Abstract
Globular clusters are large and dense agglomerate of stars. At variance with smaller clusters of stars, they exhibit signs of some chemical evolution. At least for this reason, they are intermediate between open clusters and massive objects such as nuclear clusters or compact galaxies. While some facts are well established, the increasing amount of observational data are revealing a complexity that has so far defied the attempts to interpret the whole data set in a simple scenario. We review this topic focusing on the main observational features of clusters in the Milky Way and its satellites. We find that most of the observational facts related to the chemical evolution in globular clusters are described as being primarily a function of the initial mass of the clusters, tuned by further dependence on the metallicity—that mainly affects specific aspects of the nucleosynthesis processes involved—and on the environment, that likely determines the possibility of independent chemical evolution of the fragments or satellites, where the clusters form. We review the impact of multiple populations on different regions of the colour–magnitude diagram and underline the constraints related to the observed abundances of lithium, to the cluster dynamics, and to the frequency of binaries in stars of different chemical composition. We then re-consider the issues related to the mass budget and the relation between globular cluster and field stars. Any successful model of globular cluster formation should explain these facts.
Similar content being viewed by others
Notes
See, however, Sect. 3.6 for the recent extension to lower ages.
For most elements, we adopt the usual spectroscopic notation, i.e., \({[X]}=\log {X_{\mathrm{star}}} -\log {X_\odot }\) for any abundance quantity X, and \(\log {\epsilon (X)} = \log {N_{{X}}/N_{\mathrm{H}}} + 12.0\) for absolute number density abundances. For helium, we use Y, that is the fraction of He in mass.
The interquartile of a distribution is the range of values including the middle 50% of the distribution, leaving out the highest and lowest quartiles.
Alternative estimates of the current masses for MC clusters are provided by other studies, e.g., by McLaughlin and van der Marel (2005), while these last authors did not list values for all the clusters considered here, whenever available the masses agree very well with those given by Mackey and Gilmore (2003a, b), but for the single case of NGC 2257.
The sample of clusters in Milone et al. (2017) may suffer from a selection bias, because only rather nearby and massive GCs have been targeted (the selection is essentially that of the ACS Survey by Sarajedini et al. 2007). On the other hand, these are also those GCs for which more precise data can be obtained. A similar bias can of course be present in case spectroscopy is used to define the populations fractions. It would be interesting to extend the same kind of studies to a sample fully representative of all MW GCs.
NGC 2808 has at least five different populations (Milone et al. 2015b; Carretta et al. 2015). NGC 2419, a very massive cluster with a very large apocenter distance, also shares many characteristics of the chromosome map with NGC 2808, as suggested by the very recent study by Zennaro et al. (2019). However, it is not plotted in Fig. 8, because it actually lacks an explicit classification in Type I/II classes.
It is worth noting that current models do not reproduce the correct zero-point (Cassisi et al. 2011); however, observational studies have been concentrating on differential effects, and we will limit our discussion to those in this text.
NGC 2808, the cluster showing the largest He differences, was not in the calculation, since no star below the RGB bump was observed for this cluster in that survey.
See http://basti.oa-abruzzo.inaf.it/ (Pietrinferni et al. 2004, 2006).
An example of the difficulties in deriving He abundance variations from clusters with red horizontal branch is given by a comparison of the spread in He abundances for the SMCs clusters NGC 121, NGC 339, NGC 416, and Lindsay 1 as determined from the horizontal branch by Chantereau et al. (2019), and from a pseudo-chromosome map by Lagioia et al. (2018). While the first study found variations in the He abundances as large as \(\varDelta Y=0.08\), the second one only found very tiny spreads, with the highest value being \(\varDelta Y=0.010\pm 0.003\). Chantereau et al. (2019) noticed this difference, and attributed it to the different meaning of \(\varDelta Y\) in the two studies—maximum excursion with respect to mean difference between first- and second-generation stars, although it seems quite difficult to justify a factor of almost ten difference between the two results this way. We then think that the spread in He abundances derived for red horizontal branch clusters should be taken with caution.
These calculations are restricted to those stars that have Al abundances, which comprises more than 90% of the total sample.
Note that MacLean et al. (2016) rather use the observed minima in the [Na/H] distribution to separate FG and SG stars along the AGB and the RGB comparison data set
The investigation of the Li discrepancy as measured in Pop ii stars with respect to the standard Big Bang nucleosynthesis is not discussed in this review, since our main focus is the multiple population scenarios. We refer the reader to Sbordone et al. (2010), Mucciarelli et al. (2014b), Fu et al. (2015), and references therein for a specific discussion on this topic.
Given the primordial Li scatter in NGC 104, which is unrelated to the multiple population scenarios, this GC was omitted from the present discussion.
BSS may also be produced by collision in the dense core of GCs. In that case, there should not be large chemical anomalies (Lombardi et al. 1995). However, the majority of BSS in both globular and open clusters are likely the aftermath of the evolution of primordial binaries (see, e.g., Piotto et al. 2004).
Note that the mass-budget values discussed above should be revised in this scenario because only a fraction of the massive AGB stars should contribute to nucleosynthesis. On the other hand, in this scenario the diluting material was already present in the GC since its birth.
References
Adams FC, Fatuzzo M (1996) A theory of the initial mass function for star formation in molecular clouds. Astrophys J 464:256. https://doi.org/10.1086/177318. arXiv:astro-ph/9601139
Aguilar L, Hut P, Ostriker JP (1988) On the evolution of globular cluster systems. I. Present characteristics and rate of destruction in our Galaxy. Astrophys J 335:720–747. https://doi.org/10.1086/166961
Ahumada JA, Lapasset E (2007) New catalogue of blue stragglers in open clusters. Astron Astrophys 463:789–797. https://doi.org/10.1051/0004-6361:20054590
Alves-Brito A, Yong D, Meléndez J, Vásquez S, Karakas AI (2012) CNO and F abundances in the globular cluster M 22 (NGC 6656). Astron Astrophys 540:A3. https://doi.org/10.1051/0004-6361/201118623. arXiv:1202.0797
Anthony-Twarog BJ, Laird JB, Payne D, Twarog BA (1991) Ca II H and K filter photometry on the UVBY system. I—the standard system. Astron J 101:1902–1914. https://doi.org/10.1086/115815
Armandroff TE, Da Costa GS (1991) Metallicities for old stellar systems from Ca II triplet strengths in member giants. Astron J 101:1329–1337. https://doi.org/10.1086/115769
Armosky BJ, Sneden C, Langer GE, Kraft RP (1994) Abundance trends among neutron capture elements in giants of globular clusters M5, M3, M13, M92, and M15. Astron J 108:1364–1374. https://doi.org/10.1086/117158
Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222. arXiv:0909.0948
Bagdonas V, Drazdauskas A, Tautvaisiene G, Smiljanic R, Chorniy Y (2018) Chemical composition of giant stars in the open cluster IC 4756. Astrophysics 615:A165. https://doi.org/10.1051/0004-6361/201832695. arXiv:1804.01975
Balsara DS, Bendinelli AJ, Tilley DA, Massari AR, Howk JC (2008) Simulating anisotropic thermal conduction in supernova remnants—II. Implications for the interstellar medium. Mon Not R Astron Soc 386:642–656. https://doi.org/10.1111/j.1365-2966.2008.13121.x. arXiv:0711.2295
Banerjee S, Kroupa P (2015) The formation of NGC 3603 young starburst cluster: ‘prompt’ hierarchical assembly or monolithic starburst? Mon Not R Astron Soc 447:728–746. https://doi.org/10.1093/mnras/stu2445. arXiv:1412.1473
Bastian N, de Mink SE (2009) The effect of stellar rotation on colour-magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon Not R Astron Soc 398(1):L11–L15. https://doi.org/10.1111/j.1745-3933.2009.00696.x. arXiv:0906.1590
Bastian N, Lardo C (2015) Globular cluster mass-loss in the context of multiple populations. Mon Not R Astron Soc 453:357–364. https://doi.org/10.1093/mnras/stv1661. arXiv:1507.05634
Bastian N, Lardo C (2018) Multiple stellar populations in globular clusters. Annu Rev Astron Astrophys 56:83–136. https://doi.org/10.1146/annurev-astro-081817-051839. arXiv:1712.01286
Bastian N, Strader J (2014) Constraining globular cluster formation through studies of young massive clusters—III. A lack of gas and dust in massive stellar clusters in the LMC and SMC. Mon Not R Astron Soc 443:3594–3600. https://doi.org/10.1093/mnras/stu1407. arXiv:1407.2726
Bastian N, Lamers HJGLM, de Mink SE, Longmore SN, Goodwin SP, Gieles M (2013) Early disc accretion as the origin of abundance anomalies in globular clusters. Mon Not R Astron Soc 436:2398–2411. https://doi.org/10.1093/mnras/stt1745. arXiv:1309.3566
Bastian N, Cabrera-Ziri I, Salaris M (2015) A general abundance problem for all self-enrichment scenarios for the origin of multiple populations in globular clusters. Mon Not R Astron Soc 449:3333–3346. https://doi.org/10.1093/mnras/stv543. arXiv:1503.03071
Bastian N, Kamann S, Cabrera-Ziri I, Georgy C, Ekström S, Charbonnel C, de Juan OM, Usher C (2018) Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon Not R Astron Soc 480:3739–3746. https://doi.org/10.1093/mnras/sty2100. arXiv:1807.10779
Baumgardt H, Hilker M (2018) A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon Not R Astron Soc 478:1520–1557. https://doi.org/10.1093/mnras/sty1057. arXiv:1804.08359
Baumgardt H, Makino J (2003) Dynamical evolution of star clusters in tidal fields. Mon Not R Astron Soc 340:227–246. https://doi.org/10.1046/j.1365-8711.2003.06286.x. arXiv:astro-ph/0211471
Baumgardt H, Kroupa P, Parmentier G (2008) The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon Not R Astron Soc 384:1231–1241. https://doi.org/10.1111/j.1365-2966.2007.12811.x. arXiv:0712.1591
Baumgardt H, Parmentier G, Gieles M, Vesperini E (2010) Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. Mon Not R Astron Soc 401:1832–1838. https://doi.org/10.1111/j.1365-2966.2009.15758.x. arXiv:0909.5696
Baumgardt H, Parmentier G, Anders P, Grebel EK (2013) The star cluster formation history of the LMC. Mon Not R Astron Soc 430:676–685. https://doi.org/10.1093/mnras/sts667. arXiv:1207.5576
Baumgardt H, Hilker M, Sollima A, Bellini A (2019) Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data. Mon Not R Astron Soc 482:5138–5155. https://doi.org/10.1093/mnras/sty2997. arXiv:1811.01507
Beasley MA, Baugh CM, Forbes DA, Sharples RM, Frenk CS (2002) On the formation of globular cluster systems in a hierarchical Universe. Mon Not R Astron Soc 333(2):383–399. https://doi.org/10.1046/j.1365-8711.2002.05402.x. arXiv:astro-ph/0202191
Bedin LR, Piotto G, Anderson J, Cassisi S, King IR, Momany Y, Carraro G (2004) \(\omega \) Centauri: the population puzzle goes deeper. Astrophys J Lett 605:L125–L128. https://doi.org/10.1086/420847. arXiv:astro-ph/0403112
Behr BB (2003) Chemical abundances and rotation velocities of blue horizontal-branch stars in six globular clusters. Astrophys J Suppl 149:67–99. https://doi.org/10.1086/377509. arXiv:astro-ph/0307178
Behr BB, Cohen JG, McCarthy JK, Djorgovski SG (1999) Striking photospheric abundance anomalies in blue horizontal-branch stars in globular cluster M13. Astrophys J Lett 517:L135–L138. https://doi.org/10.1086/312052. arXiv:astro-ph/9903437
Behr BB, Cohen JG, McCarthy JK (2000) Rotations and abundances of blue horizontal-branch stars in globular cluster M15. Astrophys J Lett 531:L37–L40. https://doi.org/10.1086/312524. arXiv:astro-ph/0002119
Bekki K (2010) Rotation and multiple stellar population in globular clusters. Astrophys J Lett 724:L99–L103. https://doi.org/10.1088/2041-8205/724/1/L99. arXiv:1010.3841
Bekki K (2011) Secondary star formation within massive star clusters: origin of multiple stellar populations in globular clusters. Mon Not R Astron Soc 412:2241–2259. https://doi.org/10.1111/j.1365-2966.2010.18047.x. arXiv:1011.5956
Bekki K, Freeman KC (2003) Formation of \(\omega \) Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon Not R Astron Soc 346:L11–L15. https://doi.org/10.1046/j.1365-2966.2003.07275.x. arXiv:astro-ph/0310348
Bekki K, Tsujimoto T (2016) Formation of anomalous globular clusters with metallicity spreads: a unified picture. Astrophys J 831:70. https://doi.org/10.3847/0004-637X/831/1/70
Bekki K, Campbell SW, Lattanzio JC, Norris JE (2007) Origin of abundance inhomogeneity in globular clusters. Mon Not R Astron Soc 377:335–351. https://doi.org/10.1111/j.1365-2966.2007.11606.x. arXiv:astro-ph/0702289
Bellazzini M, Fusi Pecci F, Messineo M, Monaco L, Rood RT (2002) Deep Hubble Space Telescope WFPC2 photometry of NGC 288. I. Binary systems and blue stragglers. Astron J 123:1509–1527. https://doi.org/10.1086/339222. arXiv:astro-ph/0112343
Bellazzini M, Ibata RA, Chapman SC, Mackey AD, Monaco L, Irwin MJ, Martin NF, Lewis GF, Dalessandro E (2008) The nucleus of the Sagittarius dSph galaxy and M54: a window on the process of galaxy nucleation. Astron J 136:1147–1170. https://doi.org/10.1088/0004-6256/136/3/1147. arXiv:0807.0105
Bellazzini M, Bragaglia A, Carretta E, Gratton RG, Lucatello S, Catanzaro G, Leone F (2012) Na-O anticorrelation and HB. IX. Kinematics of the program clusters A link between systemic rotation and HB morphology? Astron Astrophys 538:A18. https://doi.org/10.1051/0004-6361/201118056. arXiv:1111.2688
Bellini A, Vesperini E, Piotto G, Milone AP, Hong J, Anderson J, van der Marel RP, Bedin LR, Cassisi S, D’Antona F, Marino AF, Renzini A (2015) The Hubble Space Telescope UV legacy survey of galactic globular clusters: the internal kinematics of the multiple stellar populations in NGC 2808. Astrophys J Lett 810:L13. https://doi.org/10.1088/2041-8205/810/1/L13. arXiv:1508.01804
Bellini A, Milone AP, Anderson J, Marino AF, Piotto G, van der Marel RP, Bedin LR, King IR (2017) The state-of-the-art HST astro-photometric analysis of the core of \(\omega \) Centauri. III. The main sequence’s multiple populations galore. Astrophys J 844:164. https://doi.org/10.3847/1538-4357/aa7b7e. arXiv:1706.07063
Benitez N, Dupke R, Moles M, Sodre L, Cenarro J, Marin-Franch A, Taylor K, Cristobal D, Fernandez-Soto A, Mendes de Oliveira C, Cepa-Nogue J, Abramo LR, Alcaniz JS, Overzier R, Hernandez-Monteagudo C, Alfaro EJ, Kanaan A, Carvano JM, Reis RRR, Martinez Gonzalez E, Ascaso B, Ballesteros F, Xavier HS, Varela J, Ederoclite A, Vazquez Ramio H, Broadhurst T, Cypriano E, Angulo R, Diego JM, Zandivarez A, Diaz E, Melchior P, Umetsu K, Spinelli PF, Zitrin A, Coe D, Yepes G, Vielva P, Sahni V, Marcos-Caballero A, Shu Kitaura F, Maroto AL, Masip M, Tsujikawa S, Carneiro S, Gonzalez Nuevo J, Carvalho GC, Reboucas MJ, Carvalho JC, Abdalla E, Bernui A, Pigozzo C, Ferreira EGM, Chandrachani Devi N, Bengaly CAP Jr, Campista M, Amorim A, Asari NV, Bongiovanni A, Bonoli S, Bruzual G, Cardiel N, Cava A, Cid Fernandes R, Coelho P, Cortesi A, Delgado RG, Diaz Garcia L, Espinosa JMR, Galliano E, Gonzalez-Serrano JI, Falcon-Barroso J, Fritz J, Fernandes C, Gorgas J, Hoyos C, Jimenez-Teja Y, Lopez-Aguerri JA, Lopez-San Juan C, Mateus A, Molino A, Novais P, OMill A, Oteo I, Perez-Gonzalez PG, Poggianti B, Proctor R, Ricciardelli E, Sanchez-Blazquez P, Storchi-Bergmann T, Telles E, Schoennell W, Trujillo N, Vazdekis A, Viironen K, Daflon S, Aparicio-Villegas T, Rocha D, Ribeiro T, Borges M, Martins SL, Marcolino W, Martinez-Delgado D, Perez-Torres MA, Siffert BB, Calvao MO, Sako M, Kessler R, Alvarez-Candal A, De Pra M, Roig F, Lazzaro D, Gorosabel J, Lopes de Oliveira R, Lima-Neto GB, Irwin J, Liu JF, Alvarez E, Balmes I, Chueca S, Costa-Duarte MV, da Costa AA, Dantas MLL, Diaz AY, Fabregat J, Ferrari F, Gavela B, Gracia SG, Gruel N, Gutierrez JLL, Guzman R, Hernandez-Fernandez JD, Herranz D, Hurtado-Gil L, Jablonsky F, Laporte R, Le Tiran LL, Licandro J, Lima M, Martin E, Martinez V, Montero JJC, Penteado P, Pereira CB, Peris V, Quilis V, Sanchez-Portal M, Soja AC, Solano E, Torra J, Valdivielso L (2014) J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey. arXiv e-prints arXiv:1403.5237
Bertelli G, Nasi E, Girardi L, Chiosi C, Zoccali M, Gallart C (2003) Testing intermediate-age stellar evolution models with VLT photometry of large magellanic cloud clusters. III. Padova results. Astrophys J 125:770–784. https://doi.org/10.1086/345961. arXiv:astro-ph/0211169
Beuther H, Churchwell EB, McKee CF, Tan JC (2007) The formation of massive stars. Protostars and planets V, pp 165–180. arXiv:astro-ph/0602012
Bloecker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron Astrophys 297:727
Boberg OM, Friel ED, Vesperini E (2015) Chemical abundances in NGC 5053: a very metal-poor and dynamically complex globular cluster. Astrophys J 804:109. https://doi.org/10.1088/0004-637X/804/2/109. arXiv:1504.01791
Boberg OM, Friel ED, Vesperini E (2016) Chemical abundances in NGC 5024 (M53): a mostly first generation globular cluster. Astrophys J 824:5. https://doi.org/10.3847/0004-637X/824/1/5
Böcek Topcu G, Afşar M, Sneden C (2016) The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940. Mon Not R Astron Soc 463:580–597. https://doi.org/10.1093/mnras/stw1974
Bodenheimer P, Tenorio-Tagle G, Yorke HW (1979) The gas dynamics of H II regions. II. Two-dimensional axisymmetric calculations. Astrophys J 233:85–96. https://doi.org/10.1086/157368. arXiv:1906.09137
Bolte M (1992) CCD photometry in the globular cluster NGC 288. I. Blue stragglers and main-sequence binary stars. Astrophys J Suppl 82:145. https://doi.org/10.1086/191712
Bonatto C, Chies-Santos AL, Coelho PRT, Varela J, Larsen SS, Javier Cenarro A, San Roman I, Marín-Franch A, Mendes de Oliveira C, Molino A, Ederoclite A, Cortesi A, López-Sanjuan C, Cristóbal-Hornillos D, Vázquez Ramió H, Sodré L, Sampedro L, Costa-Duarte MV, Novais PM, Dupke R, Overzier RA, Ribeiro T, Santos WA, Schoennell W (2019) J-PLUS: a wide-field multi-band study of the M 15 globular cluster. Evidence of multiple stellar populations in the RGB. Astron Astrophys 622:A179. https://doi.org/10.1051/0004-6361/201732441. arXiv:1804.03966
Bonnell IA, Bate MR, Vine SG (2003) The hierarchical formation of a stellar cluster. Mon Not R Astron Soc 343:413–418. https://doi.org/10.1046/j.1365-8711.2003.06687.x. arXiv:astro-ph/0305082
Bonnell IA, Smith RJ, Clark PC, Bate MR (2011) The efficiency of star formation in clustered and distributed regions. Mon Not R Astron Soc 410:2339–2346. https://doi.org/10.1111/j.1365-2966.2010.17603.x. arXiv:1009.1152
Bragaglia A, Carretta E, Gratton R, D’Orazi V, Cassisi S, Lucatello S (2010a) Helium in first and second-generation stars in globular clusters from spectroscopy of red giants. Astron Astrophys 519:A60. https://doi.org/10.1051/0004-6361/201014702. arXiv:1005.2659
Bragaglia A, Carretta E, Gratton RG, Lucatello S, Milone A, Piotto G, D’Orazi V, Cassisi S, Sneden C, Bedin LR (2010b) X-shooter observations of main-sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf. Astrophys J Lett 720:L41–L45. https://doi.org/10.1088/2041-8205/720/1/L41. arXiv:1007.5299
Bragaglia A, Gratton RG, Carretta E, D’Orazi V, Sneden C, Lucatello S (2012) Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron Astrophys 548:A122. https://doi.org/10.1051/0004-6361/201220366. arXiv:1211.1142
Bragaglia A, Sneden C, Carretta E, Gratton RG, Lucatello S, Bernath PF, Brooke JSA, Ram RS (2014) Searching for chemical signatures of multiple stellar populations in the old, massive open cluster NGC 6791. Astrophys J 796:68. https://doi.org/10.1088/0004-637X/796/1/68. arXiv:1409.8283
Bragaglia A, Carretta E, Sollima A, Donati P, D’Orazi V, Gratton RG, Lucatello S, Sneden C (2015) NGC 6139: a normal massive globular cluster, or a first-generation dominated cluster? Clues from the light elements. Astron Astrophys 583:A69. https://doi.org/10.1051/0004-6361/201526592. arXiv:1507.07562
Bragaglia A, Carretta E, D’Orazi V, Sollima A, Donati P, Gratton RG, Lucatello S (2017) NGC 6535: the lowest mass Milky Way globular cluster with a Na–O anti-correlation? Cluster mass and age in the multiple population context. Astron Astrophys 607:A44. https://doi.org/10.1051/0004-6361/201731526. arXiv:1708.07705
Bragaglia A, Fu X, Mucciarelli A, Andreuzzi G, Donati P (2018) The chemical composition of the oldest nearby open cluster Ruprecht 147. Astron Astrophys 619:A176. https://doi.org/10.1051/0004-6361/201833888. arXiv:1809.06868
Briley MM, Cohen JG (2001) Calibration of the CH and CN variations among main-sequence stars in M71 and in M13. Astron J 122:242–247. https://doi.org/10.1086/321115. arXiv:astro-ph/0104099
Briley MM, Cohen JG, Stetson PB (2004) The chemical inhomogeneity of faint M13 stars: carbon and nitrogen abundances. Astron J 127:1579–1587. https://doi.org/10.1086/382100. arXiv:astro-ph/0312315
Brodie JP, Strader J (2006) Extragalactic globular clusters and galaxy formation. Annu Rev Astron Astrophys 44:193–267. https://doi.org/10.1146/annurev.astro.44.051905.092441. arXiv:astro-ph/0602601
Çalışkan Ş, Christlieb N, Grebel EK (2012) Abundance analysis of the outer halo globular cluster Palomar 14. Astron Astrophys 537:A83. https://doi.org/10.1051/0004-6361/201016355. arXiv:1110.5151
Cabrera-Ziri I, Bastian N, Longmore SN, Brogan C, Hollyhead K, Larsen SS, Whitmore B, Johnson K, Chandar R, Henshaw JD, Davies B, Hibbard JE (2015) Constraining globular cluster formation through studies of young massive clusters—V. ALMA observations of clusters in the Antennae. Mon Not R Astron Soc 448:2224–2231. https://doi.org/10.1093/mnras/stv163. arXiv:1501.05657
Cabrera-Ziri I, Lardo C, Mucciarelli A (2019) Constant light element abundances suggest that the extended P1 in NGC 2808 is not a consequence of CNO-cycle nucleosynthesis. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz707. arXiv:1903.03621
Calura F, Few CG, Romano D, D’Ercole A (2015) Feedback from massive stars and gas expulsion from proto-globular clusters. Astrophys J Lett 814:L14. https://doi.org/10.1088/2041-8205/814/1/L14. arXiv:1511.03277
Calura F, D’Ercole A, Vesperini E, Vanzella E, Sollima A (2019) Formation of second-generation stars in globular clusters. Mon Not R Astron Soc 489:3269–3284. https://doi.org/10.1093/mnras/stz2055. arXiv:1906.09137
Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. Astrophys J 164:111. https://doi.org/10.1086/150821
Campbell SW, Lattanzio JC, Elliott LM (2006) Are there radical cyanogen abundance differences between galactic globular cluster RGB and AGB stars? Mem Soc Astron Ital 77:864. arXiv:astro-ph/0603779
Campbell SW, D’Orazi V, Yong D, Constantino TN, Lattanzio JC, Stancliffe RJ, Angelou GC, Wylie-de Boer EC, Grundahl F (2013) Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature 498:198–200. https://doi.org/10.1038/nature12191. arXiv:1305.7090
Campbell SW, MacLean BT, D’Orazi V, Casagrande L, de Silva GM, Yong D, Cottrell PL, Lattanzio JC (2017) NGC 6752 AGB stars revisited. I. Improved AGB temperatures remove apparent overionisation of Fe I. Astron Astrophys 605:A98. https://doi.org/10.1051/0004-6361/201731101. arXiv:1707.02840
Cantat-Gaudin T, Vallenari A, Zaggia S, Bragaglia A, Sordo R, Drew JE, Eisloeffel J, Farnhill HJ, Gonzalez-Solares E, Greimel R, Irwin MJ, Kupcu-Yoldas A, Jordi C, Blomme R, Sampedro L, Costado MT, Alfaro E, Smiljanic R, Magrini L, Donati P, Friel ED, Jacobson H, Abbas U, Hatzidimitriou D, Spagna A, Vecchiato A, Balaguer-Nunez L, Lardo C, Tosi M, Pancino E, Klutsch A, Tautvaisiene G, Drazdauskas A, Puzeras E, Jiménez-Esteban F, Maiorca E, Geisler D, San Roman I, Villanova S, Gilmore G, Randich S, Bensby T, Flaccomio E, Lanzafame A, Recio-Blanco A, Damiani F, Hourihane A, Jofré P, de Laverny P, Masseron T, Morbidelli L, Prisinzano L, Sacco GG, Sbordone L, Worley CC (2014) The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705. Astron Astrophys 569:A17. https://doi.org/10.1051/0004-6361/201423851. arXiv:1407.1510
Carballo-Bello JA, Sollima A, Martínez-Delgado D, Pila-Díez B, Leaman R, Fliri J, Muñoz RR, Corral-Santana JM (2014) A search for stellar tidal debris of defunct dwarf galaxies around globular clusters in the inner Galactic halo. Mon Not R Astron Soc 445:2971–2993. https://doi.org/10.1093/mnras/stu1949. arXiv:1409.7390
Carretta E (2006) Abundances in Red Giant Stars of NGC 2808 and correlations between chemical anomalies and global parameters in globular clusters. Astron J 131:1766–1783. https://doi.org/10.1086/499565. arXiv:astro-ph/0511144
Carretta E (2014) Three discrete groups with homogeneous chemistry along the Red Giant Branch in the globular cluster NGC 2808. Astrophys J Lett 795:L28. https://doi.org/10.1088/2041-8205/795/2/L28. arXiv:1410.3476
Carretta E (2015) Five groups of red giants with distinct chemical composition in the globular cluster NGC 2808. Astrophys J 810:148. https://doi.org/10.1088/0004-637X/810/2/148. arXiv:1507.07553
Carretta E (2016) Spectroscopic evidence of multiple stellar populations in globular clusters. arXiv e-prints. arXiv:1611.04728
Carretta E (2019) Empirical estimates of the Na–O anti-correlation in 95 Galactic globular clusters. Astron Astrophys 624:A24. https://doi.org/10.1051/0004-6361/201935110. arXiv:1903.04494
Carretta E, Bragaglia A (2018) Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded. Astron Astrophys 614:A109. https://doi.org/10.1051/0004-6361/201832660. arXiv:1802.06787
Carretta E, Bragaglia A, Cacciari C, Rossetti E (2003) Proton capture elements in the globular cluster NGC 2808. I. First detection of large variations in sodium abundances along the Red Giant Branch. Astron Astrophys 410:143–154. https://doi.org/10.1051/0004-6361:20031315. arXiv:astro-ph/0309021
Carretta E, Bragaglia A, Cacciari C (2004) Star-to-Star Na and O abundance variations along the Red Giant Branch in NGC 2808. Astrophys J Lett 610:L25–L28. https://doi.org/10.1086/423034. arXiv:astro-ph/0406119
Carretta E, Gratton RG, Lucatello S, Bragaglia A, Bonifacio P (2005) Abundances of C, N, O in slightly evolved stars in the globular clusters NGC 6397, NGC 6752 and 47 Tuc. Astron Astrophys 433:597–611. https://doi.org/10.1051/0004-6361:20041892. arXiv:astro-ph/0411241
Carretta E, Bragaglia A, Gratton RG, Leone F, Recio-Blanco A, Lucatello S (2006) Na–O anticorrelation and HB. I. The Na–O anticorrelation in NGC 2808. Astron Astrophys 450:523–533. https://doi.org/10.1051/0004-6361:20054369. arXiv:astro-ph/0511833
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Momany Y (2007) Na–O anticorrelation and horizontal branches. II. The Na–O anticorrelation in the globular cluster NGC 6752. Astron Astrophys 464:927–937. https://doi.org/10.1051/0004-6361:20065208. arXiv:astro-ph/0701174
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2009a) Intrinsic iron spread and a new metallicity scale for globular clusters. Astron Astrophys 508:695–706. https://doi.org/10.1051/0004-6361/200913003. arXiv:0910.0675
Carretta E, Bragaglia A, Gratton R, Lucatello S (2009b) Na–O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron Astrophys 505:139–155. https://doi.org/10.1051/0004-6361/200912097. arXiv:0909.2941
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Catanzaro G, Leone F, Bellazzini M, Claudi R, D’Orazi V, Momany Y, Ortolani S, Pancino E, Piotto G, Recio-Blanco A, Sabbi E (2009c) Na–O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron Astrophys 505:117–138. https://doi.org/10.1051/0004-6361/200912096. arXiv:0909.2938
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010a) Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus. Astron Astrophys 520:A95. https://doi.org/10.1051/0004-6361/201014924. arXiv:1006.5866
Carretta E, Bragaglia A, Gratton RG, Lucatello S, Bellazzini M, Catanzaro G, Leone F, Momany Y, Piotto G, D’Orazi V (2010b) M54 + Sagittarius = \(\omega \) Centauri. Astrophys J Lett 714:L7–L11. https://doi.org/10.1088/2041-8205/714/1/L7. arXiv:1002.1963
Carretta E, Bragaglia A, Gratton RG, Recio-Blanco A, Lucatello S, D’Orazi V, Cassisi S (2010c) Properties of stellar generations in globular clusters and relations with global parameters. Astron Astrophys 516:A55. https://doi.org/10.1051/0004-6361/200913451. arXiv:1003.1723
Carretta E, Bragaglia A, Gratton R, D’Orazi V, Lucatello S (2011a) A Strömgren view of the multiple populations in globular clusters. Astron Astrophys 535:A121. https://doi.org/10.1051/0004-6361/201117180. arXiv:1109.3199
Carretta E, Lucatello S, Gratton RG, Bragaglia A, D’Orazi V (2011b) Multiple stellar populations in the globular cluster NGC 1851. Astron Astrophys 533:A69. https://doi.org/10.1051/0004-6361/201117269. arXiv:1106.3174
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V (2012) Chemical tagging of three distinct populations of red giants in the globular cluster NGC 6752. Astrophys J Lett 750:L14. https://doi.org/10.1088/2041-8205/750/1/L14. arXiv:1204.0259
Carretta E, Bragaglia A, Gratton RG, Lucatello S, D’Orazi V, Bellazzini M, Catanzaro G, Leone F, Momany Y, Sollima A (2013a) NGC 362: another globular cluster with a split red giant branch. Astron Astrophys 557:A138. https://doi.org/10.1051/0004-6361/201321905. arXiv:1307.4085
Carretta E, Gratton RG, Bragaglia A, D’Orazi V, Lucatello S, Sollima A, Sneden C (2013b) Potassium in globular cluster stars: comparing normal clusters to the peculiar cluster NGC 2419. Astrophys J 769:40. https://doi.org/10.1088/0004-637X/769/1/40. arXiv:1303.4740
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A (2014) Terzan 8: a Sagittarius-flavoured globular cluster. Astron Astrophys 561:A87. https://doi.org/10.1051/0004-6361/201322676. arXiv:1311.2589
Carretta E, Bragaglia A, Gratton RG, D’Orazi V, Lucatello S, Sollima A, Momany Y, Catanzaro G, Leone F (2015) The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80). Astron Astrophys 578:A116. https://doi.org/10.1051/0004-6361/201525951. arXiv:1503.03074
Carretta E, Bragaglia A, Lucatello S, D’Orazi V, Gratton RG, Donati P, Sollima A, Sneden C (2017) Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy. Astron Astrophys 600:A118. https://doi.org/10.1051/0004-6361/201630004. arXiv:1701.03116
Carretta E, Bragaglia A, Lucatello S, Gratton RG, D’Orazi V, Sollima A (2018) Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron Astrophys 615:A17. https://doi.org/10.1051/0004-6361/201732324. arXiv:1801.09689
Cassisi S, Salaris M (1997) A critical investigation on the discrepancy between the observational and the theoretical red giant luminosity function ‘bump’. Mon Not R Astron Soc 285(3):593–603. https://doi.org/10.1093/mnras/285.3.593. arXiv:astro-ph/9702029
Cassisi S, Marín-Franch A, Salaris M, Aparicio A, Monelli M, Pietrinferni A (2011) The magnitude difference between the main sequence turn off and the red giant branch bump in Galactic globular clusters. Astron Astrophys 527:A59. https://doi.org/10.1051/0004-6361/201016066. arXiv:1012.0419
Cassisi S, Salaris M, Pietrinferni A, Vink JS, Monelli M (2014) On the missing second generation AGB stars in NGC 6752. Astron Astrophys 571:A81. https://doi.org/10.1051/0004-6361/201424540. arXiv:1410.3599
Cassisi S, Salaris M, Pietrinferni A, Hyder D (2017) On the determination of the He abundance distribution in globular clusters from the width of the main sequence. Mon Not R Astron Soc 464:2341–2348. https://doi.org/10.1093/mnras/stw2579. arXiv:1610.01755
Catelan M (2009) Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys Space Sci 320:261–309. https://doi.org/10.1007/s10509-009-9987-8. arXiv:astro-ph/0507464
Chabrier G, Hennebelle P, Charlot S (2014) Variations of the Stellar initial mass function in the progenitors of massive early-type Galaxies and in extreme starburst environments. Astrophys J 796:75. https://doi.org/10.1088/0004-637X/796/2/75. arXiv:1409.8466
Chantereau W, Salaris M, Bastian N, Martocchia S (2019) Helium enrichment in intermediate-age Magellanic Clouds clusters: towards an ubiquity of multiple stellar populations? Mon Not R Astron Soc 484:5236–5244. https://doi.org/10.1093/mnras/stz378. arXiv:1902.01806
Charbonnel C, Chantereau W, Krause M, Primas F, Wang Y (2014) Are there any first-generation stars in globular clusters today? Astron Astrophys 569:L6. https://doi.org/10.1051/0004-6361/201424804. arXiv:1410.3967
Cohen JG (2004) Palomar 12 as a part of the Sagittarius stream: the evidence from abundance ratios. Astron J 127:1545–1554. https://doi.org/10.1086/382104. arXiv:astro-ph/0311187
Cohen JG, Briley MM, Stetson PB (2002) Carbon and nitrogen abundances in stars at the base of the red giant branch in M5. Astron J 123:2525–2540. https://doi.org/10.1086/340179. arXiv:astro-ph/0112199
Cordero MJ, Pilachowski CA, Johnson CI, McDonald I, Zijlstra AA, Simmerer J (2014) Detailed abundances for a large sample of Giant Stars in the Globular Cluster 47 Tucanae (NGC 104). Astrophys J 780:94. https://doi.org/10.1088/0004-637X/780/1/94. arXiv:1311.1541
Cordero MJ, Hénault-Brunet V, Pilachowski CA, Balbinot E, Johnson CI, Varri AL (2017) Differences in the rotational properties of multiple stellar populations in M13: a faster rotation for the ‘extreme’ chemical subpopulation. Mon Not R Astron Soc 465:3515–3535. https://doi.org/10.1093/mnras/stw2812. arXiv:1610.09374
Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2019) Making the Heaviest Elements in the Universe: A Review of the Rapid Neutron Capture Process. arXiv e-prints. arXiv:1901.01410
Cristallo S, Straniero O, Gallino R, Piersanti L, Domínguez I, Lederer MT (2009) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys J 696:797–820. https://doi.org/10.1088/0004-637X/696/1/797. arXiv:0902.0243
Cristallo S, Straniero O, Piersanti L, Gobrecht D (2015) Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys J Suppl Ser 219(2):40. https://doi.org/10.1088/0067-0049/219/2/40. arXiv:1507.07338
Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M \(_{\odot }\). Astrophys J 866:21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673
Cunha K, Smith VV, Johnson JA, Bergemann M, Mészáros S, Shetrone MD, Souto D, Allende Prieto C, Schiavon RP, Frinchaboy P, Zasowski G, Bizyaev D, Holtzman J, García Pérez AE, Majewski SR, Nidever D, Beers T, Carrera R, Geisler D, Gunn J, Hearty F, Ivans I, Martell S, Pinsonneault M, Schneider DP, Sobeck J, Stello D, Stassun KG, Skrutskie M, Wilson JC (2015) Sodium and oxygen abundances in the open cluster NGC 6791 from APOGEE H-band spectroscopy. Astrophys J Lett 798:L41. https://doi.org/10.1088/2041-8205/798/2/L41. arXiv:1411.2034
Da Costa GS (2016) The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe]. Mon Not R Astron Soc 455:199–206. https://doi.org/10.1093/mnras/stv2315. arXiv:1510.00766
Da Costa GS, Held EV, Saviane I (2014) NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread. Mon Not R Astron Soc 438:3507–3520. https://doi.org/10.1093/mnras/stt2467. arXiv:1312.5796
Dabringhausen J, Hilker M, Kroupa P (2008) From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon Not R Astron Soc 386:864–886. https://doi.org/10.1111/j.1365-2966.2008.13065.x. arXiv:0802.0703
Dale JE, Bonnell I (2011) Ionizing feedback from massive stars in massive clusters: fake bubbles and untriggered star formation. Mon Not R Astron Soc 414:321–328. https://doi.org/10.1111/j.1365-2966.2011.18392.x. arXiv:1103.1532
Dalessandro E, Salaris M, Ferraro FR, Cassisi S, Lanzoni B, Rood RT, Fusi Pecci F, Sabbi E (2011) The peculiar horizontal branch of NGC 2808. Mon Not R Astron Soc 410:694–704. https://doi.org/10.1111/j.1365-2966.2010.17479.x. arXiv:1008.4478
Dalessandro E, Salaris M, Ferraro FR, Mucciarelli A, Cassisi S (2013) The horizontal branch in the UV colour-magnitude diagrams—II. The case of M3, M13 and M79. Mon Not R Astron Soc 430:459–471. https://doi.org/10.1093/mnras/sts644. arXiv:1212.4419
Dalessandro E, Massari D, Bellazzini M, Miocchi P, Mucciarelli A, Salaris M, Cassisi S, Ferraro FR, Lanzoni B (2014) First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362. Astrophys J Lett 791:L4. https://doi.org/10.1088/2041-8205/791/1/L4. arXiv:1407.0484
Dalessandro E, Lapenna E, Mucciarelli A, Origlia L, Ferraro FR, Lanzoni B (2016) Multiple populations in the old and massive small magellanic cloud globular cluster NGC 121. Astrophys J 829:77. https://doi.org/10.3847/0004-637X/829/2/77. arXiv:1607.05736
Dalessandro E, Cadelano M, Vesperini E, Salaris M, Ferraro FR, Lanzoni B, Raso S, Hong J, Webb JJ, Zocchi A (2018a) The peculiar radial distribution of multiple populations in the massive globular cluster M80. Astrophys J 859:15. https://doi.org/10.3847/1538-4357/aabb56. arXiv:1804.03222
Dalessandro E, Lardo C, Cadelano M, Saracino S, Bastian N, Mucciarelli A, Salaris M, Stetson P, Pancino E (2018b) IC 4499 revised: spectro-photometric evidence of small light-element variations. Astron Astrophys 618:A131. https://doi.org/10.1051/0004-6361/201833650. arXiv:1807.07618
Dalessandro E, Mucciarelli A, Bellazzini M, Sollima A, Vesperini E, Hong J, Hénault-Brunet V, Ferraro FR, Ibata R, Lanzoni B, Massari D, Salaris M (2018c) The unexpected kinematics of multiple populations in NGC 6362: do binaries play a role? Astrophys J 864:33. https://doi.org/10.3847/1538-4357/aad4b3. arXiv:1807.07918
D’Antona F, Caloi V (2004) The early evolution of globular clusters: the case of NGC 2808. Astrophys J 611:871–880. https://doi.org/10.1086/422334. arXiv:astro-ph/0405016
D’Antona F, Caloi V, Montalbán J, Ventura P, Gratton R (2002) Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron Astrophys 395:69–75. https://doi.org/10.1051/0004-6361:20021220. arXiv:astro-ph/0209331
D’Antona F, Bellazzini M, Caloi V, Pecci FF, Galleti S, Rood RT (2005) A helium spread among the main-sequence stars in NGC 2808. Astrophys J 631:868–878. https://doi.org/10.1086/431968. arXiv:astro-ph/0505347
D’Antona F, D’Ercole A, Carini R, Vesperini E, Ventura P (2012) Models for the lithium abundances of multiple populations in globular clusters and the possible role of the big bang lithium. Mon Not R Astron Soc 426:1710–1719. https://doi.org/10.1111/j.1365-2966.2012.21663.x. arXiv:1207.1544
D’Antona F, Vesperini E, D’Ercole A, Ventura P, Milone AP, Marino AF, Tailo M (2016) A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence. Mon Not R Astron Soc 458:2122–2139. https://doi.org/10.1093/mnras/stw387. arXiv:1602.05412
D’Antona F, Milone AP, Tailo M, Ventura P, Vesperini E, di Criscienzo M (2017) Stars caught in the braking stage in young Magellanic Cloud clusters. Nat Astron 1:0186. https://doi.org/10.1038/s41550-017-0186. arXiv:1707.07711
Davies MB, Piotto G, de Angeli F (2004) Blue straggler production in globular clusters. Mon Not R Astron Soc 349:129–134. https://doi.org/10.1111/j.1365-2966.2004.07474.x. arXiv:astro-ph/0401502
de Marchi F, de Angeli F, Piotto G, Carraro G, Davies MB (2006) Search and analysis of blue straggler stars in open clusters. Astron Astrophys 459:489–497. https://doi.org/10.1051/0004-6361:20064898. arXiv:astro-ph/0608464
de Mink SE, Pols OR, Langer N, Izzard RG (2009) Massive binaries as the source of abundance anomalies in globular clusters. Astron Astrophys 507:L1–L4. https://doi.org/10.1051/0004-6361/200913205. arXiv:0910.1086
de Silva GM, Gibson BK, Lattanzio J, Asplund M (2009) On and Na abundance patterns in open clusters of the Galactic disk. Astron Astrophys 500:L25–L28. https://doi.org/10.1051/0004-6361/200912279. arXiv:0905.4354
Decressin T, Meynet G, Charbonnel C, Prantzos N, Ekström S (2007) Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron Astrophys 464:1029–1044. https://doi.org/10.1051/0004-6361:20066013. arXiv:astro-ph/0611379
Denisenkov PA, Denisenkova SN (1989) Possible explanation of the correlation between nitrogen and sodium over abundances for red giants in globular clusters. Astron Tsirkulyar 1538:11
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391(2):825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
D’Ercole A, Vesperini E, D’Antona F, McMillan SLW, Recchi S (2008) Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon Not R Astron Soc 391:825–843. https://doi.org/10.1111/j.1365-2966.2008.13915.x. arXiv:0809.1438
D’Ercole A, D’Antona F, Ventura P, Vesperini E, McMillan SLW (2010) Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta. Mon Not R Astron Soc 407(2):854–869. https://doi.org/10.1111/j.1365-2966.2010.16996.x. arXiv:1005.1892
D’Ercole A, D’Antona F, Vesperini E (2011) Formation of multiple populations in globular clusters: constraints on the dilution by pristine gas. Mon Not R Astron Soc 415:1304–1309. https://doi.org/10.1111/j.1365-2966.2011.18776.x. arXiv:1103.4715
D’Ercole A, D’Antona F, Carini R, Vesperini E, Ventura P (2012) The role of super-asymptotic giant branch ejecta in the abundance patterns of multiple populations in globular clusters. Mon Not R Astron Soc 423(2):1521–1533. https://doi.org/10.1111/j.1365-2966.2012.20974.x. arXiv:1203.4992
D’Ercole A, D’Antona F, Vesperini E (2016) Accretion of pristine gas and dilution during the formation of multiple-population globular clusters. Mon Not R Astron Soc 461:4088–4098. https://doi.org/10.1093/mnras/stw1583. arXiv:1607.00951
di Criscienzo M, D’Antona F, Ventura P (2010) A detailed study of the main sequence of the globular cluster NGC 6397: can we derive constraints on the existence of multiple populations? Astron Astrophys 511:A70. https://doi.org/10.1051/0004-6361/200912516. arXiv:0912.3150
Dias B, Barbuy B, Saviane I, Held EV, Da Costa GS, Ortolani S, Gullieuszik M, Vásquez S (2016) FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale. Astron Astrophys 590:A9. https://doi.org/10.1051/0004-6361/201526765. arXiv:1603.02672
Dobrovolskas V, Kučinskas A, Bonifacio P, Korotin SA, Steffen M, Sbordone L, Caffau E, Ludwig HG, Royer F, Prakapavičius D (2014) Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae. Astron Astrophys 565:A121. https://doi.org/10.1051/0004-6361/201322868. arXiv:1311.1072
Doherty CL, Gil-Pons P, Lau HHB, Lattanzio JC, Siess L, Campbell SW (2014) Super and massive AGB stars—III. Nucleosynthesis in metal-poor and very metal-poor stars—Z = 0.001 and 0.0001. Mon Not R Astron Soc 441:582–598. https://doi.org/10.1093/mnras/stu571. arXiv:1403.5054
Donati P, Cantat Gaudin T, Bragaglia A, Friel E, Magrini L, Smiljanic R, Vallenari A, Tosi M, Sordo R, Tautvaisiene G, Blanco-Cuaresma S, Costado MT, Geisler D, Klutsch A, Mowlavi N, Muñoz C, San Roman I, Zaggia S, Gilmore G, Randich S, Bensby T, Flaccomio E, Koposov SE, Korn AJ, Pancino E, Recio-Blanco A, Franciosini E, de Laverny P, Lewis J, Morbidelli L, Prisinzano L, Sacco G, Worley CC, Hourihane A, Jofré P, Lardo C, Maiorca E (2014) The Gaia-ESO Survey: reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy. Astron Astrophys 561:A94. https://doi.org/10.1051/0004-6361/201322911. arXiv:1312.3925
D’Orazi V, Marino AF (2010) Lithium abundances in red giants of M4: evidence for asymptotic giant branch star pollution in globular clusters? Astrophys J Lett 716:L166–L169. https://doi.org/10.1088/2041-8205/716/2/L166. arXiv:1005.3376
D’Orazi V, Gratton R, Lucatello S, Carretta E, Bragaglia A, Marino AF (2010a) Ba stars and other binaries in first and second generation stars in globular clusters. Astrophys J Lett 719:L213–L217. https://doi.org/10.1088/2041-8205/719/2/L213. arXiv:1007.2164
D’Orazi V, Lucatello S, Gratton R, Bragaglia A, Carretta E, Shen Z, Zaggia S (2010b) Lithium and proton-capture elements in globular cluster dwarfs: the case of 47 TUC. Astrophys J Lett 713:L1–L5. https://doi.org/10.1088/2041-8205/713/1/L1. arXiv:1003.0013
D’Orazi V, Gratton RG, Pancino E, Bragaglia A, Carretta E, Lucatello S, Sneden C (2011) Chemical enrichment mechanisms in \(\omega \) Centauri: clues from neutron-capture elements. Astron Astrophys 534:A29. https://doi.org/10.1051/0004-6361/201117630. arXiv:1108.5216
D’Orazi V, Campbell SW, Lugaro M, Lattanzio JC, Pignatari M, Carretta E (2013) On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models. Mon Not R Astron Soc 433:366–381. https://doi.org/10.1093/mnras/stt728. arXiv:1304.7009
D’Orazi V, Angelou GC, Gratton RG, Lattanzio JC, Bragaglia A, Carretta E, Lucatello S, Momany Y (2014) Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys J 791:39. https://doi.org/10.1088/0004-637X/791/1/39. arXiv:1406.5513
D’Orazi V, Gratton RG, Angelou GC, Bragaglia A, Carretta E, Lattanzio JC, Lucatello S, Momany Y, Sollima A, Beccari G (2015) Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon Not R Astron Soc 449:4038–4047. https://doi.org/10.1093/mnras/stv612. arXiv:1503.05925
Dotter A, Sarajedini A, Anderson J, Aparicio A, Bedin LR, Chaboyer B, Majewski S, Marín-Franch A, Milone A, Paust N, Piotto G, Reid IN, Rosenberg A, Siegel M (2010) The ACS survey of galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys J 708:698–716. https://doi.org/10.1088/0004-637X/708/1/698. arXiv:0911.2469
Dotter A, Sarajedini A, Anderson J (2011) Globular clusters in the outer galactic halo: new Hubble Space Telescope/advanced camera for surveys imaging of six globular clusters and the galactic globular cluster age-metallicity relation. Astrophys J 738:74. https://doi.org/10.1088/0004-637X/738/1/74. arXiv:1106.4307
Dotter A, Milone AP, Conroy C, Marino AF, Sarajedini A (2018) Ruprecht 106: a riddle, wrapped in a mystery, inside an enigma. Astrophys J Lett 865:L10. https://doi.org/10.3847/2041-8213/aae08f. arXiv:1808.05582
Drukier GA (1996) Retention fractions for globular cluster neutron stars. Mon Not R Astron Soc 280:498–514. https://doi.org/10.1093/mnras/280.2.498. arXiv:astro-ph/9512163
Duchêne G, Lacour S, Moraux E, Goodwin S, Bouvier J (2018) Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula Cluster. Mon Not R Astron Soc 478:1825–1836. https://doi.org/10.1093/mnras/sty1180. arXiv:1805.00965
Dupree AK, Avrett EH (2013) Direct evaluation of the helium abundances in Omega Centauri. Astrophys J Lett 773:L28. https://doi.org/10.1088/2041-8205/773/2/L28. arXiv:1307.5860
Dupree AK, Dotter A, Johnson CI, Marino AF, Milone AP, Bailey JI III, Crane JD, Mateo M, Olszewski EW (2017) NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys J Lett 846:L1. https://doi.org/10.3847/2041-8213/aa85dd. arXiv:1708.03386
Elmegreen BG (2017) Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys J 836:80. https://doi.org/10.3847/1538-4357/836/1/80. arXiv:1701.01034
Feltzing S, Primas F, Johnson RA (2009) Stellar abundances and ages for metal-rich Milky Way globular clusters. Stellar parameters and elemental abundances for 9 HB stars in NGC 6352. Astron Astrophys 493:913–930. https://doi.org/10.1051/0004-6361:200810137. arXiv:0810.4832
Fernández-Trincado JG, Robin AC, Moreno E, Schiavon RP, García Pérez AE, Vieira K, Cunha K, Zamora O, Sneden C, Souto D, Carrera R, Johnson JA, Shetrone M, Zasowski G, García-Hernández DA, Majewski SR, Reylé C, Blanco-Cuaresma S, Martinez-Medina LA, Pérez-Villegas A, Valenzuela O, Pichardo B, Meza A, Mészáros S, Sobeck J, Geisler D, Anders F, Schultheis M, Tang B, Roman-Lopes A, Mennickent RE, Pan K, Nitschelm C, Allard F (2016) Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. Astrophys J 833:132. https://doi.org/10.3847/1538-4357/833/2/132. arXiv:1604.01279
Fernández-Trincado JG, Zamora O, García-Hernández DA, Souto D, Dell’Agli F, Schiavon RP, Geisler D, Tang B, Villanova S, Hasselquist S, Mennickent RE, Cunha K, Shetrone M, Allende Prieto C, Vieira K, Zasowski G, Sobeck J, Hayes CR, Majewski SR, Placco VM, Beers TC, Schleicher DRG, Robin AC, Mészáros S, Masseron T, García Pérez AE, Anders F, Meza A, Alves-Brito A, Carrera R, Minniti D, Lane RR, Fernández-Alvar E, Moreno E, Pichardo B, Pérez-Villegas A, Schultheis M, Roman-Lopes A, Fuentes CE, Nitschelm C, Harding P, Bizyaev D, Pan K, Oravetz D, Simmons A, Ivans II, Blanco-Cuaresma S, Hernández J, Alonso-García J, Valenzuela O, Chanamé J (2017) Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. Astrophys J Lett 846:L2. https://doi.org/10.3847/2041-8213/aa8032. arXiv:1707.03108
Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644:L21–L24. https://doi.org/10.1086/505388. arXiv:astro-ph/0603840
Ferraro FR, Mucciarelli A, Carretta E, Origlia L (2006a) On the iron content of NGC 1978 in the LMC: a metal-rich, chemically homogeneous cluster. Astrophys J Lett 645:L33–L36. https://doi.org/10.1086/506178. arXiv:astro-ph/0605646
Ferraro FR, Sabbi E, Gratton R, Piotto G, Lanzoni B, Carretta E, Rood RT, Sills A, Fusi Pecci F, Moehler S, Beccari G, Lucatello S, Compagni N (2006b) Discovery of carbon/oxygen-depleted blue straggler stars in 47 Tucanae: the chemical signature of a mass transfer formation process. Astrophys J Lett 647:L53–L56. https://doi.org/10.1086/507327. arXiv:astro-ph/0610081
Forbes DA, Bridges T (2010) Accreted versus in situ Milky Way globular clusters. Mon Not R Astron Soc 404:1203–1214. https://doi.org/10.1111/j.1365-2966.2010.16373.x. arXiv:1001.4289
Forbes DA, Lasky P, Graham AW, Spitler L (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon Not R Astron Soc 389:1924–1936. https://doi.org/10.1111/j.1365-2966.2008.13739.x. arXiv:0806.1090
Fregeau JM, Rasio FA (2007) Monte Carlo simulations of globular cluster evolution. IV. Direct integration of strong interactions. Astrophys J 658:1047–1061. https://doi.org/10.1086/511809. arXiv:astro-ph/0608261
Fregeau JM, Ivanova N, Rasio FA (2009) Evolution of the binary fraction in dense stellar systems. Astrophys J 707:1533–1540. https://doi.org/10.1088/0004-637X/707/2/1533. arXiv:0907.4196
Freiburghaus C, Rosswog S, Thielemann FK (1999) R-process in neutron star mergers. Astrophys J Lett 525:L121–L124. https://doi.org/10.1086/312343
Fu X, Bressan A, Molaro P, Marigo P (2015) Lithium evolution in metal-poor stars: from pre-main sequence to the Spite plateau. Mon Not R Astron Soc 452:3256–3265. https://doi.org/10.1093/mnras/stv1384. arXiv:1506.05993
Fusi Pecci F, Bellazzini M, Cacciari C, Ferraro FR (1995) The young globular clusters of the Milky Way and the local group galaxies: playing with great circles. Astron J 110:1664. https://doi.org/10.1086/117639. arXiv:astro-ph/9507065
Gaia Collaboration, Helmi A, van Leeuwen F, McMillan PJ, Massari D, Antoja T, Robin AC, Lindegren L, Bastian U, Arenou F, et al (2018) Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron Astrophys 616:A12. https://doi.org/10.1051/0004-6361/201832698, arXiv:1804.09381
García-Hernández DA, Mészáros S, Monelli M, Cassisi S, Stetson PB, Zamora O, Shetrone M, Lucatello S (2015) Clear evidence for the presence of second-generation asymptotic giant branch stars in metal-poor galactic globular clusters. Astrophys J Lett 815:L4. https://doi.org/10.1088/2041-8205/815/1/L4. arXiv:1511.05714
Geisler D, Villanova S, Carraro G, Pilachowski C, Cummings J, Johnson CI, Bresolin F (2012) The unique Na: O abundance distribution in NGC 6791: the first open(?) Cluster with multiple populations. Astrophys J Lett 756:L40. https://doi.org/10.1088/2041-8205/756/2/L40. arXiv:1207.3328
Georgiev IY, Hilker M, Puzia TH, Goudfrooij P, Baumgardt H (2009) Globular cluster systems in nearby dwarf galaxies—II. Nuclear star clusters and their relation to massive Galactic globular clusters. Mon Not R Astron Soc 396:1075–1085. https://doi.org/10.1111/j.1365-2966.2009.14776.x. arXiv:0903.2857
Gieles M, Charbonnel C, Krause MGH, Hénault-Brunet V, Agertz O, Lamers HJGLM, Bastian N, Gualandris A, Zocchi A, Petts JA (2018) Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Mon Not R Astron Soc 478:2461–2479. https://doi.org/10.1093/mnras/sty1059. arXiv:1804.04682
Giersz M, Askar A, Wang L, Hypki A, Leveque A, Spurzem R (2019) MOCCA survey data base – I. Dissolution of tidally filling star clusters harbouring black hole subsystems. Mon Not R Astron Soc 487(2):2412–2423. https://doi.org/10.1093/mnras/stz1460. arXiv:1904.01227
Giesers B, Kamann S, Dreizler S, Husser TO, Askar A, Göttgens F, Brinchmann J, Latour M, Weilbacher PM, Wendt M, Roth MM (2019) A stellar census in globular clusters with MUSE: Binaries in NGC 3201, arXiv e-prints. arXiv:1909.04050,
Glatt K, Grebel EK, Sabbi E, Gallagher JS III, Nota A, Sirianni M, Clementini G, Tosi M, Harbeck D, Koch A, Kayser A, Da Costa G (2008) Age determination of six intermediate-age Small Magellanic Cloud star clusters with HST/ACS. Astron J 136:1703–1727. https://doi.org/10.1088/0004-6256/136/4/1703. arXiv:0807.3744
Glatt K, Grebel EK, Jordi K, Gallagher JS III, Da Costa G, Clementini G, Tosi M, Harbeck D, Nota A, Sabbi E, Sirianni M (2011) Present-day mass function of six Small Magellanic Cloud intermediate-age and old star clusters. Astron J 142:36. https://doi.org/10.1088/0004-6256/142/2/36
Goudfrooij P, Girardi L, Kozhurina-Platais V, Kalirai JS, Platais I, Puzia TH, Correnti M, Bressan A, Chandar R, Kerber L, Marigo P, Rubele S (2014) Extended main sequence turnoffs in intermediate-age star clusters: a correlation between turnoff width and early escape velocity. Astrophys J 797:35. https://doi.org/10.1088/0004-637X/797/1/35. arXiv:1410.3840
Gratton R, Sneden C, Carretta E (2004) Annu Rev Astron Astrophys 42:385–440. https://doi.org/10.1146/annurev.astro.42.053102.133945
Gratton RG, Carretta E (2010) Diluting the material forming the second generation stars in globular clusters: the contribution by unevolved stars. Astron Astrophys 521:A54. https://doi.org/10.1051/0004-6361/201014997. arXiv:1007.4894
Gratton RG, Sneden C, Carretta E, Bragaglia A (2000) Mixing along the red giant branch in metal-poor field stars. Astron Astrophys 354:169–187
Gratton RG, Bonifacio P, Bragaglia A, Carretta E, Castellani V, Centurion M, Chieffi A, Claudi R, Clementini G, D’Antona F, Desidera S, François P, Grundahl F, Lucatello S, Molaro P, Pasquini L, Sneden C, Spite F, Straniero O (2001) The O–Na and Mg–Al anticorrelations in turn-off and early subgiants in globular clusters. Astron Astrophys 369:87–98. https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Momany Y, Pancino E, Valenti E (2006) Na–O anticorrelation and HB. III. The abundances of NGC 6441 from FLAMES-UVES spectra. Astron Astrophys 455:271–281. https://doi.org/10.1051/0004-6361:20064957. arXiv:astro-ph/0603858
Gratton RG, Lucatello S, Bragaglia A, Carretta E, Cassisi S, Momany Y, Pancino E, Valenti E, Caloi V, Claudi R, D’Antona F, Desidera S, François P, James G, Moehler S, Ortolani S, Pasquini L, Piotto G, Recio-Blanco A (2007) Na–O anticorrelation and horizontal branches. V. The Na–O anticorrelation in NGC 6441 from Giraffe spectra. Astron Astrophys 464:953–965. https://doi.org/10.1051/0004-6361:20066061. arXiv:astro-ph/0701179
Gratton RG, Carretta E, Bragaglia A, Lucatello S, D’Orazi V (2010a) The second and third parameters of the horizontal branch in globular clusters. Astron Astrophys 517:A81. https://doi.org/10.1051/0004-6361/200912572. arXiv:1004.3862
Gratton RG, D’Orazi V, Bragaglia A, Carretta E, Lucatello S (2010b) The connection between missing AGB stars and extended horizontal branches. Astron Astrophys 522:A77. https://doi.org/10.1051/0004-6361/201015405. arXiv:1010.5913
Gratton RG, Johnson CI, Lucatello S, D’Orazi V, Pilachowski C (2011a) Multiple populations in \(\omega \) Centauri: a cluster analysis of spectroscopic data. Astron Astrophys 534:A72. https://doi.org/10.1051/0004-6361/201117093. arXiv:1105.5544
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Momany YA (2011b) The Na–O anticorrelation in horizontal branch stars. I. NGC 2808. Astron Astrophys 534:A123. https://doi.org/10.1051/0004-6361/201117690. arXiv:1109.4013
Gratton RG, Carretta E, Bragaglia A (2012a) Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron Astrophys Rev 20:50. https://doi.org/10.1007/s00159-012-0050-3. arXiv:1201.6526
Gratton RG, Lucatello S, Carretta E, Bragaglia A, D’Orazi V, Al Momany Y, Sollima A, Salaris M, Cassisi S (2012b) The Na–O anticorrelation in horizontal branch stars. II. NGC 1851. Astron Astrophys 539:A19. https://doi.org/10.1051/0004-6361/201118491. arXiv:1201.1772
Gratton RG, Villanova S, Lucatello S, Sollima A, Geisler D, Carretta E, Cassisi S, Bragaglia A (2012c) Spectroscopic analysis of the two subgiant branches of the globular cluster NGC 1851. Astron Astrophys 544:A12. https://doi.org/10.1051/0004-6361/201219276. arXiv:1205.5719
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Pietrinferni A, Salaris M (2013) The Na–O anticorrelation in horizontal branch stars. III. 47 Tucanae and M 5. Astron Astrophys 549:A41. https://doi.org/10.1051/0004-6361/201219976. arXiv:1210.4069
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Cassisi S, Salaris M (2014) The Na–O anticorrelation in horizontal branch stars. IV. M 22. Astron Astrophys 563:A13. https://doi.org/10.1051/0004-6361/201323101. arXiv:1401.7109
Gratton RG, Lucatello S, Sollima A, Carretta E, Bragaglia A, Momany Y, D’Orazi V, Salaris M, Cassisi S, Stetson PB (2015) The Na–O anticorrelation in horizontal branch stars. V. NGC 6723. Astron Astrophys 573:A92. https://doi.org/10.1051/0004-6361/201424393. arXiv:1410.8378
Grebel EK (2016) Globular Clusters in the Local Group. In: Meiron Y, Li S, Liu FK, Spurzem R (eds) Star clusters and black holes in galaxies across cosmic time, IAU Symposium, vol 312, pp 157–170. https://doi.org/10.1017/S1743921315008078
Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64. https://doi.org/10.1086/169384
Griffen BF, Drinkwater MJ, Thomas PA, Helly JC, Pimbblet KA (2010) Globular cluster formation within the Aquarius simulation. Mon Not R Astron Soc 405(1):375–386. https://doi.org/10.1111/j.1365-2966.2010.16458.x. arXiv:0910.0310
Grillmair CJ (2009) Four new stellar debris streams in the galactic halo. Astrophys J 693:1118–1127. https://doi.org/10.1088/0004-637X/693/2/1118. arXiv:0811.3965
Grillmair CJ, Dionatos O (2006) Detection of a 63\({^\circ }\) cold stellar stream in the Sloan Digital Sky Survey. Astrophys J Lett 643:L17–L20. https://doi.org/10.1086/505111. arXiv:astro-ph/0604332
Grundahl F, VandenBerg DA, Andersen MI (1998) Strömgren photometry of globular clusters: the distance and age of M13, evidence for two populations of horizontal-branch stars. Astrophys J Lett 500:L179–L182. https://doi.org/10.1086/311419. arXiv:astro-ph/9806081
Grundahl F, Catelan M, Landsman WB, Stetson PB, Andersen MI (1999) Hot horizontal-branch stars: the ubiquitous nature of the “Jump” in Strömgren u, low gravities, and the role of radiative levitation of metals. Astrophys J 524:242–261. https://doi.org/10.1086/307807. arXiv:astro-ph/9903120
Gruyters P, Nordlander T, Korn AJ (2014) Atomic diffusion and mixing in old stars. V. A deeper look into the globular cluster NGC 6752. Astron Astrophys 567:A72. https://doi.org/10.1051/0004-6361/201423590. arXiv:1405.6543
Gruyters P, Lind K, Richard O, Grundahl F, Asplund M, Casagrande L, Charbonnel C, Milone A, Primas F, Korn AJ (2016) Atomic diffusion and mixing in old stars. VI. The lithium content of M30. Astron Astrophys 589:A61. https://doi.org/10.1051/0004-6361/201527948. arXiv:1603.01565
Harbeck D, Smith GH, Grebel EK (2003) CN abundance variations on the main sequence of 47 Tucanae. Astron J 125:197–207. https://doi.org/10.1086/345570. arXiv:astro-ph/0210364
Harris WE (1996) A catalog of parameters for globular clusters in the Milky Way. Astron J 112:1487. https://doi.org/10.1086/118116
Hatzidimitriou D, Held EV, Tognelli E, Bragaglia A, Magrini L, Bravi L, Gazeas K, Dapergolas A, Drazdauskas A, Delgado-Mena E, Friel ED, Minkeviciute R, Sordo R, Tautvaisiene G, Gilmore G, Randich S, Feltzing S, Vallenari A, Alfaro EJ, Flaccomio E, Lanzafame AC, Pancino E, Smiljanic R, Bayo A, Bergemann M, Carraro G, Casey AR, Costado MT, Damiani F, Franciosini E, Gonneau A, Jofré P, Lewis J, Monaco L, Morbidelli L, Worley CC, Zaggia S (2019) The Gaia-ESO Survey: the inner disc, intermediate-age open cluster Pismis 18. Astron Astrophys 626:A90. https://doi.org/10.1051/0004-6361/201834636. arXiv:1906.09828
Haywood M, Di Matteo P, Lehnert MD, Snaith O, Khoperskov S, Gómez A (2018) In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys J 863:113. https://doi.org/10.3847/1538-4357/aad235. arXiv:1805.02617
Heggie D, Hut P (2003) The gravitational million-body problem: a multidisciplinary approach to star cluster dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139164535
Heggie DC (1975) Binary evolution in stellar dynamics. Mon Not R Astron Soc 173:729–787. https://doi.org/10.1093/mnras/173.3.729
Helmi A, Babusiaux C, Koppelman HH, Massari D, Veljanoski J, Brown AGA (2018) The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563:85–88. https://doi.org/10.1038/s41586-018-0625-x. arXiv:1806.06038
Hénault-Brunet V, Gieles M, Agertz O, Read JI (2015) Multiple populations in globular clusters: the distinct kinematic imprints of different formation scenarios. Mon Not R Astron Soc 450:1164–1198. https://doi.org/10.1093/mnras/stv675. arXiv:1503.07532
Hénon M (1970) Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits. Astron Astrophys 9:24–36
Hénon M (1971) The Monte Carlo Method. Astrophys Space Sci 14:151–167. https://doi.org/10.1007/BF00649201
Herschel W (1814) Astronomical observations relating to the sidereal part of the heavens, and its connection with the nebulous part; arranged for the purpose of a critical examination. Philos Trans R Soc Lond Ser I 104:248–284
Hollyhead K, Bastian N, Adamo A, Silva-Villa E, Dale J, Ryon JE, Gazak Z (2015) Studying the YMC population of M83: how long clusters remain embedded, their interaction with the ISM and implications for GC formation theories. Mon Not R Astron Soc 449:1106–1117. https://doi.org/10.1093/mnras/stv331. arXiv:1502.03823
Hollyhead K, Kacharov N, Lardo C, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2017) Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC. Mon Not R Astron Soc 465:L39–L43. https://doi.org/10.1093/mnrasl/slw179. arXiv:1609.01302
Hollyhead K, Lardo C, Kacharov N, Bastian N, Hilker M, Rejkuba M, Koch A, Grebel EK, Georgiev I (2018) Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations. Mon Not R Astron Soc 476:114–121. https://doi.org/10.1093/mnras/sty230. arXiv:1801.09670
Hollyhead K, Martocchia S, Lardo C, Bastian N, Kacharov N, Niederhofer F, Cabrera-Ziri I, Dalessandro E, Mucciarelli A, Salaris M, Usher C (2019) Spectroscopic detection of multiple populations in the 2 Gyr old cluster Hodge 6 in the LMC, arXiv e-prints. arXiv:1902.02297
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2015) Evolution of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 449:629–638. https://doi.org/10.1093/mnras/stv306. arXiv:1503.02087
Hong J, Vesperini E, Sollima A, McMillan SLW, D’Antona F, D’Ercole A (2016) Evolution of binary stars in multiple-population globular clusters—II. Compact binaries. Mon Not R Astron Soc 457:4507–4514. https://doi.org/10.1093/mnras/stw262. arXiv:1604.01045
Hong J, Patel S, Vesperini E, Webb JJ, Dalessandro E (2019) Spatial mixing of binary stars in multiple-population globular clusters. Mon Not R Astron Soc 483:2592–2599. https://doi.org/10.1093/mnras/sty3308. arXiv:1812.01229
Hosek MW Jr, Lu JR, Anderson J, Najarro F, Ghez AM, Morris MR, Clarkson WI, Albers SM (2019) The unusual initial mass function of the arches cluster. Astrophys J 870:44. https://doi.org/10.3847/1538-4357/aaef90. arXiv:1808.02577
Huang Y, Chen B-Q, Zhang H-W, Yuan H-B, Xiang M-S, Wang C, Tian Z-J, Liu X-W (2019) Member Stars of the GD-1 Tidal Stream from the SDSS, LAMOST, and Gaia Surveys. Astrophys J 877:13. https://doi.org/10.3847/1538-4357/ab158a
Hurley JR, Aarseth SJ, Shara MM (2007) The core binary fractions of star clusters from realistic simulations. Astrophys J 665:707–718. https://doi.org/10.1086/517879. arXiv:0704.0290
Hut P, Bahcall JN (1983) Binary-single star scattering. I. Numerical experiments for equal masses. Astrophys J 268:319–341. https://doi.org/10.1086/160956
Ibata R, Bellazzini M, Malhan K, Martin N, Bianchini P (2019) Identification of the long stellar stream of the prototypical massive globular cluster \(\omega \) Centauri. Nat Astron 3:667–672. https://doi.org/10.1038/s41550-019-0751-x
Ibata RA, Gilmore G, Irwin MJ (1994) A dwarf satellite galaxy in Sagittarius. Nature 370:194–196. https://doi.org/10.1038/370194a0
Iben I, Rood RT, Strom KM, Strom SE (1969) Ratio of horizontal branch stars to red giant stars in globular clusters. Nature 224(5223):1006–1008. https://doi.org/10.1038/2241006a0
Iben I Jr (1964) Evolution through alpha-burning (\(M=3 \rightarrow 15 M_{\odot }\)). Astron J 69:545. https://doi.org/10.1086/109317
Iorio G, Belokurov V (2019) The shape of the Galactic halo with Gaia DR2 RR Lyrae. Anatomy of an ancient major merger. Mon Not R Astron Soc 482:3868–3879. https://doi.org/10.1093/mnras/sty2806. arXiv:1808.04370
Ivanova N, Belczynski K, Fregeau JM, Rasio FA (2005) The evolution of binary fractions in globular clusters. Mon Not R Astron Soc 358:572–584. https://doi.org/10.1111/j.1365-2966.2005.08804.x. arXiv:astro-ph/0501131
Ivans II, Sneden C, Kraft RP, Suntzeff NB, Smith VV, Langer GE, Fulbright JP (1999) Star-to-star abundance variations among bright giants in the mildly metal-poor globular cluster M4. Astron J 118:1273–1300. https://doi.org/10.1086/301017. arXiv:astro-ph/9905370
James G, François P, Bonifacio P, Carretta E, Gratton RG, Spite F (2004) Heavy elements and chemical enrichment in globular clusters. Astron Astrophys 427:825–838. https://doi.org/10.1051/0004-6361:20041512. arXiv:astro-ph/0408330
Jang S, Lee YW, Joo SJ, Na C (2014) Multiple populations in globular clusters and the origin of the Oosterhoff period groups. Mon Not R Astron Soc 443:L15–L19. https://doi.org/10.1093/mnrasl/slu064. arXiv:1404.7508
Johnson CI, Pilachowski CA (2010) Chemical abundances for 855 giants in the globular cluster Omega Centauri (NGC 5139). Astrophys J 722:1373–1410. https://doi.org/10.1088/0004-637X/722/2/1373. arXiv:1008.2232
Johnson CI, Rich RM, Pilachowski CA, Caldwell N, Mateo M, Bailey JI III, Crane JD (2015) A spectroscopic analysis of the galactic globular cluster NGC 6273 (M19). Astron J 150:63. https://doi.org/10.1088/0004-6256/150/2/63. arXiv:1507.00756
Johnson CI, Caldwell N, Rich RM, Pilachowski CA, Hsyu T (2016) The chemical composition of red giant branch stars in the galactic globular clusters NGC 6342 and NGC 6366. Astron J 152:21. https://doi.org/10.3847/0004-6256/152/1/21. arXiv:1606.08491
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Clarkson WI, Olszewski EW, Walker MG (2017a) A chemical composition survey of the iron-complex globular cluster NGC 6273 (M19). Astrophys J 836:168. https://doi.org/10.3847/1538-4357/836/2/168. arXiv:1611.05830
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2017b) Chemical complexity in the Eu-enhanced monometallic globular NGC 5986. Astrophys J 842:24. https://doi.org/10.3847/1538-4357/aa7414. arXiv:1705.10840
Johnson CI, Rich RM, Caldwell N, Mateo M, Bailey JI III, Olszewski EW, Walker MG (2018) Exploring the chemical composition and double horizontal branch of the bulge globular cluster NGC 6569. Astron J 155:71. https://doi.org/10.3847/1538-3881/aaa294. arXiv:1801.10475
Johnson CI, Caldwell N, Rich RM, Mateo M, Bailey JI (2019) Light element discontinuities suggest an early termination of star formation in the globular cluster NGC 6402 (M14). Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz587. arXiv:1903.01951
Johnson JA, Ivans II, Stetson PB (2006) Chemical compositions of red giant stars in old large magellanic cloud globular clusters. Astrophys J 640:801–822. https://doi.org/10.1086/498882. arXiv:astro-ph/0512132
Kacharov N, Koch A, McWilliam A (2013) A comprehensive chemical abundance study of the outer halo globular cluster M 75. Astron Astrophys 554:A81. https://doi.org/10.1051/0004-6361/201321392. arXiv:1304.4247
Käppeler F (1999) The origin of the heavy elements: the s process. Prog Part Nucl Phys 43:419–483. https://doi.org/10.1016/S0146-6410(99)00098-8
Karakas AI, Lattanzio JC (2003) Production of aluminium and the heavy magnesium isotopes in asymptotic giant branch stars. Publ Astron Soc Aust 20:279–293. https://doi.org/10.1071/AS03010
Karakas AI, Lattanzio JC (2014) The Dawes Review 2: nucleosynthesis and Stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030. https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062
Keenan DW, Innanen KA (1975) Numerical investigation of galactic tidal effects on spherical stellar systems. Astron J 80:290–302. https://doi.org/10.1086/111744
Kim HS, Cho J, Sharples RM, Vazdekis A, Beasley MA, Yoon SJ (2016) A new catalog of homogenized absorption line indices for Milky Way globular clusters from high-resolution integrated spectroscopy. Astrophys J Suppl 227:24. https://doi.org/10.3847/1538-4365/227/2/24. arXiv:1610.08061
King CR, Da Costa GS, Demarque P (1985) The luminosity function on the subgiant branch of 47 Tucanae A comparison of observation and theory. Astrophys J 299:674–682. https://doi.org/10.1086/163733
King IR (1966) The structure of star clusters. III. Some simple dynamical models. Astron J 71:64. https://doi.org/10.1086/109857
Koch A, McWilliam A (2014) The chemical composition of a regular halo globular cluster: NGC 5897. Astron Astrophys 565:A23. https://doi.org/10.1051/0004-6361/201323119. arXiv:1403.1262
Koch A, Grebel EK, Martell SL (2019) Purveyors of fine halos: re-assessing globular cluster contributions to the Milky Way halo buildup with SDSS-IV. Astron Astrophys 625:A75. https://doi.org/10.1051/0004-6361/201834825. arXiv:1904.02146
Koposov SE, Rix HW, Hogg DW (2010) Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream. Astrophys J 712:260–273. https://doi.org/10.1088/0004-637X/712/1/260. arXiv:0907.1085
Koposov SE, Belokurov V, Torrealba G (2017) Gaia 1 and 2. A pair of new Galactic star clusters. Mon Not R Astron Soc 470:2702–2709. https://doi.org/10.1093/mnras/stx1182. arXiv:1702.01122
Kraft RP (1979) On the nonhomogeneity of metal abundances in stars of globular clusters and satellite subsystems of the Galaxy. Annu Rev Astron Astrophys 17:309–343. https://doi.org/10.1146/annurev.aa.17.090179.001521
Kraft RP (1994) Abundance differences among globular-cluster giants: primordial versus evolutionary scenarios. Publ Astron Soc Pac 106:553–565. https://doi.org/10.1086/133416
Kraft RP, Sneden C, Langer GE, Prosser CF (1992) Oxygen abundances in halo giants. II. Giants in the globular clusters M13 and M3 and the intermediately metal-poor halo field. Astron J 104:645–668. https://doi.org/10.1086/116261
Kraft RP, Sneden C, Smith GH, Shetrone MD, Fulbright J (1998) Proton capture chains in globular cluster stars. III. Abundances of giants in the second-parameter globular cluster NGC 7006. Astron J 115:1500–1515. https://doi.org/10.1086/300279
Krause M, Charbonnel C, Decressin T, Meynet G, Prantzos N (2013) Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron Astrophys 552:A121. https://doi.org/10.1051/0004-6361/201220694. arXiv:1302.2494
Krause MGH, Charbonnel C, Bastian N, Diehl R (2016) Gas expulsion in massive star clusters? Constraints from observations of young and gas-free objects. Astron Astrophys 587:A53. https://doi.org/10.1051/0004-6361/201526685. arXiv:1512.04256
Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91. https://doi.org/10.1126/science.1067524. arXiv:astro-ph/0201098
Kruijssen JMD (2014) Globular cluster formation in the context of galaxy formation and evolution. Class Quantum Gravity 31(24):244006. https://doi.org/10.1088/0264-9381/31/24/244006. arXiv:1407.2953
Kruijssen JMD (2015) Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon Not R Astron Soc 454:1658–1686.