org/10.1051/0004-6361:20010878

    ADS  Article  Google Scholar 

  96. Bowen DV, Jenkins EB, Tripp TM, Sembach KR, Savage BD, Moos HW, Oegerle WR, Friedman SD, Gry C, Kruk JW, Murphy E, Sankrit R, Shull JM, Sonneborn G, York DG (2008) The far ultraviolet spectroscopic explorer survey of O VI absorption in the disk of the Milky Way. Astrophys J Suppl Ser 176(1):59–163. https://doi.org/10.1086/524773. arXiv:0711.0005

    ADS  Article  Google Scholar 

  97. Bower RG, Schaye J, Frenk CS, Theuns T, Schaller M, Crain RA, McAlpine S (2017) The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Mon Not R Astron Soc 465(1):32–44. https://doi.org/10.1093/mnras/stw2735. arXiv:1607.07445

  98. Bregman JN (1980) The galactic fountain of high-velocity clouds. Astrophys J 236:577–591. https://doi.org/10.1086/157776

    ADS  Article  Google Scholar 

  99. Bregman JN, Miller ED, Seitzer P, Cowley CR, Miller MJ (2013) Outflow versus infall in spiral galaxies: metal absorption in the halo of NGC 891. Astrophys J 766(1):57. https://doi.org/10.1088/0004-637X/766/1/57. arXiv:1304.0795

    ADS  Article  Google Scholar 

  100. Brennan R, Choi E, Somerville RS, Hirschmann M, Naab T, Ostriker JP (2018) Momentum-driven winds from radiatively efficient black hole accretion and their impact on galaxies. Astrophys J 860(1):14. https://doi.org/10.3847/1538-4357/aac2c4. arXiv:1805.00946

  101. Brüggen M, Scannapieco E (2016) The launching of cold clouds by galaxy outflows. II. The role of thermal conduction. Astrophys J 822(1):31. https://doi.org/10.3847/0004-637X/822/1/31. arXiv:1602.01843

  102. Brusa M, Cresci G, Daddi E, Paladino R, Perna M, Bongiorno A, Lusso E, Sargent MT, Casasola V, Feruglio C, Fraternali F, Georgiev I, Mainieri V, Carniani S, Comastri A, Duras F, Fiore F, Mannucci F, Marconi A, Piconcelli E, Zamorani G, Gilli R, La Franca F, Lanzuisi G, Lutz D, Santini P, Scoville NZ, Vignali C, Vito F, Rabien S, Busoni L, Bonaglia M (2018) Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astron Astrophys 612:A29. https://doi.org/10.1051/0004-6361/201731641. arXiv:1712.04505

  103. Burtscher L, Meisenheimer K, Tristram KRW, Jaffe W, Hönig SF, Davies RI, Kishimoto M, Pott JU, Röttgering H, Schartmann M, Weigelt G, Wolf S (2013) A diversity of dusty AGN tori. Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies. Astron Astrophys 558:A149. https://doi.org/10.1051/0004-6361/201321890. arXiv:1307.2068

  104. Bustard C, Zweibel EG, D’Onghia E, Gallagher I J S, Farber R (2019) Cosmic ray driven outflows from the large magellanic cloud: contributions to the LMC filament. ArXiv e-prints arXiv:1911.02021

  105. Bykov AM, Ellison DC, Marcowith A, Osipov SM (2018) Cosmic ray production in supernovae. Space Sci Rev 214(1):41. https://doi.org/10.1007/s11214-018-0479-4. arXiv:1801.08890

  106. Cai Z, Cantalupo S, Prochaska JX, Arrigoni Battaia F, Burchett J, Li Q, Chisholm J, Bundy K, Hennawi JF (2019) Evolution of the cool gas in the circumgalactic medium (CGM) of massive halos—a keck cosmic web imager (KCWI) survey of \(\text{ Ly }\alpha \) emission around QSOs at \(z\approx 2\). ArXiv e-prints arXiv:1909.11098

  107. Cano-Díaz M, Maiolino R, Marconi A, Netzer H, Shemmer O, Cresci G (2012) Observational evidence of quasar feedback quenching star formation at high redshift. Astron Astrophys 537:L8. https://doi.org/10.1051/0004-6361/201118358. arXiv:1112.3071

    ADS  Article  Google Scholar 

  108. Cantalupo S, Porciani C, Lilly SJ (2008) Mapping neutral hydrogen during reionization with the \(\text{ Ly }\alpha \) emission from quasar ionization fronts. Astrophys J 672(1):48–58. https://doi.org/10.1086/523298. arXiv:0709.0654

    ADS  Article  Google Scholar 

  109. Cardelli JA, Clayton GC, Mathis JS (1989) The relationship between infrared, optical, and ultraviolet extinction. Astrophys J 345:245. https://doi.org/10.1086/167900

    ADS  Article  Google Scholar 

  110. Carniani S, Marconi A, Maiolino R, Balmaverde B, Brusa M, Cano-Díaz M, Cicone C, Comastri A, Cresci G, Fiore F, Feruglio C, La Franca F, Mainieri V, Mannucci F, Nagao T, Netzer H, Piconcelli E, Risaliti G, Schneider R, Shemmer O (2015) Ionised outflows in \(z \sim 2.4\) quasar host galaxies. Astron Astrophys 580:A102. https://doi.org/10.1051/0004-6361/201526557. arXiv:1506.03096

  111. Carniani S, Marconi A, Maiolino R, Balmaverde B, Brusa M, Cano-Díaz M, Cicone C, Comastri A, Cresci G, Fiore F, Feruglio C, La Franca F, Mainieri V, Mannucci F, Nagao T, Netzer H, Piconcelli E, Risaliti G, Schneider R, Shemmer O (2016) Fast outflows and star formation quenching in quasar host galaxies. Astron Astrophys 591:A28. https://doi.org/10.1051/0004-6361/201528037. arXiv:1604.04290

  112. Carniani S, Marconi A, Maiolino R, Feruglio C, Brusa M, Cresci G, Cano-Díaz M, Cicone C, Balmaverde B, Fiore F, Ferrara A, Gallerani S, La Franca F, Mainieri V, Mannucci F, Netzer H, Piconcelli E, Sani E, Schneider R, Shemmer O, Testi L (2017) AGN feedback on molecular gas reservoirs in quasars at \(z \sim 2.4\). Astron Astrophys 605:A105. https://doi.org/10.1051/0004-6361/201730672. arXiv:1706.08987

  113. Carroll TJ, Goldsmith PF (1981) Infrared pumping and rotational excitation of molecules in interstellar clouds. Astrophys J 245:891–897. https://doi.org/10.1086/158865

    ADS  Article  Google Scholar 

  114. Cazzoli S, Arribas S, Maiolino R, Colina L (2016) Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron Astrophys 590:A125. https://doi.org/10.1051/0004-6361/201526788. arXiv:1602.08505

  115. Cecil G, Bland J, Tully RB (1990) Imaging spectrophotometry of ionized gas in NGC 1068. I. Kinematics of the narrow-line region. Astrophys J 355:70. https://doi.org/10.1086/168742

  116. Cecil G, Dopita MA, Groves B, Wilson AS, Ferruit P, Pécontal E, Binette L (2002) Spatial resolution of high-velocity filaments in the narrow-line region of NGC 1068: associated absorbers caught in emission? Astrophys J 568(2):627–638. https://doi.org/10.1086/338950. arXiv:astro-ph/0112256

    ADS  Article  Google Scholar 

  117. Cernicharo J, Goicoechea JR, Daniel F, Lerate MR, Barlow MJ, Swinyard BM, van Dishoeck EF, Lim TL, Viti S, Yates J (2006) The water vapor abundance in Orion KL outflows. Astrophys J Lett 649(1):L33–L36. https://doi.org/10.1086/508259. arXiv:astro-ph/0608336

    ADS  Article  Google Scholar 

  118. Chan TK, Kereš D, Hopkins PF, Quataert E, Su KY, Hayward CC, Faucher-Giguère CA (2019) Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV \(\gamma \)-ray emission. Mon Not R Astron Soc 488(3):3716–3744. https://doi.org/10.1093/mnras/stz1895. arXiv:1812.10496

  119. Chastenet J, Sandstrom K, Chiang ID, Leroy AK, Utomo D, Bot C, Gordon KD, Draine BT, Fukui Y, Onishi T, Tsuge K (2019) The polycyclic aromatic hydrocarbon mass fraction on a 10 pc scale in the magellanic clouds. Astrophys J 876(1):62. https://doi.org/10.3847/1538-4357/ab16cf. arXiv:1904.02705

  120. Chen YM, Tremonti CA, Heckman TM, Kauffmann G, Weiner BJ, Brinchmann J, Wang J (2010) Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies. Astron J 140(2):445–461. https://doi.org/10.1088/0004-6256/140/2/445. arXiv:1003.5425

    ADS  Article  Google Scholar 

  121. Chevalier RA, Clegg AW (1985) Wind from a starburst galaxy nucleus. Nature 317(6032):44–45. https://doi.org/10.1038/317044a0

    ADS  Article  Google Scholar 

  122. Chisholm J, Tremonti CA, Leitherer C, Chen Y, Wofford A, Lundgren B (2015) Scaling relations between warm galactic outflows and their host galaxies. Astrophys J 811(2):149. https://doi.org/10.1088/0004-637X/811/2/149. arXiv:1412.2139

    ADS  Article  Google Scholar 

  123. Chisholm J, Tremonti CA, Leitherer C, Chen Y, Wofford A (2016a) Shining a light on galactic outflows: photoionized outflows. Mon Not R Astron Soc 457(3):3133–3161. https://doi.org/10.1093/mnras/stw178. arXiv:1601.05090

  124. Chisholm J, Tremonti Christy A, Leitherer C, Chen Y (2016b) A robust measurement of the mass outflow rate of the galactic outflow from NGC 6090. Mon Not R Astron Soc 463(1):541–556. https://doi.org/10.1093/mnras/stw1951. arXiv:1605.05769

  125. Chisholm J, Tremonti CA, Leitherer C, Chen Y (2017) The mass and momentum outflow rates of photoionized galactic outflows. Mon Not R Astron Soc 469(4):4831–4849. https://doi.org/10.1093/mnras/stx1164. arXiv:1702.07351

  126. Chisholm J, Tremonti C, Leitherer C (2018) Metal-enriched galactic outflows shape the mass-metallicity relationship. Mon Not R Astron Soc 481(2):1690–1706. https://doi.org/10.1093/mnras/sty2380. arXiv:1808.10453

  127. Choi E, Somerville RS, Ostriker JP, Naab T, Hirschmann M (2018) The role of black hole feedback on size and structural evolution in massive galaxies. Astrophys J 866(2):91. https://doi.org/10.3847/1538-4357/aae076. arXiv:1809.02143

  128. Chu YH, Mac Low MM, Garcia-Segura G, Wakker B, Kennicutt J, Robert C (1993) Hidden supernova remnants in the large magellanic cloud H II Complex N44. Astrophys J 414:213. https://doi.org/10.1086/173069

    ADS  Article  Google Scholar 

  129. Cicone C, Feruglio C, Maiolino R, Fiore F, Piconcelli E, Menci N, Aussel H, Sturm E (2012) The physics and the structure of the quasar-driven outflow in Mrk 231. Astron Astrophys 543:A99. https://doi.org/10.1051/0004-6361/201218793. arXiv:1204.5881

    ADS  Article  Google Scholar 

  130. Cicone C, Maiolino R, Sturm E, Graciá-Carpio J, Feruglio C, Neri R, Aalto S, Davies R, Fiore F, Fischer J, García-Burillo S, González-Alfonso E, Hailey-Dunsheath S, Piconcelli E, Veilleux S (2014) Massive molecular outflows and evidence for AGN feedback from CO observations. Astron Astrophys 562:A21. https://doi.org/10.1051/0004-6361/201322464. arXiv:1311.2595

    Article  Google Scholar 

  131. Cicone C, Maiolino R, Gallerani S, Neri R, Ferrara A, Sturm E, Fiore F, Piconcelli E, Feruglio C (2015) Very extended cold gas, star formation and outflows in the halo of a bright quasar at \( z >6\). Astron Astrophys 574:A14. https://doi.org/10.1051/0004-6361/201424980. arXiv:1409.4418

    ADS  Article  Google Scholar 

  132. Cicone C, Brusa M, Ramos Almeida C, Cresci G, Husemann B, Mainieri V (2018a) The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nature Astron 2:176–178. https://doi.org/10.1038/s41550-018-0406-3. arXiv:1802.10308

  133. Cicone C, Severgnini P, Papadopoulos PP, Maiolino R, Feruglio C, Treister E, Privon GC, Zy Zhang, Della Ceca R, Fiore F, Schawinski K, Wagg J (2018b) ALMA \(\text{[C } \text{ I] }^{3}\) P \(_{1}\)-\(^{3}\) P \(_{0}\) Observations of NGC 6240: a puzzling molecular outflow, and the role of outflows in the global \(\alpha _{CO}\) factor of (U)LIRGs. Astrophys J 863(2):143. https://doi.org/10.3847/1538-4357/aad32a. arXiv:1807.06015

  134. Cicone C, Maiolino R, Aalto S, Muller S, Feruglio C (2019) Enhanced UV radiation and dense clumps in Mrk231’s molecular outflow. ArXiv e-prints arXiv:1911.11243

  135. Cimatti A, di Serego Alighieri S, Vernet J, Cohen MH, Fosbury RAE (1998) The UV radiation from Z approximately 2.5 radio galaxies: Keck spectropolarimetry of 4C 23.56 and 4C 00.54. Astrophys J Lett 499(1):L21–L25. https://doi.org/10.1086/311354. arXiv:astro-ph/9803311

  136. Clark PC, Glover SCO, Klessen RS, Bonnell IA (2012) How long does it take to form a molecular cloud? Mon Not R Astron Soc 424(4):2599–2613. https://doi.org/10.1111/j.1365-2966.2012.21259.x. arXiv:1204.5570

    ADS  Article  Google Scholar 

  137. Coatman L, Hewett PC, Banerji M, Richards GT, Hennawi JF, Prochaska JX (2019) Kinematics of C IV and [O III] emission in luminous high-redshift quasars. Mon Not R Astron Soc 486(4):5335–5348. https://doi.org/10.1093/mnras/stz1167. arXiv:1904.13348

  138. Coil AL, Weiner BJ, Holz DE, Cooper MC, Yan R, Aird J (2011) Outflowing galactic winds in post-starburst and active galactic nucleus host galaxies at \(0.2 < z < 0.8\). Astrophys J 743(1):46. https://doi.org/10.1088/0004-637X/743/1/46. arXiv:1104.0681

  139. Combes F, García-Burillo S, Casasola V, Hunt L, Krips M, Baker AJ, Boone F, Eckart A, Marquez I, Neri R, Schinnerer E, Tacconi LJ (2014) ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433 (Corrigendum). Astron Astrophys 564:C1. https://doi.org/10.1051/0004-6361/201322288e

    ADS  Article  Google Scholar 

  140. Concas A, Popesso P, Brusa M, Mainieri V, Thomas D (2019) Two-face(s): ionized and neutral gas winds in the local Universe. Astron Astrophys 622:A188. https://doi.org/10.1051/0004-6361/201732152

    ADS  Article  Google Scholar 

  141. Conroy C, van Dokkum PG, Kravtsov A (2015) Preventing star formation in early-type galaxies with late-time stellar heating. Astrophys J 803(2):77. https://doi.org/10.1088/0004-637X/803/2/77. arXiv:1406.3026

    ADS  Article  Google Scholar 

  142. Contursi A, Poglitsch A, Graciá Carpio J, Veilleux S, Sturm E, Fischer J, Verma A, Hailey-Dunsheath S, Lutz D, Davies R, González-Alfonso E, Sternberg A, Genzel R, Tacconi L (2013) Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS. Astron Astrophys 549:A118. https://doi.org/10.1051/0004-6361/201219214. arXiv:1210.3496

    ADS  Article  Google Scholar 

  143. Cooper JL, Bicknell GV, Sutherland RS, Bland-Hawthorn J (2009) Starburst-driven galactic winds: filament formation and emission processes. Astrophys J 703(1):330–347. https://doi.org/10.1088/0004-637X/703/1/330. arXiv:0907.4004

    ADS  Article  Google Scholar 

  144. Costa T, Sijacki D, Haehnelt MG (2014) Feedback from active galactic nuclei: energy- versus momentum-driving. Mon Not R Astron Soc 444(3):2355–2376. https://doi.org/10.1093/mnras/stu1632. arXiv:1406.2691

    ADS  Article  Google Scholar 

  145. Costa T, Sijacki D, Haehnelt MG (2015) Fast cold gas in hot AGN outflows. Mon Not R Astron Soc 448:L30–L34. https://doi.org/10.1093/mnrasl/slu193. arXiv:1411.0678

    ADS  Article  Google Scholar 

  146. Costa T, Rosdahl J, Sijacki D, Haehnelt MG (2018a) Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations. Mon Not R Astron Soc 473(3):4197–4219. https://doi.org/10.1093/mnras/stx2598. arXiv:1703.05766

  147. Costa T, Rosdahl J, Sijacki D, Haehnelt MG (2018b) Quenching star formation with quasar outflows launched by trapped IR radiation. Mon Not R Astron Soc 479(2):2079–2111. https://doi.org/10.1093/mnras/sty1514. arXiv:1709.08638

  148. Costagliola F, Aalto S (2010) Vibrationally excited \(\text{ HC }_{3}\text{ N }\) in NGC 4418. Astron Astrophys 515:A71. https://doi.org/10.1051/0004-6361/200913370. arXiv:1003.3141

    ADS  Article  Google Scholar 

  149. Costagliola F, Aalto S, Sakamoto K, Martín S, Beswick R, Muller S, Klöckner HR (2013) High-resolution mm and cm study of the obscured LIRG NGC 4418. A compact obscured nucleus fed by in-falling gas? Astron Astrophys 556:A66. https://doi.org/10.1051/0004-6361/201220634. arXiv:1306.2211

  150. Costagliola F, Herrero-Illana R, Lohfink A, Pérez-Torres M, Aalto S, Muller S, Alberdi A (2016) Radio continuum and X-ray emission from the most extreme far-IR-excess galaxy NGC 1377. An extremely obscured AGN revealed. Astron Astrophys 594:A114. https://doi.org/10.1051/0004-6361/201628997. arXiv:1607.04068

  151. Crawford MK, Genzel R, Townes CH, Watson DM (1985) Far-infrared spectroscopy of galaxies: the 158 micron C+ line and the energy balance of molecular clouds. Astrophys J 291:755–771. https://doi.org/10.1086/163113

    ADS  Article  Google Scholar 

  152. Crenshaw DM, Kraemer SB (2000) Resolved spectroscopy of the narrow-line region in NGC 1068: kinematics of the ionized gas. Astrophys J Lett 532(2):L101–L104. https://doi.org/10.1086/312581. arXiv:astro-ph/0002438

    ADS  Article  Google Scholar 

  153. Cresci G, Mainieri V, Brusa M, Marconi A, Perna M, Mannucci F, Piconcelli E, Maiolino R, Feruglio C, Fiore F, Bongiorno A, Lanzuisi G, Merloni A, Schramm M, Silverman JD, Civano F (2015) Blowin’ in the wind: both “negative” and “positive” feedback in an obscured high-z quasar. Astrophys J 799(1):82. https://doi.org/10.1088/0004-637X/799/1/82. arXiv:1411.4208

    ADS  Article  Google Scholar 

  154. Crinklaw G, Federman SR, Joseph CL (1994) The depletion of calcium in the interstellar medium. Astrophys J 424:748. https://doi.org/10.1086/173927

    ADS  Article  Google Scholar 

  155. Crocker RM, Aharonian F (2011) Fermi bubbles: giant, multibillion-year-old reservoirs of galactic center cosmic rays. Phys Rev Lett 106(10):101102. https://doi.org/10.1103/PhysRevLett.106.101102. arXiv:1008.2658

    ADS  Article  Google Scholar 

  156. Crocker A, Alison F, Pellegrini E, Smith J-DT, Draine BT, Wilson CD, Wolfire M, Armus L, Brinks E, Dale DA, Groves B, Herrera-Camus R, Hunt LK, Kennicutt RC, Murphy EJ, Sandstrom K, Schinnerer E, Rigopoulou D, Rosolowsky E, Rosolowsky E (2019) [C I](1–0) and [C I](2–1) in Resolved Local Galaxies. Astrophys J. https://doi.org/10.3847/1538-4357/ab4196

  157. Crocker RM, Bicknell GV, Taylor AM, Carretti E (2015) A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the galactic center’s giant outflows. Astrophys J 808(2):107. https://doi.org/10.1088/0004-637X/808/2/107. arXiv:1412.7510

    ADS  Article  Google Scholar 

  158. Crocker RM, Krumholz MR, Thompson TA, Clutterbuck J (2018) The maximum flux of star-forming galaxies. Mon Not R Astron Soc 478(1):81–94. https://doi.org/10.1093/mnras/sty989. arXiv:1802.03117

  159. Crockett RM, Shabala SS, Kaviraj S, Antonuccio-Delogu V, Silk J, Mutchler M, O’Connell RW, Rejkuba M, Whitmore BC, Windhorst RA (2012) Triggered star formation in the inner filament of Centaurus A. Mon Not R Astron Soc 421(2):1603–1623. https://doi.org/10.1111/j.1365-2966.2012.20418.x. arXiv:1201.3369

    ADS  Article  Google Scholar 

  160. Croft S, van Breugel W, de Vries W, Dopita M, Martin C, Morganti R, Neff S, Oosterloo T, Schiminovich D, Stanford SA, van Gorkom J (2006) Minkowski’s object: a starburst triggered by a radio jet, revisited. Astrophys J 647(2):1040–1055. https://doi.org/10.1086/505526. arXiv:astro-ph/0604557

    ADS  Article  Google Scholar 

  161. Curran SJ, Allison JR, Whiting MT, Sadler EM, Combes F, Pracy MB, Bignell C, Athreya R (2016) A search for H I and OH absorption in \(\text{ z } \gtrsim 3 \text{ CO }\) emitters. Mon Not R Astron Soc 457(4):3666–3677. https://doi.org/10.1093/mnras/stw089. arXiv:1601.01971

  162. Curran SJ, Hunstead RW, Johnston HM, Whiting MT, Sadler EM, Allison JR, Athreya R (2019) Ionization of the atomic gas in redshifted radio sources. Mon Not R Astron Soc 484(1):1182–1191. https://doi.org/10.1093/mnras/stz038. arXiv:1901.00887

  163. Das V, Crenshaw DM, Kraemer SB, Deo RP (2006) Kinematics of the narrow-line region in the Seyfert 2 Galaxy NGC 1068: dynamical effects of the radio jet. Astron J 132(2):620–632. https://doi.org/10.1086/504899. arXiv:astro-ph/0603803

    ADS  Article  Google Scholar 

  164. Dasyra KM, Combes F (2012) Cold and warm molecular gas in the outflow of 4C 12.50. Astron Astrophys 541:L7. https://doi.org/10.1051/0004-6361/201219229. arXiv:1203.3452

  165. Dasyra KM, Bostrom AC, Combes F, Vlahakis N (2015) A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby Galaxy IC5063. Astrophys J 815(1):34. https://doi.org/10.1088/0004-637X/815/1/34. arXiv:1503.05484

  166. Dasyra KM, Combes F, Oosterloo T, Oonk JBR, Morganti R, Salomé P, Vlahakis N (2016) ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron Astrophys 595:L7. https://doi.org/10.1051/0004-6361/201629689. arXiv:1609.03421

  167. Davé R, Finlator K, Oppenheimer BD (2011) Galaxy evolution in cosmological simulations with outflows—II. Metallicities and gas fractions. Mon Not R Astron Soc 416(2):1354–1376. https://doi.org/10.1111/j.1365-2966.2011.19132.x. arXiv:1104.3156

  168. Davé R, Anglés-Alcázar D, Narayanan D, Li Q, Rafieferantsoa MH, Appleby S (2019) SIMBA: cosmological simulations with black hole growth and feedback. Mon Not R Astron Soc 486(2):2827–2849. https://doi.org/10.1093/mnras/stz937. arXiv:1901.10203

  169. Davies JJ, Crain RA, Oppenheimer BD, Schaye J (2019) The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. ArXiv e-prints arXiv:1908.11380

  170. Davies R (2008) Adaptive optics: observations and prospects for studies of active Galactic Nuclei. New Astron Rev 52(6):307–322. https://doi.org/10.1016/j.newar.2008.06.002. arXiv:0806.0468

    ADS  Article  Google Scholar 

  171. Davies RL, Kewley LJ, Ho IT, Dopita MA (2014) Starburst-AGN mixing—II. Optically selected active galaxies. Mon Not R Astron Soc 444(4):3961–3974. https://doi.org/10.1093/mnras/stu1740. arXiv:1408.5888

  172. Davies RL, Groves B, Kewley LJ, Dopita MA, Hampton EJ, Shastri P, Scharwächter J, Sutherland R, Kharb P, Bhatt H, Jin C, Banfield J, Zaw I, James B, Juneau S, Srivastava S (2016) Dissecting galaxies: spatial and spectral separation of emission excited by star formation and AGN activity. Mon Not R Astron Soc 462(2):1616–1629. https://doi.org/10.1093/mnras/stw1754. arXiv:1607.05731

  173. Davis TA, Krajnović D, McDermid RM, Bureau M, Sarzi M, Nyland K, Alatalo K, Bayet E, Blitz L, Bois M, Bournaud F, Cappellari M, Crocker A, Davies RL, de Zeeuw PT, Duc PA, Emsellem E, Khochfar S, Kuntschner H, Lablanche PY, Morganti R, Naab T, Oosterloo T, Scott N, Serra P, Weijmans AM, Young LM (2012) Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC 1266. Mon Not R Astron Soc 426(2):1574–1590. https://doi.org/10.1111/j.1365-2966.2012.21770.x. arXiv:1207.5799

    ADS  Article  Google Scholar 

  174. De Cia A (2018) Metals and dust in the neutral ISM: the galaxy, magellanic clouds, and damped Lyman-\(\alpha \) absorbers. Astron Astrophys 613:L2. https://doi.org/10.1051/0004-6361/201833034. arXiv:1805.05365

  175. De Cia A, Ledoux C, Mattsson L, Petitjean P, Srianand R, Gavignaud I, Jenkins EB (2016) Dust-depletion sequences in damped Lyman-\(\alpha \) absorbers. A unified picture from low-metallicity systems to the Galaxy. Astron Astrophys 596:A97. https://doi.org/10.1051/0004-6361/201527895. arXiv:1608.08621

  176. De Young DS (1981) Emission line regions and stellar associations in extended extragalactic radio sources. Nature 293(5827):43–44. https://doi.org/10.1038/293043a0

    ADS  Article  Google Scholar 

  177. Debuhr J, Quataert E, Ma CP (2012) Galaxy-scale outflows driven by active galactic nuclei. Mon Not R Astron Soc 420(3):2221–2231. https://doi.org/10.1111/j.1365-2966.2011.20187.x. arXiv:1107.5579

    ADS  Article  Google Scholar 

  178. Decataldo D, Ferrara A, Pallottini A, Gallerani S, Vallini L (2017) Molecular clumps photoevaporation in ionized regions. Mon Not R Astron Soc 471(4):4476–4487. https://doi.org/10.1093/mnras/stx1879. arXiv:1707.08574

  179. Decataldo D, Pallottini A, Ferrara A, Vallini L, Gallerani S (2019) Photoevaporation of Jeans-unstable molecular clumps. Mon Not R Astron Soc 487(3):3377–3391. https://doi.org/10.1093/mnras/stz1527. arXiv:1905.13230

  180. Dessauges-Zavadsky M, Prochaska JX, D’Odorico S, Calura F, Matteucci F (2006) A new comprehensive set of elemental abundances in DLAs. II. Data analysis and chemical variation studies. Astron Astrophys 445(1):93–113. https://doi.org/10.1051/0004-6361:20053200. arXiv:astro-ph/0511031

  181. Dessauges-Zavadsky M, D’Odorico S, Schaerer D, Modigliani A, Tapken C, Vernet J (2010) Rest-frame ultraviolet spectrum of the gravitationally lensed galaxy “the 8 o’clock arc”: stellar and interstellar medium properties. Astron Astrophys 510:A26. https://doi.org/10.1051/0004-6361/200913337. arXiv:0912.4384

    ADS  Article  Google Scholar 

  182. Devine D, Bally J (1999) \(\text{ H }\alpha \) Emission 11 Kiloparsecs above M82. Astrophys J 510(1):197–204. https://doi.org/10.1086/306582

    ADS  Article  Google Scholar 

  183. Di Matteo T, Springel V, Hernquist L (2005) Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433(7026):604–607. https://doi.org/10.1038/nature03335. arXiv:astro-ph/0502199

    ADS  Article  Google Scholar 

  184. di Serego Alighieri S, Cimatti A, Fosbury RAE, Hes R (1997) Anisotropic [OIII] emission in radio loud AGN. Astron Astrophys 328:510–516 arXiv:astro-ph/9708205

    ADS  Google Scholar 

  185. Di Teodoro EM, Fraternali F (2015) \(^{3D}\) BAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon Not R Astron Soc 451(3):3021–3033. https://doi.org/10.1093/mnras/stv1213. arXiv:1505.07834

  186. Di Teodoro EM, McClure-Griffiths NM, Lockman FJ, Denbo SR, Endsley R, Ford HA, Harrington K (2018) Blowing in the Milky Way wind: neutral hydrogen clouds tracing the galactic nuclear outflow. Astrophys J 855(1):33. https://doi.org/10.3847/1538-4357/aaad6a. arXiv:1802.02152

  187. Di Teodoro EM, McClure-Griffiths NM, De Breuck C, Armillotta L, Pingel NM, Jameson KE, Dickey JM, Rubio M, Stanimirović S, Staveley-Smith L (2019) Molecular gas in the outflow of the small magellanic cloud. Astrophys J Lett 885(2):L32. https://doi.org/10.3847/2041-8213/ab4fe9

    ADS  Article  Google Scholar 

  188. Diamond-Stanic AM, Moustakas J, Tremonti CA, Coil AL, Hickox RC, Robaina AR, Rudnick GH, Sell PH (2012) High-velocity outflows without AGN feedback: Eddington-limited star formation in compact massive galaxies. Astrophys J Lett 755(2):L26. https://doi.org/10.1088/2041-8205/755/2/L26. arXiv:1205.2368

    ADS  Article  Google Scholar 

  189. Díaz-Santos T, Assef RJ, Blain AW, Tsai CW, Aravena M, Eisenhardt P, Wu J, Stern D, Bridge C (2016) The strikingly uniform, highly turbulent interstellar medium of the most luminous galaxy in the universe. Astrophys J Lett 816(1):L6. https://doi.org/10.3847/2041-8205/816/1/L6. arXiv:1511.04079

  190. Diesing R, Caprioli D (2018) Effect of cosmic rays on the evolution and momentum deposition of supernova remnants. Phys Rev Lett 121(9):091101. https://doi.org/10.1103/PhysRevLett.121.091101. arXiv:1804.09731

  191. Dijkstra M (2017) Saas-fee lecture notes: physics of Lyman alpha radiative transfer. ArXiv e-prints arXiv:1704.03416

  192. Dobler G, Finkbeiner DP (2008) Extended anomalous foreground emission in the WMAP three-year data. Astrophys J 680(2):1222–1234. https://doi.org/10.1086/587862. arXiv:0712.1038

    ADS  Article  Google Scholar 

  193. Dobler G, Finkbeiner DP, Cholis I, Slatyer T, Weiner N (2010) The Fermi haze: a gamma-ray counterpart to the microwave haze. Astrophys J 717(2):825–842. https://doi.org/10.1088/0004-637X/717/2/825. arXiv:0910.4583

    ADS  Article  Google Scholar 

  194. Domgorgen H, Mathis JS (1994) The ionization of the diffuse ionized gas. Astrophys J 428:647. https://doi.org/10.1086/174275

    ADS  Article  Google Scholar 

  195. Dopita MA, Seitenzahl IR, Sutherland RS, Vogt FPA, Winkler PF, Blair WP (2016) Forbidden iron lines and dust destruction in supernova remnant shocks: the case of N49 in the large magellanic cloud. Astrophys J 826(2):150. https://doi.org/10.3847/0004-637X/826/2/150. arXiv:1605.02385

  196. Doyon R, Wright GS, Joseph RD (1994) A near-infrared spectroscopic study of the luminous merger NGC 3256. II. Evidence for fluorescent molecular hydrogen emission. Astrophys J 421:115. https://doi.org/10.1086/173630

  197. Draine BT (2003) Interstellar dust grains. Annu Rev Astron Astrophys 41:241–289. https://doi.org/10.1146/annurev.astro.41.011802.094840. arXiv:astro-ph/0304489

    ADS  Article  Google Scholar 

  198. Draine BT (2009) Interstellar dust models and evolutionary implications. In: Henning T, Grün E, Steinacker J (eds) Cosmic dust—near and far, ASP Conference Series, vol 414. Astronomical Society of the Pacific, San Francisco, p 453 arXiv:0903.1658

  199. Draine BT (2011) Physics of the interstellar and intergalactic medium. Princeton University Press. ISBN: 978-0-691-12214-4

  200. Draine BT, Allaf-Akbari K (2006) X-ray scattering by nonspherical grains. I. Oblate spheroids. Astrophys J 652(2):1318–1330. https://doi.org/10.1086/508133. arXiv:astro-ph/0608037

    ADS  Article  Google Scholar 

  201. Draine BT, Fraisse AA (2009) Polarized far-infrared and submillimeter emission from interstellar dust. Astrophys J 696(1):1–11. https://doi.org/10.1088/0004-637X/696/1/1. arXiv:0809.2094

    ADS  Article  Google Scholar 

  202. Draine BT, Li A (2007) Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys J 657(2):810–837. https://doi.org/10.1086/511055. arXiv:astro-ph/0608003

  203. Draine BT, Salpeter EE (1979a) Destruction mechanisms for interstellar dust. Astrophys J 231:438–455. https://doi.org/10.1086/157206

    ADS  Article  Google Scholar 

  204. Draine BT, Salpeter EE (1979b) On the physics of dust grains in hot gas. Astrophys J 231:77–94. https://doi.org/10.1086/157165

    ADS  Article  Google Scholar 

  205. Draine BT, Dale DA, Bendo G, Gordon KD, Smith JDT, Armus L, Engelbracht CW, Helou G, Kennicutt JRC, Li A, Roussel H, Walter F, Calzetti D, Moustakas J, Murphy EJ, Rieke GH, Bot C, Hollenbach DJ, Sheth K, Teplitz HI (2007) Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys J 663(2):866–894. https://doi.org/10.1086/518306. arXiv:astro-ph/0703213

    ADS  Article  Google Scholar 

  206. Du X, Shapley AE, Reddy NA, Jones T, Stark DP, Steidel CC, Strom AL, Rudie GC, Erb DK, Ellis RS, Pettini M (2018) The redshift evolution of rest-UV spectroscopic properties in Lyman-break galaxies at \(z \sim 2\)-\(4\). Astrophys J 860(1):75. https://doi.org/10.3847/1538-4357/aabfcf. arXiv:1803.05912

  207. Dubois Y, Peirani S, Pichon C, Devriendt J, Gavazzi R, Welker C, Volonteri M (2016) The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Mon Not R Astron Soc 463(4):3948–3964. https://doi.org/10.1093/mnras/stw2265. arXiv:1606.03086

  208. Dugan Z, Gaibler V, Silk J (2017) Feedback by AGN jets and wide-angle winds on a galactic scale. Astrophys J 844(1):37. https://doi.org/10.3847/1538-4357/aa7566. arXiv:1608.01370

  209. Dumouchel F, Faure A, Lique F (2010) The rotational excitation of HCN and HNC by He: temperature dependence of the collisional rate coefficients. Mon Not R Astron Soc 406(4):2488–2492. https://doi.org/10.1111/j.1365-2966.2010.16826.x

    ADS  Article  Google Scholar 

  210. Dunn JP, Bautista M, Arav N, Moe M, Korista K, Costantini E, Benn C, Ellison S, Edmonds D (2010) The quasar outflow contribution to AGN feedback: VLT measurements of SDSS J0318–0600. Astrophys J 709(2):611–631. https://doi.org/10.1088/0004-637X/709/2/611. arXiv:0911.3896

    ADS  Article  Google Scholar 

  211. Dunn JP, Wasik B, Holtzclaw CL, Yenerall D, Bautista M, Arav N, Hayes D, Moe M, Ho LC, Harper Dutton S (2015) Determining the locations of dust sources in FeLoBAL quasars. Astrophys J 808(1):94. https://doi.org/10.1088/0004-637X/808/1/94. arXiv:1509.05060

  212. Efstathiou G (2000) A model of supernova feedback in galaxy formation. Mon Not R Astron Soc 317(3):697–719. https://doi.org/10.1046/j.1365-8711.2000.03665.x. arXiv:astro-ph/0002245

    ADS  Article  Google Scholar 

  213. El-Badry K, Wetzel A, Geha M, Hopkins PF, Kereš D, Chan TK, Faucher-Giguère CA (2016) Breathing FIRE: how stellar feedback drives radial migration, rapid size fluctuations, and population gradients in low-mass galaxies. Astrophys J 820(2):131. https://doi.org/10.3847/0004-637X/820/2/131. arXiv:1512.01235

  214. El-Badry K, Ostriker EC, Kim CG, Quataert E, Weisz DR (2019) Evolution of supernovae-driven superbubbles with conduction and cooling. Mon Not R Astron Soc 490(2):1961–1990. https://doi.org/10.1093/mnras/stz2773. arXiv:1902.09547

    ADS  Article  Google Scholar 

  215. Elbaz D, Jahnke K, Pantin E, Le Borgne D, Letawe G (2009) Quasar induced galaxy formation: a new paradigm? Astron Astrophys 507(3):1359–1374. https://doi.org/10.1051/0004-6361/200912848. arXiv:0907.2923

    ADS  Article  Google Scholar 

  216. Elitzur M, Shlosman I (2006) The AGN-obscuring torus: the end of the “Doughnut” paradigm? Astrophys J Lett 648(2):L101–L104. https://doi.org/10.1086/508158. arXiv:astro-ph/0605686

    ADS  Article  Google Scholar 

  217. Ellison SL, Thorp MD, Lin L, Pan HA, Bluck AFL, Scudder JM, Teimoorinia H, Sanchez SF, Sargent M (2020) The ALMaQUEST survey: III. Scatter in the resolved star forming main sequence is primarily due to variations in star formation efficiency. Mon Not R Astron Soc Lett 493(1):L39–L43. https://doi.org/10.1093/mnrasl/slz179. arXiv:1911.11887

    ADS  Article  Google Scholar 

  218. Emerick A, Bryan GL, Mac Low MM, Côté B, Johnston KV, O’Shea BW (2018) Metal mixing and ejection in dwarf galaxies are dependent on nucleosynthetic source. Astrophys J 869(2):94. https://doi.org/10.3847/1538-4357/aaec7d. arXiv:1809.01167

  219. Engelbracht CW, Kundurthy P, Gordon KD, Rieke GH, Kennicutt RC, Smith JDT, Regan MW, Makovoz D, Sosey M, Draine BT, Helou G, Armus L, Calzetti D, Meyer M, Bendo GJ, Walter F, Hollenbach D, Cannon JM, Murphy EJ, Dale DA, Buckalew BA, Sheth K (2006) Extended mid-infrared aromatic feature emission in M82. Astrophys J Lett 642(2):L127–L132. https://doi.org/10.1086/504590. arXiv:astro-ph/0603551

    ADS  Article  Google Scholar 

  220. Erb DK (2015) Feedback in low-mass galaxies in the early Universe. Nature 523(7559):169–176. https://doi.org/10.1038/nature14454. arXiv:1507.02374

  221. Erb DK, Quider AM, Henry AL, Martin CL (2012) Galactic outflows in absorption and emission: near-ultraviolet spectroscopy of galaxies at \(1 < z < 2\). Astrophys J 759(1):26. https://doi.org/10.1088/0004-637X/759/1/26. arXiv:1209.4903

    ADS  Article  Google Scholar 

  222. Erb DK, Steidel CC, Chen Y (2018) The kinematics of extended \(\text{ Ly }\alpha \) emission in a low-mass, low-metallicity galaxy at \(z = 2.3\). Astrophys J Lett 862(1):L10. https://doi.org/10.3847/2041-8213/aacff6. arXiv:1807.00065

  223. Espada D, Peck AB, Matsushita S, Sakamoto K, Henkel C, Iono D, Israel FP, Muller S, Petitpas G, Pihlström Y, Taylor GB, Trung DV (2010) Disentangling the circumnuclear environs of centaurus A. II. On the nature of the broad absorption line. Astrophys J 720(1):666–678. https://doi.org/10.1088/0004-637X/720/1/666. arXiv:1007.2061

  224. Everett JE, Zweibel EG, Benjamin RA, McCammon D, Rocks L, Gallagher I, John S (2008) The Milky Way’s kiloparsec-scale wind: a hybrid cosmic-ray and thermally driven outflow. Astrophys J 674(1):258–270. https://doi.org/10.1086/524766. arXiv:0710.3712

    ADS  Article  Google Scholar 

  225. Fabian AC (1999) The obscured growth of massive black holes. Mon Not R Astron Soc 308(4):L39–L43. https://doi.org/10.1046/j.1365-8711.1999.03017.x. arXiv:astro-ph/9908064

    ADS  Article  Google Scholar 

  226. Fabian AC (2012) Observational evidence of active galactic nuclei feedback. Annu Rev Astron Astrophys 50:455–489. https://doi.org/10.1146/annurev-astro-081811-125521. arXiv:1204.4114

    ADS  Article  Google Scholar 

  227. Faerman Y, Sternberg A, McKee CF (2017) Massive warm/hot galaxy coronae as probed by UV/X-ray oxygen absorption and emission. I. Basic model. Astrophys J 835(1):52. https://doi.org/10.3847/1538-4357/835/1/52. arXiv:1602.00689

  228. Falgarone E, Puget J-L (1995) The intermittency of turbulence in interstellar clouds: implications for the gas kinetic temperature and decoupling of heavy particles from the gas motions. Astro. Astrophys 293:840–852

    ADS  Google Scholar 

  229. Falgarone E, Zwaan MA, Godard B, Bergin E, Ivison RJ, Andreani PM, Bournaud F, Bussmann RS, Elbaz D, Omont A, Oteo I, Walter F (2017) Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 548:430–433. https://doi.org/10.1038/nature23298

    ADS  Article  Google Scholar 

  230. Falstad N, González-Alfonso E, Aalto S, van der Werf PP, Fischer J, Veilleux S, Meléndez M, Farrah D, Smith HA (2015) Herschel spectroscopic observations of the compact obscured nucleus in Zw 049.057. Astron Astrophys 580:A52. https://doi.org/10.1051/0004-6361/201526114. arXiv:1505.06934

  231. Falstad N, González-Alfonso E, Aalto S, Fischer J (2017) Inflowing gas onto a compact obscured nucleus in Arp 299A. Herschel spectroscopic studies of \(\text{ H }_{2}\text{ O }\) and OH. Astron Astrophys 597:A105. https://doi.org/10.1051/0004-6361/201629050. arXiv:1611.01071

  232. Falstad N, Aalto S, Mangum JG, Costagliola F, Gallagher JS, González-Alfonso E, Sakamoto K, König S, Muller S, Evans AS, Privon GC (2018) Hidden molecular outflow in the LIRG Zw 049.057. Astron Astrophys 609:A75. https://doi.org/10.1051/0004-6361/201732088. arXiv:1711.05321

  233. Falstad N, Hallqvist F, Aalto S, König S, Muller S, Aladro R, Combes F, Evans AS, Fuller GA, Gallagher JS, García-Burillo S, González-Alfonso E, Greve TR, Henkel C, Imanishi M, Izumi T, Mangum JG, Martín S, Privon GC, Sakamoto K, Veilleux S, van der Werf PP (2019) Hidden or missing outflows in highly obscured galaxy nuclei? Astron Astrophys 623:A29. https://doi.org/10.1051/0004-6361/201834586. arXiv:1901.06723

  234. Fan L, Knudsen KK, Fogasy J, Drouart G (2018) ALMA detections of CO emission in the most luminous, heavily dust-obscured quasars at \( z> 3\). Astrophys J Lett 856(1):L5. https://doi.org/10.3847/2041-8213/aab496. arXiv:1711.10615

  235. Fang T, Jiang X (2014) High resolution X-ray spectroscopy of the local hot gas along the 3C 273 sightline. Astrophys J Lett 785(2):L24. https://doi.org/10.1088/2041-8205/785/2/L24. arXiv:1403.2028

    ADS  MathSciNet  Article  Google Scholar 

  236. Farina EP, Falomo R, Scarpa R, Decarli R, Treves A, Kotilainen JK (2014) The extent of the Mg II absorbing circumgalactic medium of quasars. Mon Not R Astron Soc 441(1):886–899. https://doi.org/10.1093/mnras/stu585. arXiv:1403.5559

    ADS  Article  Google Scholar 

  237. Faucher-Giguère CA, Quataert E (2012) The physics of galactic winds driven by active galactic nuclei. Mon Not R Astron Soc 425(1):605–622. https://doi.org/10.1111/j.1365-2966.2012.21512.x. arXiv:1204.2547

    ADS  Article  Google Scholar 

  238. Feain IJ, Papadopoulos PP, Ekers RD, Middelberg E (2007) Dressing a naked quasar: star formation and active galactic nucleus feedback in HE 0450–2958. Astrophys J 662(2):872–877. https://doi.org/10.1086/518027. arXiv:astro-ph/0703101

    ADS  Article  Google Scholar 

  239. Fernández-Ontiveros JA, Dasyra KM, Hatziminaoglou E, Malkan MA, Pereira-Santaella M, Papachristou M, Spinoglio L, Combes F, Aalto S, Nagar N, Imanishi M, Andreani P, Ricci C, Slater R (2019) A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet. ArXiv e-prints arXiv:1911.00015

  240. Ferrara A, Viti S, Ceccarelli C (2016) The problematic growth of dust in high-redshift galaxies. Mon Not R Astron Soc 463(1):L112–L116. https://doi.org/10.1093/mnrasl/slw165. arXiv:1606.07214

  241. Ferrarese L, Merritt D (2000) A fundamental relation between supermassive black holes and their host galaxies. Astrophys J Lett 539(1):L9–L12. https://doi.org/10.1086/312838. arXiv:astro-ph/0006053

    ADS  Article  Google Scholar 

  242. Feruglio C, Maiolino R, Piconcelli E, Menci N, Aussel H, Lamastra A, Fiore F (2010) Quasar feedback revealed by giant molecular outflows. Astron Astrophys 518:L155. https://doi.org/10.1051/0004-6361/201015164. arXiv:1006.1655

    ADS  Article  Google Scholar 

  243. Feruglio C, Fiore F, Carniani S, Piconcelli E, Zappacosta L, Bongiorno A, Cicone C, Maiolino R, Marconi A, Menci N, Puccetti S, Veilleux S (2015) The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron Astrophys 583:A99. https://doi.org/10.1051/0004-6361/201526020. arXiv:1503.01481

  244. Feruglio C, Ferrara A, Bischetti M, Downes D, Neri R, Ceccarelli C, Cicone C, Fiore F, Gallerani S, Maiolino R, Menci N, Piconcelli E, Vietri G, Vignali C, Zappacosta L (2017) On the discovery of fast molecular gas in the UFO/BAL quasar APM 08279+5255 at \(z = 3.912\). Astron Astrophys 608:A30. https://doi.org/10.1051/0004-6361/201731387. arXiv:1706.05527

  245. Field GB, Steigman G (1971) Charge transfer and ionization equilibrium in the interstellar medium. Astrophys J 166:59. https://doi.org/10.1086/150941

    ADS  Article  Google Scholar 

  246. Fierlinger KM, Burkert A, Ntormousi E, Fierlinger P, Schartmann M, Ballone A, Krause MGH, Diehl R (2016) Stellar feedback efficiencies: supernovae versus stellar winds. Mon Not R Astron Soc 456(1):710–730. https://doi.org/10.1093/mnras/stv2699. arXiv:1511.05151

  247. Filiz Ak N, Brandt WN, Hall PB, Schneider DP, Anderson SF, Gibson RR, Lundgren BF, Myers AD, Petitjean P, Ross NP, Shen Y, York DG, Bizyaev D, Brinkmann J, Malanushenko E, Oravetz DJ, Pan K, Simmons AE, Weaver BA (2012) Broad absorption line disappearance on multi-year timescales in a large quasar sample. Astrophys J 757(2):114. https://doi.org/10.1088/0004-637X/757/2/114. arXiv:1208.0836

    ADS  Article  Google Scholar 

  248. Finkbeiner DP (2004) Microwave interstellar medium emission observed by the Wilkinson microwave anisotropy probe. Astrophys J 614(1):186–193. https://doi.org/10.1086/423482. arXiv:astro-ph/0311547

    ADS  Article  Google Scholar 

  249. Finlator K, Davé R (2008) The origin of the galaxy mass-metallicity relation and implications for galactic outflows. Mon Not R Astron Soc 385(4):2181–2204. https://doi.org/10.1111/j.1365-2966.2008.12991.x. arXiv:0704.3100

    ADS  Article  Google Scholar 

  250. Finley H, Bouché N, Contini T, Epinat B, Bacon R, Brinchmann J, Cantalupo S, Erroz-Ferrer S, Marino RA, Maseda M, Richard J, Schroetter I, Verhamme A, Weilbacher PM, Wendt M, Wisotzki L (2017) Galactic winds with MUSE: a direct detection of Fe II* emission from a \(z = 1.29\) galaxy. Astron Astrophys 605:A118. https://doi.org/10.1051/0004-6361/201730428. arXiv:1701.07843

  251. Fiore F, Feruglio C, Shankar F, Bischetti M, Bongiorno A, Brusa M, Carniani S, Cicone C, Duras F, Lamastra A, Mainieri V, Marconi A, Menci N, Maiolino R, Piconcelli E, Vietri G, Zappacosta L (2017) AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron Astrophys 601:A143. https://doi.org/10.1051/0004-6361/201629478. arXiv:1702.04507

  252. Fischer J, Sturm E, González-Alfonso E, Graciá-Carpio J, Hailey-Dunsheath S, Poglitsch A, Contursi A, Lutz D, Genzel R, Sternberg A, Verma A, Tacconi L (2010) Herschel-PACS spectroscopic diagnostics of local ULIRGs: conditions and kinematics in Markarian 231. Astron Astrophys 518:L41. https://doi.org/10.1051/0004-6361/201014676. arXiv:1005.2213

    ADS  Article  Google Scholar 

  253. Fischer J, Abel NP, González-Alfonso E, Dudley CC, Satyapal S, van Hoof PAM (2014) A far-infrared spectral sequence of galaxies: trends and models. Astrophys J 795(2):117. https://doi.org/10.1088/0004-637X/795/2/117. arXiv:1409.2521

    ADS  Article  Google Scholar 

  254. Fluetsch A, Maiolino R, Carniani S, Marconi A, Cicone C, Bourne MA, Costa T, Fabian AC, Ishibashi W, Venturi G (2019) Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon Not R Astron Soc 483(4):4586–4614. https://doi.org/10.1093/mnras/sty3449. arXiv:1805.05352

  255. Forbes JC, Krumholz MR, Speagle JS (2019) Towards a radially resolved semi-analytic model for the evolution of disc galaxies tuned with machine learning. Mon Not R Astron Soc 487(3):3581–3606. https://doi.org/10.1093/mnras/stz1473. arXiv:1810.12919

  256. Förster Schreiber NM, Genzel R, Lutz D, Sternberg A (2003) The nature of starburst activity in M82. Astrophys J 599(1):193–217. https://doi.org/10.1086/379097. arXiv:astro-ph/0309357

    ADS  Article  Google Scholar 

  257. Förster Schreiber NM, Übler H, Davies RL, Genzel R, Wisnioski E, Belli S, Shimizu T, Lutz D, Fossati M, Herrera-Camus R, Mendel JT, Tacconi LJ, Wilman D, Beifiori A, Brammer GB, Burkert A, Carollo CM, Davies RI, Eisenhauer F, Fabricius M, Lilly SJ, Momcheva I, Naab T, Nelson EJ, Price SH, Renzini A, Saglia R, Sternberg A, van Dokkum P, Wuyts S (2019) The \(\text{ KMOS }^{3D}\) survey: demographics and properties of galactic outflows at \(z = 06.\)\(2.7\). Astrophys J 875(1):21. https://doi.org/10.3847/1538-4357/ab0ca2. arXiv:1807.04738

  258. Fotopoulou CM, Dasyra KM, Combes F, Salomé P, Papachristou M (2019) Complex molecular gas kinematics in the inner 5 kpc of 4C12.50 as seen by ALMA. Astron Astrophys 629:A30. https://doi.org/10.1051/0004-6361/201834416. arXiv:1908.01011

  259. Fox AJ, Ledoux C, Vreeswijk PM, Smette A, Jaunsen AO (2008) High-ion absorption in seven GRB host galaxies at z = 2–4. Evidence for both circumburst plasma and outflowing interstellar gas. Astron Astrophys 491(1):189–207. https://doi.org/10.1051/0004-6361:200810286. arXiv:0809.3247

  260. Fox AJ, Bordoloi R, Savage BD, Lockman FJ, Jenkins EB, Wakker BP, Bland-Hawthorn J, Hernandez S, Kim TS, Benjamin RA, Bowen DV, Tumlinson J (2015) Probing the Fermi bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys J Lett 799(1):L7. https://doi.org/10.1088/2041-8205/799/1/L7. arXiv:1412.1480

    ADS  Article  Google Scholar 

  261. Fox AJ, Richter P, Ashley T, Heckman TM, Lehner N, Werk JK, Bordoloi R, Peeples MS (2019) The mass inflow and outflow rates of the Milky Way. Astrophys J 884:53. https://doi.org/10.3847/1538-4357/ab40ad. arXiv:1909.05561

    ADS  Article  Google Scholar 

  262. Fujimoto S, Ouchi M, Ferrara A, Pallottini A, Ivison RJ, Behrens C, Gallerani S, Arata S, Yajima H, Nagamine K (2019) First identification of 10-kpc scale [CII] 158um halos around star-forming galaxies at z = 5–7. Astrophys J 887:107. https://doi.org/10.3847/1538-4357/ab480f. arXiv:1902.06760

    ADS  Article  Google Scholar 

  263. Fukugita M (2011) Global amount of dust in the universe. ArXiv e-prints arXiv:1103.4191

  264. Fukugita M, Ménard B (2015) The nature of damped Lyman-\(\alpha \) and Mg II absorbers explored through their dust contents. Astrophys J 799(2):195. https://doi.org/10.1088/0004-637X/799/2/195. arXiv:1403.4339

    ADS  Article  Google Scholar 

  265. Fukui Y, Torii K, Onishi T, Yamamoto H, Okamoto R, Hayakawa T, Tachihara K, Sano H (2015) Optically thick H I dominant in the local interstellar medium: an alternative interpretation to “Dark Gas”. Astrophys J 798(1):6. https://doi.org/10.1088/0004-637X/798/1/6. arXiv:1403.0999

    ADS  Article  Google Scholar 

  266. Gabor JM, Bournaud F (2014) Active galactic nuclei-driven outflows without immediate quenching in simulations of high-redshift disc galaxies. Mon Not R Astron Soc 441(2):1615–1627. https://doi.org/10.1093/mnras/stu677. arXiv:1402.4482

    ADS  Article  Google Scholar 

  267. Gaibler V, Khochfar S, Krause M, Silk J (2012) Jet-induced star formation in gas-rich galaxies. Mon Not R Astron Soc 425(1):438–449. https://doi.org/10.1111/j.1365-2966.2012.21479.x. arXiv:1111.4478

    ADS  Article  Google Scholar 

  268. Gall C, Hjorth J (2018) Maximally dusty star-forming galaxies: supernova dust production and recycling in local group and high-redshift galaxies. Astrophys J 868(1):62. https://doi.org/10.3847/1538-4357/aae520. arXiv:1809.11032

  269. Gall C, Hjorth J, Watson D, Dwek E, Maund JR, Fox O, Leloudas G, Malesani D, Day-Jones AC (2014) Rapid formation of large dust grains in the luminous supernova 2010jl. Nature 511(7509):326–329. https://doi.org/10.1038/nature13558. arXiv:1407.4447

    ADS  Article  Google Scholar 

  270. Gallagher R, Maiolino R, Belfiore F, Drory N, Riffel R, Riffel RA (2019) Widespread star formation inside galactic outflows. Mon Not R Astron Soc 485(3):3409–3429. https://doi.org/10.1093/mnras/stz564. arXiv:1806.03311

  271. Gallagher SC, Brandt WN, Chartas G, Garmire GP, Sambruna RM (2002) X-raying the ultraluminous infrared starburst galaxy and broad absorption line QSO Markarian 231 with Chandra. Astrophys J 569(2):655–670. https://doi.org/10.1086/339171. arXiv:astro-ph/0112257

    ADS  Article  Google Scholar 

  272. Gallagher SC, Schmidt GD, Smith PS, Brandt WN, Chartas G, Hylton S, Hines DC, Brotherton MS (2005) Variation in the scattering shroud surrounding Markarian 231. Astrophys J 633(1):71–85. https://doi.org/10.1086/449305. arXiv:astro-ph/0506616

  273. Gallerani S, Pallottini A, Feruglio C, Ferrara A, Maiolino R, Vallini L, Riechers DA, Pavesi R (2018) ALMA suggests outflows in \(z \sim 5.5\) galaxies. Mon Not R Astron Soc 473(2):1909–1917. https://doi.org/10.1093/mnras/stx2458. arXiv:1604.05714

  274. Galliano E, Alloin D (2002) Near-IR 2D-spectroscopy of the 4” x 4” region around the active Galactic Nucleus of NGC 1068 with ISAAC/VLT. Astron Astrophys 393:43–56. https://doi.org/10.1051/0004-6361:20020906. arXiv:astro-ph/0207010

    ADS  Article  Google Scholar 

  275. Galliano F, Galametz M, Jones AP (2018) The interstellar dust properties of nearby galaxies. Annu Rev Astron Astrophys 56:673–713. https://doi.org/10.1146/annurev-astro-081817-051900. arXiv:1711.07434

  276. Gallimore JF, Baum SA, O’Dea CP (1997) A direct image of the obscuring disk surrounding an active galactic nucleus. Nature 388(6645):852–854. https://doi.org/10.1038/42201. arXiv:astro-ph/9708062

    ADS  Article  Google Scholar 

  277. Gallimore JF, Elitzur M, Maiolino R, Marconi A, O’Dea CP, Lutz D, Baum SA, Nikutta R, Impellizzeri CMV, Davies R, Kimball AE, Sani E (2016) High-velocity bipolar molecular emission from an AGN torus. Astrophys J Lett 829(1):L7. https://doi.org/10.3847/2041-8205/829/1/L7. arXiv:1608.02210

  278. García-Burillo S, Martín-Pintado J, Fuente A, Neri R (2001) SiO chimneys and supershells in M82. Astrophys J Lett 563(1):L27–L30. https://doi.org/10.1086/338391. arXiv:astro-ph/0201009

    ADS  Article  Google Scholar 

  279. García-Burillo S, Usero A, Fuente A, Martín-Pintado J, Boone F, Aalto S, Krips M, Neri R, Schinnerer E, Tacconi LJ (2010) Molecular gas chemistry in AGN. II. High-resolution imaging of SiO emission in NGC 1068: shocks or XDR? Astron Astrophys 519:A2. https://doi.org/10.1051/0004-6361/201014539. arXiv:1005.1263

  280. García-Burillo S, Combes F, Usero A, Aalto S, Krips M, Viti S, Alonso-Herrero A, Hunt LK, Schinnerer E, Baker AJ, Boone F, Casasola V, Colina L, Costagliola F, Eckart A, Fuente A, Henkel C, Labiano A, Martín S, Márquez I, Muller S, Planesas P, Ramos Almeida C, Spaans M, Tacconi LJ, van der Werf PP (2014) Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron Astrophys 567:A125. https://doi.org/10.1051/0004-6361/201423843. arXiv:1405.7706

  281. García-Burillo S, Combes F, Usero A, Aalto S, Colina L, Alonso-Herrero A, Hunt LK, Arribas S, Costagliola F, Labiano A, Neri R, Pereira-Santaella M, Tacconi LJ, van der Werf PP (2015) High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614. Astron Astrophys 580:A35. https://doi.org/10.1051/0004-6361/201526133. arXiv:1505.04705

  282. García-Burillo S, Combes F, Ramos Almeida C, Usero A, Krips M, Alonso-Herrero A, Aalto S, Casasola V, Hunt LK, Martín S, Viti S, Colina L, Costagliola F, Eckart A, Fuente A, Henkel C, Márquez I, Neri R, Schinnerer E, Tacconi LJ, van der Werf PP (2016) ALMA resolves the torus of NGC 1068: continuum and molecular line emission. Astrophys J Lett 823(1):L12. https://doi.org/10.3847/2041-8205/823/1/L12. arXiv:1604.00205

  283. García-Burillo S, Viti S, Combes F, Fuente A, Usero A, Hunt LK, Martín S, Krips M, Aalto S, Aladro R, Ramos Almeida C, Alonso-Herrero A, Casasola V, Henkel C, Querejeta M, Neri R, Costagliola F, Tacconi LJ, van der Werf PP (2017) ALMA imaging of \(\text{ C }_{2}\text{ H }\) emission in the disk of NGC 1068. Astron Astrophys 608:A56. https://doi.org/10.1051/0004-6361/201731862. arXiv:1709.05895

  284. García-Burillo S, Combes F, Ramos Almeida C, Usero A, Alonso-Herrero A, Hunt LK, Rouan D, Aalto S, Querejeta M, Viti S, van der Werf PP, Fuente A, Colina L, Martín-Pintado J, Henkel C, Martin S, Gratadour D, Neri R, Tacconi LJ (2019) ALMA images the many faces of the NGC1068 torus and its surroundings. Astron Astrophys 632:A61. https://doi.org/10.1051/0004-6361/201936606. arXiv:1909.00675

  285. Gaspari M, Temi P, Brighenti F (2017) Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon Not R Astron Soc 466(1):677–704. https://doi.org/10.1093/mnras/stw3108. arXiv:1608.08216

  286. Gatkine P, Veilleux S, Cucchiara A (2019) The CGM-GRB study. I. Uncovering the circumgalactic medium around GRB hosts at redshifts 2-6. Astrophys J 884:66. https://doi.org/10.3847/1538-4357/ab31ae. arXiv:1907.05903

  287. Gatuzz E, García J, Kallman TR, Mendoza C, Gorczyca TW (2015) ISMabs: a comprehensive X-ray absorption model for the interstellar medium. Astrophys J 800(1):29. https://doi.org/10.1088/0004-637X/800/1/29. arXiv:1412.3813

    ADS  Article  Google Scholar 

  288. Gatuzz E, García JA, Kallman TR, Mendoza C (2016) Oxygen, neon, and iron X-ray absorption in the local interstellar medium. Astron Astrophys 588:A111. https://doi.org/10.1051/0004-6361/201527752. arXiv:1602.06955

  289. Geach JE, Hickox RC, Diamond-Stanic AM, Krips M, Rudnick GH, Tremonti CA, Sell PH, Coil AL, Moustakas J (2014) Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy. Nature 516(7529):68–70. https://doi.org/10.1038/nature14012. arXiv:1412.1091

    ADS  Article  Google Scholar 

  290. Gebhardt K, Bender R, Bower G, Dressler A, Faber SM, Filippenko AV, Green R, Grillmair C, Ho LC, Kormendy J, Lauer TR, Magorrian J, Pinkney J, Richstone D, Tremaine S (2000) A relationship between nuclear black hole mass and galaxy velocity dispersion. Astrophys J Lett 539(1):L13–L16. https://doi.org/10.1086/312840. arXiv:astro-ph/0006289

    ADS  Article  Google Scholar 

  291. Gentry ES, Krumholz MR, Dekel A, Madau P (2017) Enhanced momentum feedback from clustered supernovae. Mon Not R Astron Soc 465(2):2471–2488. https://doi.org/10.1093/mnras/stw2746. arXiv:1606.01242

  292. Gentry ES, Krumholz MR, Madau P, Lupi A (2019) The momentum budget of clustered supernova feedback in a 3D, magnetized medium. Mon Not R Astron Soc 483(3):3647–3658. https://doi.org/10.1093/mnras/sty3319. arXiv:1802.06860

  293. Genzel R, Förster Schreiber NM, Rosario D, Lang P, Lutz D, Wisnioski E, Wuyts E, Wuyts S, Bandara K, Bender R, Berta S, Kurk J, Mendel JT, Tacconi LJ, Wilman D, Beifiori A, Brammer G, Burkert A, Buschkamp P, Chan J, Carollo CM, Davies R, Eisenhauer F, Fabricius M, Fossati M, Kriek M, Kulkarni S, Lilly SJ, Mancini C, Momcheva I, Naab T, Nelson EJ, Renzini A, Saglia R, Sharples RM, Sternberg A, Tacchella S, van Dokkum P (2014) Evidence for wide-spread active galactic nucleus-driven outflows in the most massive \(z \sim 1\)-\(2\) star-forming galaxies. Astrophys J 796(1):7. https://doi.org/10.1088/0004-637X/796/1/7. arXiv:1406.0183

    ADS  Article  Google Scholar 

  294. George RD, Ivison RJ, Smail I, Swinbank AM, Hopwood R, Stanley F, Swinyard BM, Valtchanov I, Werf PVD (2014) Herschel reveals a molecular outflow in a z = 2.3 ULIRG. Mon Not R Astron Soc 442(2):1877–1883. https://doi.org/10.1093/mnras/stu967. arXiv:1402.6320

  295. Georgy C, Walder R, Folini D, Bykov A, Marcowith A, Favre JM (2013) Circumstellar medium around rotating massive stars at solar metallicity. Astron Astrophys 559:A69. https://doi.org/10.1051/0004-6361/201321226. arXiv:1309.1360

    ADS  Article  Google Scholar 

  296. Gilli R, Maiolino R, Marconi A, Risaliti G, Dadina M, Weaver KA, Colbert EJM (2000) The variability of the Seyfert galaxy NGC 2992: the case for a revived AGN. Astron Astrophys 355:485–498 arXiv:astro-ph/0001107

    ADS  Google Scholar 

  297. Ginolfi M, Jones GC, Bethermin M, Fudamoto Y, Loiacono F, Fujimoto S, Le Fevre O, Faisst A, Schaerer D, Cassata P, Silverman JD, Yan L, Capak P, Bardelli S, Boquien M, Carraro R, Dessauges-Zavadsky M, Giavalisco M, Gruppioni C, Ibar E, Khusanova Y, Lemaux BC, Maiolino R, Narayanan D, Oesch P, Pozzi F, Rodighiero G, Talia M, Toft S, Vallini L, Vergani D, Zamorani G (2020) The ALPINE-ALMA [CII] survey: star-formation-driven outflows and circumgalactic enrichment in the early Universe. Astron Astrophys 633:A90. https://doi.org/10.1051/0004-6361/201936872. arXiv:1910.04770

    Article  Google Scholar 

  298. Giovanardi C, Natta A, Palla F (1987) Numerical FITS to the electron impact transition rate coefficients for atomic hydrogen as a function of electron temperature. Astron Astrophys Suppl 70(2):269–280

    ADS  Google Scholar 

  299. Girichidis P, Naab T, Walch S, Hanasz M, Mac Low MM, Ostriker JP, Gatto A, Peters T, Wünsch R, Glover SCO, Klessen RS, Clark PC, Baczynski C (2016) Launching cosmic-ray-driven outflows from the magnetized interstellar medium. Astrophys J Lett 816(2):L19. https://doi.org/10.3847/2041-8205/816/2/L19. arXiv:1509.07247

  300. Girichidis P, Naab T, Hanasz M, Walch S (2018) Cooler and smoother—the impact of cosmic rays on the phase structure of galactic outflows. Mon Not R Astron Soc 479(3):3042–3067. https://doi.org/10.1093/mnras/sty1653. arXiv:1805.09333

  301. Giustini M, Proga D (2019) A global view of the inner accretion/ejection flow around super massive black holes: radiation driven accretion disk winds in a physical context. Astron Astrophys 630:A94. https://doi.org/10.1051/0004-6361/201833810. arXiv:1904.07341

    ADS  Article  Google Scholar 

  302. Glenn J, Rangwala N, Maloney PR, Kamenetzky JR (2015) NGC 1266: characterization of the nuclear molecular gas in an unusual SB0 galaxy. Astrophys J 800(2):105. https://doi.org/10.1088/0004-637X/800/2/105. arXiv:1502.02041

  303. Glover SC, Savin DW, Jappsen AK (2006) Cosmological implications of the uncertainty in \(\text{ H }^{-}\) destruction rate coefficients. Astrophys J 640(2):553–568. https://doi.org/10.1086/500166. arXiv:astro-ph/0506221

    ADS  Article  Google Scholar 

  304. Glover SCO, Clark PC, Micic M, Molina F (2015) Modelling [C I] emission from turbulent molecular clouds. Mon Not R Astron Soc 448(2):1607–1627. https://doi.org/10.1093/mnras/stu2699. arXiv:1403.3530

    ADS  Article  Google Scholar 

  305. Goicoechea JR, Cernicharo J (2002) Far-infrared OH fluorescent emission in sagittarius B2. Astrophys J Lett 576(1):L77–L81. https://doi.org/10.1086/343062. arXiv:astro-ph/0207498

    ADS  Article  Google Scholar 

  306. Goicoechea JR, Cernicharo J, Lerate MR, Daniel F, Barlow MJ, Swinyard BM, Lim TL, Viti S, Yates J (2006) Far-infrared excited hydroxyl lines from orion KL outflows. Astrophys J Lett 641(1):L49–L52. https://doi.org/10.1086/503799. arXiv:astro-ph/0603077

    ADS  Article  Google Scholar 

  307. Goicoechea JR, Pety J, Gerin M, Hily-Blant P, Le Bourlot J (2009) The ionization fraction gradient across the Horsehead edge: an archetype for molecular clouds. Astron Astrophys 498(3):771–783. https://doi.org/10.1051/0004-6361/200811496. arXiv:0902.2748

    ADS  Article  Google Scholar 

  308. Goicoechea JR, Chavarría L, Cernicharo J, Neufeld DA, Vavrek R, Bergin EA, Cuadrado S, Encrenaz P, Etxaluze M, Melnick GJ, Polehampton E (2015) Herschel far-infrared spectral-mapping of orion BN/KL outflows: spatial distribution of excited CO, \(\text{ H }_{2}\text{ O }\), OH, O, and \(\text{ C }^{+}\) in shocked gas. Astrophys J 799(1):102. https://doi.org/10.1088/0004-637X/799/1/102. arXiv:1411.2930

    ADS  Article  Google Scholar 

  309. Goicoechea JR, Santa-Maria MG, Teyssier D, Cernicharo J, Gerin M, Pety J (2018) High-velocity hot CO emission close to Sgr A*. Herschel/HIFI submillimeter spectral survey toward Sgr A*. Astron Astrophys 616:L1. https://doi.org/10.1051/0004-6361/201833684. arXiv:1807.07459

  310. Goldsmith PF, Kauffmann J (2017) Electron excitation of high dipole moment molecules re-examined. Astrophys J 841(1):25. https://doi.org/10.3847/1538-4357/aa6f12. arXiv:1708.07553

  311. Goldsmith PF, Langer WD, Pineda JL, Velusamy T (2012) Collisional excitation of the [C II] fine structure transition in interstellar clouds. Astrophys J Suppl Ser 203(1):13. https://doi.org/10.1088/0067-0049/203/1/13. arXiv:1209.4536

    ADS  Article  Google Scholar 

  312. González-Alfonso E, Sakamoto K (2019) The greenhouse effect in buried galactic nuclei and the resonant HCN vibrational emission. Astrophys J 882(2):153. https://doi.org/10.3847/1538-4357/ab3a32. arXiv:1908.04058

  313. González-Alfonso E, Fischer J, Graciá-Carpio J, Sturm E, Hailey-Dunsheath S, Lutz D, Poglitsch A, Contursi A, Feuchtgruber H, Veilleux S, Spoon HWW, Verma A, Christopher N, Davies R, Sternberg A, Genzel R, Tacconi L (2012) Herschel/PACS spectroscopy of NGC 4418 and Arp 220: \(\text{ H }_{2}\text{ O }\), \(\text{ H }_{2}^{18}\text{ O }\), OH, \(^{18}\text{ OH }\), O I, HCN, and \(\text{ NH }_{3}\). Astron Astrophys 541:A4. https://doi.org/10.1051/0004-6361/201118029. arXiv:1109.1118

    ADS  Article  Google Scholar 

  314. González-Alfonso E, Fischer J, Bruderer S, Müller HSP, Graciá-Carpio J, Sturm E, Lutz D, Poglitsch A, Feuchtgruber H, Veilleux S, Contursi A, Sternberg A, Hailey-Dunsheath S, Verma A, Christopher N, Davies R, Genzel R, Tacconi L (2013) Excited \(\text{ OH }^{+}\), \(\text{ H }_{2}\text{ O }^{+}\), and \(\text{ H }_{3}\text{ O }^{+}\) in NGC 4418 and Arp 220. Astron Astrophys 550:A25. https://doi.org/10.1051/0004-6361/201220466. arXiv:1211.5064

    Article  Google Scholar 

  315. González-Alfonso E, Fischer J, Graciá-Carpio J, Falstad N, Sturm E, Meléndez M, Spoon HWW, Verma A, Davies RI, Lutz D, Aalto S, Polisensky E, Poglitsch A, Veilleux S, Contursi A (2014) The Mrk 231 molecular outflow as seen in OH. Astron Astrophys 561:A27. https://doi.org/10.1051/0004-6361/201321709. arXiv:1310.3074

    ADS  Article  Google Scholar 

  316. González-Alfonso E, Armus L, Carrera FJ, Charmandaris V, Efstathiou A, Egami E, Fernández-Ontiveros JA, Fischer J, Granato GL, Gruppioni C, Hatziminaoglou E, Imanishi M, Isobe N, Kaneda H, Koziel-Wierzbowska D, Malkan MA, Martín-Pintado J, Mateos S, Matsuhara H, Miniutti G, Nakagawa T, Pozzi F, Rico-Villas F, Rodighiero G, Roelfsema P, Spinoglio L, Spoon HWW, Sturm E, van der Tak F, Vignali C, Wang L (2017a) Feedback and feeding in the context of galaxy evolution with SPICA: direct characterisation of molecular outflows and inflows. Publ Astron Soc Australia 34:e054. https://doi.org/10.1017/pasa.2017.46. arXiv:1710.02356

  317. González-Alfonso E, Fischer J, Spoon HWW, Stewart KP, Ashby MLN, Veilleux S, Smith HA, Sturm E, Farrah D, Falstad N, Meléndez M, Graciá-Carpio J, Janssen AW, Lebouteiller V (2017b) Molecular outflows in local ULIRGs: energetics from multitransition OH analysis. Astrophys J 836(1):11. https://doi.org/10.3847/1538-4357/836/1/11. arXiv:1612.08181

  318. González-Alfonso E, Fischer J, Bruderer S, Ashby MLN, Smith HA, Veilleux S, Müller HSP, Stewart KP, Sturm E (2018) Outflowing \(\text{ OH }^{+}\) in Markarian 231: the ionization rate of the molecular gas. Astrophys J 857(1):66. https://doi.org/10.3847/1538-4357/aab6b8. arXiv:1803.04690

  319. Gould RJ, Salpeter EE (1963) The interstellar abundance of the hydrogen molecule. I. Basic processes. Astrophys J 138:393. https://doi.org/10.1086/147654

    Article  Google Scholar 

  320. Gowardhan A, Spoon H, Riechers DA, González-Alfonso E, Farrah D, Fischer J, Darling J, Fergulio C, Afonso J, Bizzocchi L (2018) The dual role of starbursts and active galactic nuclei in driving extreme molecular outflows. Astrophys J 859(1):35. https://doi.org/10.3847/1538-4357/aabccc. arXiv:1804.03147

  321. Gravity Collaboration, Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, Brand ner W, Clénet Y, Coudé Du Foresto V, de Zeeuw PT, Dexter J, Duvert G, Eckart A, Eisenhauer F, Förster Schreiber NM, Garcia P, Gao F, Gendron E, Genzel R, Gerhard O, Gillessen S, Habibi M, Haubois X, Henning T, Hippler S, Horrobin M, Jiménez-Rosales A, Jocou L, Kervella P, Lacour S, Lapeyrère V, Le Bouquin JB, Léna P, Ott T, Paumard T, Perraut K, Perrin G, Pfuhl O, Rabien S, Rodriguez Coira G, Rousset G, Scheithauer S, Sternberg A, Straub O, Straubmeier C, Sturm E, Tacconi LJ, Vincent F, von Fellenberg S, Waisberg I, Widmann F, Wieprecht E, Wiezorrek E, Woillez J, Yazici S (2019) A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron Astrophys 625:L10. https://doi.org/10.1051/0004-6361/201935656

  322. Grenier IA, Black JH, Strong AW (2015) The nine lives of cosmic rays in galaxies. Annu Rev Astron Astrophys 53:199–246. https://doi.org/10.1146/annurev-astro-082214-122457

    ADS  Article  Google Scholar 

  323. Gronke M (2017) Modeling 237 Lyman-\(\alpha \) spectra of the MUSE-Wide survey. Astron Astrophys 608:A139. https://doi.org/10.1051/0004-6361/201731791. arXiv:1709.07008

  324. Gronke M, Oh SP (2018) The growth and entrainment of cold gas in a hot wind. Mon Not R Astron Soc 480(1):L111–L115. https://doi.org/10.1093/mnrasl/sly131. arXiv:1806.02728

  325. Gronke M, Oh SP (2020) How cold gas continuously entrains mass and momentum from a hot wind. Mon Not R Astron Soc 492(2):1970–1990. https://doi.org/10.1093/mnras/stz3332. arXiv:1907.04771

    ADS  Article  Google Scholar 

  326. Gronke M, Girichidis P, Naab T, Walch S (2018) The imprint of cosmic ray driven outflows on Lyman-\(\alpha \) spectra. Astrophys J Lett 862(1):L7. https://doi.org/10.3847/2041-8213/aad286. arXiv:1805.12251

  327. Grønnow A, Tepper-García T, Bland-Hawthorn J (2018) Magnetic fields in the galactic halo restrict fountain-driven recycling and accretion. Astrophys J 865(1):64. https://doi.org/10.3847/1538-4357/aada0e. arXiv:1805.03903

  328. Guillard P, Ogle PM, Emonts BHC, Appleton PN, Morganti R, Tadhunter C, Oosterloo T, Evans DA, Evans AS (2012) Strong molecular hydrogen emission and kinematics of the multiphase gas in radio galaxies with fast jet-driven outflows. Astrophys J 747(2):95. https://doi.org/10.1088/0004-637X/747/2/95. arXiv:1201.1503

    ADS  Article  Google Scholar 

  329. Gültekin K, Richstone DO, Gebhardt K, Lauer TR, Tremaine S, Aller MC, Bender R, Dressler A, Faber SM, Filippenko AV, Green R, Ho LC, Kormendy J, Magorrian J, Pinkney J, Siopis C (2009) The M-\(\sigma \) and M-L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys J 698(1):198–221. https://doi.org/10.1088/0004-637X/698/1/198. arXiv:0903.4897

    ADS  Article  Google Scholar 

  330. Guo F, Mathews WG (2012) The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys J 756(2):181. https://doi.org/10.1088/0004-637X/756/2/181. arXiv:1103.0055

  331. Hafen Z, Faucher-Giguère CA, Anglés-Alcázar D, Stern J, Kereš D, Hummels C, Esmerian C, Garrison-Kimmel S, El-Badry K, Wetzel A, Chan TK, Hopkins PF, Murray N (2019) The origins of the circumgalactic medium in the FIRE simulations. Mon Not R Astron Soc 488(1):1248–1272. https://doi.org/10.1093/mnras/stz1773. arXiv:1811.11753

  332. Hailey-Dunsheath S, Nikola T, Stacey GJ, Oberst TE, Parshley SC, Benford DJ, Staguhn JG, Tucker CE (2010) Detection of the 158 \(\mu \text{ m }\) [C II] transition at z = 1.3: evidence for a galaxy-wide starburst. Astrophys J Lett 714(1):L162–L166. https://doi.org/10.1088/2041-8205/714/1/L162. arXiv:1003.2174

  333. Hamann F, Zakamska NL, Ross N, Paris I, Alexandroff RM, Villforth C, Richards GT, Herbst H, Brandt WN, Cook B, Denney KD, Greene JE, Schneider DP, Strauss MA (2017) Extremely red quasars in BOSS. Mon Not R Astron Soc 464(3):3431–3463. https://doi.org/10.1093/mnras/stw2387. arXiv:1609.07241

  334. Hamann F, Herbst H, Paris I, Capellupo D (2019) On the structure and energetics of quasar broad absorption-line outflows. Mon Not R Astron Soc 483(2):1808–1828. https://doi.org/10.1093/mnras/sty2900. arXiv:1810.03686

  335. Hamer S, Salomé P, Combes F, Salomé Q (2015) MUSE discovers perpendicular arcs in the inner filament of Centaurus A. Astron Astrophys 575:L3. https://doi.org/10.1051/0004-6361/201424808. arXiv:1409.7700

    ADS  Article  Google Scholar 

  336. Hao L, Spoon HWW, Sloan GC, Marshall JA, Armus L, Tielens AGGM, Sargent B, van Bemmel IM, Charmandaris V, Weedman DW, Houck JR (2005) The detection of silicate emission from quasars at 10 and 18 microns. Astrophys J Lett 625(2):L75–L78. https://doi.org/10.1086/431227. arXiv:astro-ph/0504423

    ADS  Article  Google Scholar 

  337. Harada N (2018) High-temperature chemistry in external galaxies. In: Cunningham M, Millar T, Aikawa Y (eds) IAU symposium, vol 332, pp 25–36. https://doi.org/10.1017/S1743921317006755, arXiv:1708.07269

  338. Harada N, Sakamoto K, Martín S, Aalto S, Aladro R, Sliwa K (2018) ALMA astrochemical observations of the infrared-luminous merger NGC 3256. Astrophys J 855(1):49. https://doi.org/10.3847/1538-4357/aaaa70. arXiv:1801.05941

  339. Harris GLH, Rejkuba M, Harris WE (2010) The distance to NGC 5128 (Centaurus A). Publ Astron Soc Australia 27(4):457–462. https://doi.org/10.1071/AS09061. arXiv:0911.3180

    ADS  Article  Google Scholar 

  340. Harris J, Zaritsky D (2009) The star formation history of the large magellanic cloud. Astron J 138(5):1243–1260. https://doi.org/10.1088/0004-6256/138/5/1243. arXiv:0908.1422

    ADS  Article  Google Scholar 

  341. Harrison CM (2017) Impact of supermassive black hole growth on star formation. Nature Astron 1:0165. https://doi.org/10.1038/s41550-017-0165. arXiv:1703.06889

  342. Harrison CM, Costa T, Tadhunter CN, Flütsch A, Kakkad D, Perna M, Vietri G (2018) AGN outflows and feedback twenty years on. Nature Astron 2:198–205. https://doi.org/10.1038/s41550-018-0403-6. arXiv:1802.10306

  343. Hartwig T, Volonteri M, Dashyan G (2018) Active galactic nucleus outflows in galaxy discs. Mon Not R Astron Soc 476(2):2288–2307. https://doi.org/10.1093/mnras/sty229. arXiv:1707.03826

  344. Hawley JF, Krolik JH (2006) Magnetically driven jets in the kerr metric. Astrophys J 641(1):103–116. https://doi.org/10.1086/500385. arXiv:astro-ph/0512227

    ADS  Article  Google Scholar 

  345. He Z, Wang T, Liu G, Wang H, Bian W, Tchernyshyov K, Mou G, Xu Y, Zhou H, Green R, Xu J (2019) The properties of broad absorption line outflows based on a large sample of quasars. Nature Astron. https://doi.org/10.1038/s41550-018-0669-8, arXiv:1812.08982

  346. Heckman TM, Borthakur S (2016) The implications of extreme outflows from extreme starbursts. Astrophys J 822(1):9. https://doi.org/10.3847/0004-637X/822/1/9. arXiv:1603.03036

  347. Heckman TM, Thompson TA (2017) A brief review of galactic winds. ArXiv e-prints arXiv:1701.09062

  348. Heckman TM, Lehnert MD, Strickland DK, Armus L (2000) Absorption-line probes of gas and dust in galactic superwinds. Astrophys J Suppl Ser 129(2):493–516. https://doi.org/10.1086/313421. arXiv:astro-ph/0002526

    ADS  Article  Google Scholar 

  349. Heckman TM, Borthakur S, Overzier R, Kauffmann G, Basu-Zych A, Leitherer C, Sembach K, Martin DC, Rich RM, Schiminovich D, Seibert M (2011) Extreme feedback and the epoch of reionization: clues in the local universe. Astrophys J 730(1):5. https://doi.org/10.1088/0004-637X/730/1/5. arXiv:1101.4219

    ADS  Article  Google Scholar 

  350. Heckman TM, Alexandroff RM, Borthakur S, Overzier R, Leitherer C (2015) The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys J 809(2):147. https://doi.org/10.1088/0004-637X/809/2/147. arXiv:1507.05622

  351. Heesen V, Rafferty DA, Horneffer A, Beck R, Basu A, Westcott J, Hindson L, Brinks E, Chyzy KT, Scaife AMM, Brüggen M, Heald G, Fletcher A, Horellou C, Tabatabaei FS, Paladino R, Nikiel-Wroczyński B, Hoeft M, Dettmar RJ (2018) Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR. Mon Not R Astron Soc 476(2):1756–1764. https://doi.org/10.1093/mnras/sty325. arXiv:1802.01463

  352. Heesen V, Whitler L, Schmidt P, Miskolczi A, Sridhar SS, Horellou C, Beck R, Gürkan G, Scannapieco E, Brüggen M, Heald GH, Krause M, Paladino R, Nikiel-Wroczyński B, Wilber A, Dettmar RJ (2019) Warped diffusive radio halo around the quiescent spiral edge-on galaxy NGC 4565. Astron Astrophys 628:L3. https://doi.org/10.1051/0004-6361/201936046. arXiv:1907.07076

  353. Heintz KE, Watson D, Jakobsson P, Fynbo JPU, Bolmer J, Arabsalmani M, Cano Z, Covino S, D’Elia V, Gomboc A, Japelj J, Kaper L, Krogager JK, Pugliese G, Sánchez-Ramírez R, Selsing J, Sparre M, Tanvir NR, Thöne CC, de Ugarte Postigo A, Vergani SD (2018) Highly ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts. Mon Not R Astron Soc 479(3):3456–3476. https://doi.org/10.1093/mnras/sty1447. arXiv:1806.01296

  354. Henden NA, Puchwein E, Shen S, Sijacki D (2018) The FABLE simulations: a feedback model for galaxies, groups, and clusters. Mon Not R Astron Soc 479(4):5385–5412. https://doi.org/10.1093/mnras/sty1780. arXiv:1804.05064

  355. Henshaw JD, Longmore SN, Kruijssen JMD, Davies B, Bally J, Barnes A, Battersby C, Burton M, Cunningham MR, Dale JE, Ginsburg A, Immer K, Jones PA, Kendrew S, Mills EAC, Molinari S, Moore TJT, Ott J, Pillai T, Rathborne J, Schilke P, Schmiedeke A, Testi L, Walker D, Walsh A, Zhang Q (2016) Molecular gas kinematics within the central 250 pc of the Milky Way. Mon Not R Astron Soc 457(3):2675–2702. https://doi.org/10.1093/mnras/stw121. arXiv:1601.03732

  356. Herrera-Camus R, Janssen A, Sturm E, Lutz D, Veilleux S, Davies R, Shimizu T, González-Alfonso E, Rupke DSN, Tacconi L, Genzel R, Cicone C, Maiolino R, Contursi A, Graciá-Carpio J (2019a) AGN feedback in a galaxy merger: multi-phase, galaxy-scale outflows including a fast molecular gas blob \(\sim 6\) kpc away from IRAS F08572+3915. ArXiv e-prints arXiv:1911.06326

  357. Herrera-Camus R, Tacconi L, Genzel R, Förster Schreiber N, Lutz D, Bolatto A, Wuyts S, Renzini A, Lilly S, Belli S, Übler H, Shimizu T, Davies R, Sturm E, Combes F, Freundlich J, García-Burillo S, Cox P, Burkert A, Naab T, Colina L, Saintonge A, Cooper M, Feruglio C, Weiss A (2019b) Molecular and ionized gas phases of an AGN-driven outflow in a typical massive galaxy at \(\text{ z } \approx 2\). Astrophys J 871(1):37. https://doi.org/10.3847/1538-4357/aaf6a7. arXiv:1807.07074

  358. Herrera-Camus R, Sturm E, Graciá-Carpio J, Veilleux S, Shimizu T, Lutz D, Stone M, González-Alfonso E, Davies R, Fischer J, Genzel R, Maiolino R, Sternberg A, Tacconi L, Verma A (2020) Molecular gas inflows and outflows in ultraluminous infrared galaxies at z \(\approx \) 0.2 and one QSO at \(z=6.1\). Astron Astrophys 633:L4. https://doi.org/10.1051/0004-6361/201937109. arXiv:1912.05548

    ADS  Article  Google Scholar 

  359. Heywood I, Camilo F, Cotton WD, Yusef-Zadeh F, Abbott TD, Adam RM, Aldera MA, Bauermeister EF, Booth RS, Botha AG, Botha DH, Brederode LRS, Brits ZB, Buchner SJ, Burger JP, Chalmers JM, Cheetham T, de Villiers D, Dikgale-Mahlakoana MA, du Toit LJ, Esterhuyse SWP, Fanaroff BL, Foley AR, Fourie DJ, Gamatham RRG, Goedhart S, Gounden S, Hlakola MJ, Hoek CJ, Hokwana A, Horn DM, Horrell JMG, Hugo B, Isaacson AR, Jonas JL, Jordaan JDBL, Joubert AF, Józsa GIG, Julie RPM, Kapp FB, Kenyon JS, Kotzé PPA, Kriel H, Kusel TW, Lehmensiek R, Liebenberg D, Loots A, Lord RT, Lunsky BM, Macfarlane PS, Magnus LG, Magozore CM, Mahgoub O, Main JPL, Malan JA, Malgas RD, Manley JR, Maree MDJ, Merry B, Millenaar R, Mnyandu N, Moeng IPT, Monama TE, Mphego MC, New WS, Ngcebetsha B, Oozeer N, Otto AJ, Passmoor SS, Pate AA, Peens-Hough A, Perkins SJ, Ratcliffe SM, Renil R, Rust A, Salie S, Schwardt LC, Serylak M, Siebrits R, Sirothia SK, Smirnov OM, Sofeya L, Swart PS, Tasse C, Taylor DT, Theron IP, Thorat K, Tiplad AJ, Tshongweni S, van Balla TJ, van der Byl A, van der Merwe C, van Dyk CL, Van Rooyen R, Van Tonder V, Van Wyk R, Wallace BH, Welz MG, Williams LP (2019) Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 573:235–237. https://doi.org/10.1038/s41586-019-1532-5. arXiv:1909.05534

    ADS  Article  Google Scholar 

  360. Hinkle JT, Veilleux S, Rupke DSN (2019) Ionization mechanisms in quasar outflows. Astrophys J 881(1):31. https://doi.org/10.3847/1538-4357/ab2bfa. arXiv:1906.10249

  361. Hirashita H, Lin CY (2018) Dust abundance and grain size in galaxy halos. ArXiv e-prints arXiv:1804.00848

  362. Hodges-Kluck E, Bregman JN (2014) Detection of ultraviolet halos around highly inclined galaxies. Astrophys J 789(2):131. https://doi.org/10.1088/0004-637X/789/2/131. arXiv:1401.4170

    ADS  Article  Google Scholar 

  363. Hodges-Kluck E, Cafmeyer J, Bregman JN (2016a) Ultraviolet halos around spiral galaxies. I. Morphology. Astrophys J 833(1):58. https://doi.org/10.3847/1538-4357/833/1/58. arXiv:1610.02404

  364. Hodges-Kluck EJ, Miller MJ, Bregman JN (2016b) The rotation of the hot gas around the Milky Way. Astrophys J 822(1):21. https://doi.org/10.3847/0004-637X/822/1/21. arXiv:1603.07734

  365. Hollenbach D, Salpeter EE (1971) Surface recombination of hydrogen molecules. Astrophys J 163:155. https://doi.org/10.1086/150754

    ADS  Article  Google Scholar 

  366. Hollenbach DJ, Tielens AGGM (1999) Photodissociation regions in the interstellar medium of galaxies. Rev Mod Phys 71(1):173–230. https://doi.org/10.1103/RevModPhys.71.173

    ADS  Article  Google Scholar 

  367. Hollyhead K, Bastian N, Adamo A, Silva-Villa E, Dale J, Ryon JE, Gazak Z (2015) Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories. Mon Not R Astron Soc 449(1):1106–1117. https://doi.org/10.1093/mnras/stv331. arXiv:1502.03823

  368. Hönig SF, Kishimoto M (2017) Dusty winds in active galactic nuclei: reconciling observations with models. Astrophys J Lett 838(2):L20. https://doi.org/10.3847/2041-8213/aa6838. arXiv:1703.07781

  369. Hönig SF, Kishimoto M, Antonucci R, Marconi A, Prieto MA, Tristram K, Weigelt G (2012) Parsec-scale dust emission from the polar region in the type 2 nucleus of NGC 424. Astrophys J 755(2):149. https://doi.org/10.1088/0004-637X/755/2/149. arXiv:1206.4307

    ADS  Article  Google Scholar 

  370. Hönig SF, Kishimoto M, Tristram KRW, Prieto MA, Gandhi P, Asmus D, Antonucci R, Burtscher L, Duschl WJ, Weigelt G (2013) Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. Astrophys J 771(2):87. https://doi.org/10.1088/0004-637X/771/2/87. arXiv:1306.4312

    ADS  Article  Google Scholar 

  371. Hoopes CG, Sembach KR, Howk JC, Savage BD, Fullerton AW (2002) A far ultraviolet spectroscopic explorer survey of interstellar O VI absorption in the small magellanic cloud. Astrophys J 569(1):233–244. https://doi.org/10.1086/339323

    ADS  Article  Google Scholar 

  372. Hoopes CG, Heckman TM, Strickland DK, Seibert M, Madore BF, Rich RM, Bianchi L, Gil de Paz A, Burgarella D, Thilker DA, Friedman PG, Barlow TA, Byun YI, Donas J, Forster K, Jelinsky PN, Lee YW, Malina RF, Martin DC, Milliard B, Morrissey PF, Neff SG, Schiminovich D, Siegmund OHW, Small T, Szalay AS, Welsh BY, Wyder TK (2005) GALEX observations of the ultraviolet halos of NGC 253 and M82. Astrophys J Lett 619(1):L99–L102. https://doi.org/10.1086/423032. arXiv:astro-ph/0411309

    ADS  Article  Google Scholar 

  373. Hopkins PF, Elvis M (2010) Quasar feedback: more bang for your buck. Mon Not R Astron Soc 401(1):7–14. https://doi.org/10.1111/j.1365-2966.2009.15643.x. arXiv:0904.0649

    ADS  Article  Google Scholar 

  374. Hopkins PF, Grudić MY (2019) Numerical problems in coupling photon momentum (radiation pressure) to gas. Mon Not R Astron Soc 483(3):4187–4196. https://doi.org/10.1093/mnras/sty3089. arXiv:1803.07573

  375. Hopkins PF, Quataert E, Murray N (2012) Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon Not R Astron Soc 421(4):3522–3537. https://doi.org/10.1111/j.1365-2966.2012.20593.x. arXiv:1110.4638

    ADS  Article  Google Scholar 

  376. Hopkins PF, Kereš D, Onorbe J, Faucher-Giguère CA, Quataert E, Murray N, Bullock JS (2014) Galaxies on FIRE (feedback in realistic environments): stellar feedback explains cosmologically inefficient star formation. Mon Not R Astron Soc 445(1):581–603. https://doi.org/10.1093/mnras/stu1738. arXiv:1311.2073

  377. Hopkins PF, Torrey P, Faucher-Giguère CA, Quataert E, Murray N (2016) Stellar and quasar feedback in concert: effects on AGN accretion, obscuration, and outflows. Mon Not R Astron Soc 458(1):816–831. https://doi.org/10.1093/mnras/stw289. arXiv:1504.05209

  378. Hopkins PF, Grudić MY, Wetzel A, Kereš D, Faucher-Giguère C-A, Ma X, Murray N, Butcher N (2020) Radiative stellar feedback in galaxy formation: methods and physics. Mon Not R Astron Soc 491(3):3702–3729. https://doi.org/10.1093/mnras/stz3129. arXiv:1811.12462

    ADS  Article  Google Scholar 

  379. Hopkins PF, Wetzel A, Kereš D, Faucher-Giguère CA, Quataert E, Boylan-Kolchin M, Murray N, Hayward CC, Garrison-Kimmel S, Hummels C, Feldmann R, Torrey P, Ma X, Anglés-Alcázar D, Su KY, Orr M, Schmitz D, Escala I, Sanderson R, Grudić MY, Hafen Z, Kim JH, Fitts A, Bullock JS, Wheeler C, Chan TK, Elbert OD, Narayanan D (2018) FIRE-2 simulations: physics versus numerics in galaxy formation. Mon Not R Astron Soc 480(1):800–863. https://doi.org/10.1093/mnras/sty1690. arXiv:1702.06148

  380. Howk JC, Savage BD (1997) Extraplanar dust in the edge-on spiral NGC 891. Astron J 114:2463. https://doi.org/10.1086/118660. arXiv:astro-ph/9709197

    ADS  Article  Google Scholar 

  381. Howk JC, Savage BD (1999) A search for extraplanar dust in nearby edge-on spirals. Astron J 117(5):2077–2101. https://doi.org/10.1086/300857. arXiv:astro-ph/9902061

    ADS  Article  Google Scholar 

  382. Howk JC, Savage BD (2000) The multiphase halo of NGC 891: WIYN \(\text{ H }\alpha \) and BVI imaging. Astron J 119(2):644–667. https://doi.org/10.1086/301210. arXiv:astro-ph/9910248

    ADS  Article  Google Scholar 

  383. Howk JC, Sembach KR, Savage BD, Massa D, Friedman SD, Fullerton AW (2002) The global content, distribution, and kinematics of interstellar O VI in the large magellanic cloud. Astrophys J 569(1):214–232. https://doi.org/10.1086/339322. arXiv:astro-ph/0111566

    ADS  Article  Google Scholar 

  384. Hsieh PY, Ho PTP, Hwang CY, Shimajiri Y, Matsushita S, Koch PM, Iono D (2016) The fossil nuclear outflow in the central 30 pc of the galactic center. Astrophys J 831(1):72. https://doi.org/10.3847/0004-637X/831/1/72. arXiv:1607.03673

  385. Hu CY, Zhukovska S, Somerville RS, Naab T (2019) Thermal and non-thermal dust sputtering in hydrodynamical simulations of the multiphase interstellar medium. Mon Not R Astron Soc 487(3):3252–3269. https://doi.org/10.1093/mnras/stz1481. arXiv:1902.01368

  386. Huang X, Davis SW, Zhang D (2019) Dusty cloud acceleration with multiband radiation. ArXiv e-prints arXiv:1908.01775

  387. Hummels CB, Smith BD, Silvia DW (2017) Trident: a universal tool for generating synthetic absorption spectra from astrophysical simulations. Astrophys J 847(1):59. https://doi.org/10.3847/1538-4357/aa7e2d. arXiv:1612.03935

  388. Humphreys RM, Davidson K, Jones TJ, Pogge RW, Grammer SH, Prieto JL, Pritchard TA (2012) The unusual temporal and spectral evolution of SN2011ht. II. Peculiar type IIn or impostor? Astrophys J 760(1):93. https://doi.org/10.1088/0004-637X/760/1/93. arXiv:1207.5755

  389. Hutton S, Ferreras I, Wu K, Kuin P, Breeveld A, Yershov V, Cropper M, Page M (2014) A panchromatic analysis of starburst galaxy M82: probing the dust properties. Mon Not R Astron Soc 440(1):150–160. https://doi.org/10.1093/mnras/stu185. arXiv:1401.7669

    ADS  Article  Google Scholar 

  390. Imanishi M, Nakanishi K, Izumi T (2016) ALMA investigation of vibrationally excited \(\text{ HCN/HCO }^{+}/\text{ HNC }\) emission lines in the AGN-hosting ultraluminous infrared galaxy IRAS 20551–4250. Astrophys J 825(1):44. https://doi.org/10.3847/0004-637X/825/1/44. arXiv:1605.00644

  391. Impellizzeri CMV, Gallimore JF, Baum SA, Elitzur M, Davies R, Lutz D, Maiolino R, Marconi A, Nikutta R, O’Dea CP, Sani E (2019) Counter-rotation and high-velocity outflow in the parsec-scale molecular torus of NGC 1068. Astrophys J Lett 884:L28. https://doi.org/10.3847/2041-8213/ab3c64. arXiv:1908.07981

    ADS  Article  Google Scholar 

  392. Indriolo N, Geballe TR, Oka T, McCall BJ (2007) \(\text{ H }^{+}_{3}\) in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys J 671(2):1736–1747. https://doi.org/10.1086/523036. arXiv:0709.1114

    ADS  Article  Google Scholar 

  393. Irons WT, Lacy JH, Richter MJ (2012) Ionized gas in the galactic center: new observations and interpretation. Astrophys J 755(2):90. https://doi.org/10.1088/0004-637X/755/2/90. arXiv:1206.2650

    ADS  Article  Google Scholar 

  394. Irwin JA, Madden SC (2006) Discovery of PAHs in the halo of NGC 5907. Astron Astrophys 445(1):123–141. https://doi.org/10.1051/0004-6361:20053233. arXiv:astro-ph/0509726

    ADS  Article  Google Scholar 

  395. Irwin JA, Kennedy H, Parkin T, Madden S (2007) PAHs in the halo of NGC 5529. Astron Astrophys 474(2):461–472. https://doi.org/10.1051/0004-6361:20077729. arXiv:0708.3808

    ADS  Article  Google Scholar 

  396. Ishibashi W, Fabian AC (2012) Active galactic nucleus feedback and triggering of star formation in galaxies. Mon Not R Astron Soc 427(4):2998–3005. https://doi.org/10.1111/j.1365-2966.2012.22074.x. arXiv:1209.1480

    ADS  Article  Google Scholar 

  397. Ishibashi W, Fabian AC (2015) AGN feedback: galactic-scale outflows driven by radiation pressure on dust. Mon Not R Astron Soc 451(1):93–102. https://doi.org/10.1093/mnras/stv944. arXiv:1504.07393

  398. Ishibashi W, Fabian AC (2017) Ultramassive black hole feedback in compact galaxies. Mon Not R Astron Soc 472(3):2768–2772. https://doi.org/10.1093/mnras/stx2212. arXiv:1709.01551

  399. Ishibashi W, Fabian AC (2018) Variations on a theme of AGN-driven outflows: luminosity evolution and ambient density distribution. Mon Not R Astron Soc 481(4):4522–4531. https://doi.org/10.1093/mnras/sty2617. arXiv:1809.07804

  400. Ishibashi W, Fabian AC, Canning REA (2013) Can AGN feedback-driven star formation explain the size evolution of massive galaxies? Mon Not R Astron Soc 431(3):2350–2355. https://doi.org/10.1093/mnras/stt333. arXiv:1302.4998

    ADS  Article  Google Scholar 

  401. Ishibashi W, Banerji M, Fabian AC (2017) AGN radiative feedback in dusty quasar populations. Mon Not R Astron Soc 469(2):1496–1501. https://doi.org/10.1093/mnras/stx921. arXiv:1704.03712

  402. Ishibashi W, Fabian AC, Maiolino R (2018a) The energetics of AGN radiation pressure-driven outflows. Mon Not R Astron Soc 476(1):512–519. https://doi.org/10.1093/mnras/sty236. arXiv:1801.09700

  403. Ishibashi W, Fabian AC, Ricci C, Celotti A (2018b) Revisiting the ‘forbidden’ region: AGN radiative feedback with radiation trapping. Mon Not R Astron Soc 479(3):3335–3342. https://doi.org/10.1093/mnras/sty1620. arXiv:1806.08387

  404. Israel FP, Rosenberg MJF, van der Werf P (2015) Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers. A method to determine molecular gas properties in luminous galaxies. Astron Astrophys 578:A95. https://doi.org/10.1051/0004-6361/201425175. arXiv:1504.08005

  405. Janssen AW, Christopher N, Sturm E, Veilleux S, Contursi A, González-Alfonso E, Fischer J, Davies R, Verma A, Graciá-Carpio J, Genzel R, Lutz D, Sternberg A, Tacconi L, Burtscher L, Poglitsch A (2016) Broad [C II] line wings as tracer of molecular and multi-phase outflows in infrared bright galaxies. Astrophys J 822(1):43. https://doi.org/10.3847/0004-637X/822/1/43. arXiv:1604.00185

  406. Jenkins EB (2009) A unified representation of gas-phase element depletions in the interstellar medium. Astrophys J 700(2):1299–1348. https://doi.org/10.1088/0004-637X/700/2/1299. arXiv:0905.3173

    ADS  Article  Google Scholar 

  407. Jenkins EB, Tripp TM (2001) The distribution of thermal pressures in the interstellar medium from a survey of C I fine-structure excitation. Astrophys J Suppl Ser 137(2):297–340. https://doi.org/10.1086/323326. arXiv:astro-ph/0107177

    ADS  Article  Google Scholar 

  408. Jiang YF, Stone JM, Davis SW (2014) A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks. Astrophys J 796(2):106. https://doi.org/10.1088/0004-637X/796/2/106. arXiv:1410.0678

    ADS  Article  Google Scholar 

  409. Jiao Q, Zhao Y, Zhu M, Lu N, Gao Y, Zhang ZY (2017) Neutral carbon emission in luminous infrared galaxies: the [C I] lines as total molecular gas tracers. Astrophys J Lett 840(2):L18. https://doi.org/10.3847/2041-8213/aa6f0f. arXiv:1704.07780

  410. Jo YS, Ki Seon, Shinn JH, Yang Y, Lee D, Min KW (2018) Comparison of the extraplanar \(\text{ H }\alpha \) and UV emissions in the halos of nearby edge-on spiral galaxies. Astrophys J 862(1):25. https://doi.org/10.3847/1538-4357/aacbca. arXiv:1806.06525

  411. Johnson SD, Chen HW, Mulchaey JS (2015) On the origin of excess cool gas in quasar host haloes. Mon Not R Astron Soc 452(3):2553–2565. https://doi.org/10.1093/mnras/stv1481. arXiv:1505.07838

  412. Johnson SD, Chen HW, Mulchaey JS, Schaye J, Straka LA (2017) The extent of chemically enriched gas around star-forming dwarf galaxies. Astrophys J Lett 850(1):L10. https://doi.org/10.3847/2041-8213/aa9370. arXiv:1710.06441

  413. Jones AP (1988) Modelling interstellar extinction. I–porous grains. Mon Not R Astron Soc 234:209–218. https://doi.org/10.1093/mnras/234.2.209

    ADS  Article  Google Scholar 

  414. Jones AP, Tielens AGGM, Hollenbach DJ, McKee CF (1994) Grain destruction in shocks in the interstellar medium. Astrophys J 433:797. https://doi.org/10.1086/174689

    ADS  Article  Google Scholar 

  415. Jones GC, Maiolino R, Caselli P, Carniani S (2019a) Detection of a high-redshift molecular outflow in a primeval hyperstarburst galaxy. Astron Astrophys 632:L7. https://doi.org/10.1051/0004-6361/201936989. arXiv:1911.09967

    ADS  Article  Google Scholar 

  416. Jones T, Stark DP, Ellis RS (2018) Dust in the wind: composition and kinematics of galaxy outflows at the peak epoch of star formation. Astrophys J 863(2):191. https://doi.org/10.3847/1538-4357/aad37f. arXiv:1805.01484

  417. Jones TJ, Dowell CD, Lopez Rodriguez E, Zweibel EG, Berthoud M, Chuss DT, Goldsmith PF, Hamilton RT, Hanany S, Harper DA, Lazarian A, Looney LW, Michail JM, Morris MR, Novak G, Santos FP, Sheth K, Stacey GJ, Staguhn J, Stephens IW, Tassis K, Trinh CQ, Volpert CG, Werner M, Wollack EJ, HAWC+ Science Team (2019b) SOFIA far-infrared imaging polarimetry of M82 and NGC 253: exploring the supergalactic wind. Astrophys J Lett 870(1):L9. https://doi.org/10.3847/2041-8213/aaf8b9. arXiv:1812.06816

  418. Kacprzak GG, Churchill CW, Nielsen NM (2012) Tracing outflows and accretion: a bimodal azimuthal dependence of Mg II absorption. Astrophys J Lett 760(1):L7. https://doi.org/10.1088/2041-8205/760/1/L7. arXiv:1205.0245

    ADS  Article  Google Scholar 

  419. Kacprzak GG, Martin CL, Bouché N, Churchill CW, Cooke J, LeReun A, Schroetter I, Ho SH, Klimek E (2014) New perspective on galaxy outflows from the first detection of both intrinsic and traverse metal-line absorption. Astrophys J Lett 792(1):L12. https://doi.org/10.1088/2041-8205/792/1/L12. arXiv:1407.4126

    ADS  Article  Google Scholar 

  420. Kacprzak GG, Pointon SK, Nielsen NM, Churchill CW, Muzahid S, Charlton JC (2019) The relationship between galaxy ISM and circumgalactic gas metallicities. Astrophys J 886:91. https://doi.org/10.3847/1538-4357/ab4c3c. arXiv:1910.04310

    ADS  Article  Google Scholar 

  421. Kallivayalil N, van der Marel RP, Alcock C (2006) Is the SMC bound to the LMC? The Hubble Space Telescope proper motion of the SMC. Astrophys J 652(2):1213–1229. https://doi.org/10.1086/508014. arXiv:astro-ph/0606240

    ADS  Article  Google Scholar 

  422. Kamenetzky J, Rangwala N, Glenn J, Maloney PR, Conley A (2016) \(L^\prime _{{\rm CO}}/L_{{\rm FIR}}\) relations with CO rotational ladders of galaxies across the Herschel SPIRE archive. Astrophys J 829(2):93. https://doi.org/10.3847/0004-637X/829/2/93. arXiv:1508.05102