Abstract
Stars are extremely important astronomical objects that constitute the pillars on which the Universe is built, and as such, their study has gained increasing interest over the years. White dwarf stars are not the exception. Indeed, these stars constitute the final evolutionary stage for more than 95% of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the structure, evolution and chemical enrichment of our Galaxy and its components—including the star formation history of the Milky Way. Several important studies have emphasized the advantage of using white dwarfs as reliable clocks to date a variety of stellar populations in the solar neighborhood and in the nearest stellar clusters, including the thin and thick disks, the Galactic spheroid and the system of globular and open clusters. In addition, white dwarfs are tracers of the evolution of planetary systems along several phases of stellar evolution. Not less relevant than these applications, the study of matter at high densities has benefited from our detailed knowledge about evolutionary and observational properties of white dwarfs. In this sense, white dwarfs are used as laboratories for astro-particle physics, being their interest focused on physics beyond the standard model, that is, neutrino physics, axion physics and also radiation from “extra dimensions”, and even crystallization. The last decade has witnessed a great progress in the study of white dwarfs. In particular, a wealth of information of these stars from different surveys has allowed us to make meaningful comparison of evolutionary models with observations. While some information like surface chemical composition, temperature and gravity of isolated white dwarfs can be inferred from spectroscopy, and the total mass and radius can be derived as well when they are in binaries, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods predicted by appropriate theoretical models. The asteroseismological techniques allow us to infer details of the internal chemical stratification, the total mass, and even the stellar rotation profile. In this review, we first revise the evolutionary channels currently accepted that lead to the formation of white-dwarf stars, and then, we give a detailed account of the different sub-types of pulsating white dwarfs known so far, emphasizing the recent observational and theoretical advancements in the study of these fascinating variable stars.
Similar content being viewed by others
Notes
Catelan (2018) describes other methods that use WDs to infer ages of stellar populations.
An exception are the high-field magnetic WDs that represent the \(\sim 20\%\) of the local population of WDs, and for which there is no observational evidence of variability due to pulsations.
Spheroidal modes are characterized by \(({\mathbf {\nabla }} \times \varvec{\xi })_r= 0\) and \(\sigma \ne 0\), where \(\varvec{\xi }\) is the Lagrangian displacement and \(\sigma \) the pulsation frequency (Unno et al. 1989).
This, at variance with the forced pulsations such as stochastic excitation by turbulent convection, in which the modes, that are intrinsically stable, are actually excited by convective motions.
The sound of the bells (their eigenfrequencies) does not depend on how the bells are rung (Baade 1992).
Note, however, that in many cases, the studies of solar-type pulsators seem to be limited to using the frequency separations and frequency maximum to derive the astrophysical parameters of the stars, using the so-called “scaling relations” (Lund et al. 2017).
However, the dependence of the period spacing on the thickness of the outer envelope of DA and DB WDs is generally weaker than its dependence upon the effective temperature and the stellar mass (Tassoul et al. 1990).
Gänsicke et al. (2010) discovered two WDs exposing dredged-up, O-rich core material that could have been produced in the interior of a Super-AGB star. Recently, Kepler et al. (2016a) identified a WD having an O-dominated atmosphere with traces of Ne and Mg, that could be the bare core of a Super-AGB star. Finally, another O- and Ne-rich WD but with a very low mass was discovered by Vennes et al. (2017).
Previous efforts to constrain the \(^{12}\hbox {C}(\alpha ,\gamma )^{16}\hbox {O}\) reaction rate using WD asteroseismology have been done using DBVs (see, e.g., Metcalfe 2003, and references therein).
Working Group 8: Evolved compact stars with TESS (https://tasoc.dk/wg8/).
Actually, Dziembowski and Koester (1981) found g-mode instability due to the partial ionization of He.
A phenomenon reminiscent of these outburst-like events was the sforzando event detected in 1996 for the DBV GD358, in which the star dramatically altered its pulsation characteristics on a timescale of hours (Provencal et al. 2009).
The definition of an ELM WD is still under debate. In the context of the ELM Survey (Brown et al. 2010), an ELM WD is defined as an object with surface gravity of \(5 \lesssim \log g \lesssim 7\) and effective temperature in the range of \(8000 \lesssim T_{\mathrm{eff}} \lesssim 22\,000\,\mathrm {K}\) (see, e.g., Brown et al. 2016). Here (see also Córsico and Althaus 2014a), we propose to define an ELM WD as a WD that does not undergo H shell flashes, because in this way, the pulsational properties are quite different as compared with the systems that experience flashes, although this mass limit depends on the metallicity of the progenitor stars (Serenelli et al. 2002; Istrate et al. 2016b).
According to Kilic et al. (2018), there are only four confirmed pulsating ELM WDs in short-period binaries (which are the four that show RV variations), that occupy a similar parameter space and there is no question about their nature as WDs. These are: SDSS J1112+1117, SDSS J1518+0658, SDSS J1840+6423, and PSR J1738+0333. We have to add SDSSJ1618+3854 to that list, based on Bell et al. (2018).
Hermes et al. (2013d) reported the discovery of short-period pulsations compatible with p modes or radial modes in an ELMV WD (SDSS J111215.82+111745.0), but this needs to be confirmed with further observations.
They have been called “binary evolution pulsators” by Smolec et al. (2013).
The name of axion comes from the Axion laundry detergent, and was introduced by Frank Wilczek “to clean QCD from the CP problem”.
This is at variance with solar neutrinos, which are the result of nuclear fusion. For the Sun, thermal neutrino emission is negligible (Raffelt 1996).
References
Aerts C, Christensen-Dalsgaard J, Kurtz DW (2010) Asteroseismology. Astronomy and Astrophysics Library, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-5803-5
Althaus LG, Miller Bertolami MM, Córsico AH, García-Berro E, Gil-Pons P (2005) The formation of DA white dwarfs with thin hydrogen envelopes. Astron Astrophys 440:L1–L4. https://doi.org/10.1051/0004-6361:200500159. arXiv:astro-ph/0507415
Althaus LG, García-Berro E, Isern J, Córsico AH, Rohrmann RD (2007) The age and colors of massive white dwarf stars. Astron Astrophys 465:249–255. https://doi.org/10.1051/0004-6361:20066059. arXiv:astro-ph/0702024
Althaus LG, Córsico AH, Bischoff-Kim A, Romero AD, Renedo I, García-Berro E, Miller Bertolami MM (2010a) New chemical profiles for the asteroseismology of ZZ Ceti stars. Astrophys J 717:897–907. https://doi.org/10.1088/0004-637X/717/2/897. arXiv:1005.2612
Althaus LG, Córsico AH, Isern J, García-Berro E (2010b) Evolutionary and pulsational properties of white dwarf stars. Astron Astrophys Rev 18:471–566. https://doi.org/10.1007/s00159-010-0033-1. arXiv:1007.2659
Althaus LG, Córsico AH, Torres S, Lorén-Aguilar P, Isern J, García-Berro E (2011) The evolution of white dwarfs with a varying gravitational constant. Astron Astrophys 527:A72. https://doi.org/10.1051/0004-6361/201015849. arXiv:1101.0986
Althaus LG, García-Berro E, Isern J, Córsico AH, Miller Bertolami MM (2012) New phase diagrams for dense carbon–oxygen mixtures and white dwarf evolution. Astron Astrophys 537:A33. https://doi.org/10.1051/0004-6361/201117902. arXiv:1110.5665
Althaus LG, Miller Bertolami MM, Córsico AH (2013) New evolutionary sequences for extremely low-mass white dwarfs. Homogeneous mass and age determinations and asteroseismic prospects. Astron Astrophys 557:A19. https://doi.org/10.1051/0004-6361/201321868. arXiv:1307.1882
Althaus LG, Camisassa ME, Miller Bertolami MM, Córsico AH, García-Berro E (2015) White dwarf evolutionary sequences for low-metallicity progenitors: the impact of third dredge-up. Astron Astrophys 576:A9. https://doi.org/10.1051/0004-6361/201424922. arXiv:1502.03882
Althaus LG, De Gerónimo F, Córsico A, Torres S, García-Berro E (2017) The evolution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars. Astron Astrophys 597:A67. https://doi.org/10.1051/0004-6361/201629909. arXiv:1611.06191
Angulo C, Arnould M, Rayet M, Descouvemont P, Baye D, Leclercq-Willain C, Coc A, Barhoumi S et al (1999) A compilation of charged-particle induced thermonuclear reaction rates. Nucl Phys A 656:3–183. https://doi.org/10.1016/S0375-9474(99)00030-5
Arras P, Townsley DM, Bildsten L (2006) Pulsational instabilities in accreting white dwarfs. Astrophys J Lett 643:L119–L122. https://doi.org/10.1086/505178. arXiv:astro-ph/0604319
Baade D (1992) Observational Aspects of Stellar Seismology. In: Klare G (ed) Reviews in Modern Astronomy. Vol. 5: Variabilities in Stars and Galaxies, pp 125–142, https://doi.org/10.1007/978-3-642-77543-7_9
Balona LA (2010) Challenges In Stellar Pulsation. Bentham Science, Sharjah, https://doi.org/10.2174/97816080518541100101
Barlow BN, Dunlap BH, Rosen R, Clemens JC (2008) Two new variable hot DQ stars. Astrophys J Lett 688:L95. https://doi.org/10.1086/595584. arXiv:0810.2140
Battich T, Córsico AH, Althaus LG, Miller Bertolami MM (2016) First axion bounds from a pulsating helium-rich white dwarf star. J Cosmol Astropart Phys 8:062. https://doi.org/10.1088/1475-7516/2016/08/062. arXiv:1605.07668
Bedin LR, Salaris M, Piotto G, Anderson J, King IR, Cassisi S (2009) The end of the white dwarf cooling sequence in M4: an efficient approach. Astrophys J 697:965–979. https://doi.org/10.1088/0004-637X/697/2/965. arXiv:0903.2839
Bedin LR, Salaris M, Anderson J, Cassisi S, Milone AP, Piotto G, King IR, Bergeron P (2015) Hubble Space Telescope observations of the Kepler-field cluster NGC 6819 - I. The bottom of the white dwarf cooling sequence. Mon Not R Astron Soc 448:1779–1788. https://doi.org/10.1093/mnras/stv069. arXiv:1501.02953
Bell KJ, Hermes JJ, Montgomery MH, Winget DE, Gentile Fusillo NP, Raddi R, Gänsicke BT (2017b) The first six outbursting cool DA white dwarf pulsators. In: Tremblay PE, Gänsicke B, Marsh T (eds) 20th European white dwarf workshop, ASP Conference Series, vol 509. Astronomical Society of the Pacific, San Francisco, p 303, arXiv:1609.09097
Bell KJ (2017) Pulsational oddities at the extremes of the DA white dwarf instability strip. PhD thesis, University of Texas
Bell KJ, Hermes JJ, Bischoff-Kim A, Moorhead S, Montgomery MH, Østensen R, Castanheira BG, Winget DE (2015) KIC 4552982: outbursts and asteroseismology from the longest pseudo-continuous light curve of a ZZ Ceti. Astrophys J 809:14. https://doi.org/10.1088/0004-637X/809/1/14. arXiv:1506.07878
Bell KJ, Hermes JJ, Montgomery MH, Gentile Fusillo NP, Raddi R, Gänsicke BT, Winget DE, Dennihy E, Gianninas A, Tremblay PE, Chote P, Winget KI (2016) Outbursts in two new cool pulsating DA white dwarfs. Astrophys J 829:82. https://doi.org/10.3847/0004-637X/829/2/82. arXiv:1607.01392
Bell KJ, Gianninas A, Hermes JJ, Winget DE, Kilic M, Montgomery MH, Castanheira BG, Vanderbosch Z, Winget KI, Brown WR (2017a) Pruning the ELM survey: characterizing candidate low-mass white dwarfs through photometric variability. Astrophys J 835:180. https://doi.org/10.3847/1538-4357/835/2/180. arXiv:1612.06390
Bell KJ, Hermes JJ, Vanderbosch Z, Montgomery MH, Winget DE, Dennihy E, Fuchs JT, Tremblay PE (2017c) Destroying Aliases from the ground and space: Super-Nyquist ZZ Cetis in K2 long Cadence Data. Astrophys J 851:24. https://doi.org/10.3847/1538-4357/aa9702. arXiv:1710.10273
Bell KJ, Pelisoli I, Kepler SO, Brown WR, Winget DE, Winget KI, Vanderbosch Z, Castanheira BG, Hermes JJ, Montgomery MH, Koester D (2018) The McDonald Observatory search for pulsating sdA stars. Asteroseismic support for multiple populations. Astron Astrophys 617:A6. https://doi.org/10.1051/0004-6361/201833279. arXiv:1805.11129
Bellini A, Anderson J, Salaris M, Cassisi S, Bedin LR, Piotto G, Bergeron P (2013) A double white-dwarf cooling sequence in \(\omega \) Centauri. Astrophys J Lett 769:L32. https://doi.org/10.1088/2041-8205/769/2/L32. arXiv:1305.0265
Bernstein J, Ruderman M, Feinberg G (1963) Electromagnetic properties of the neutrino. Phys Rev 132:1227–1233. https://doi.org/10.1103/PhysRev.132.1227
Biesiada M, Malec B (2002) White dwarf cooling and large extra dimensions. Phys Rev D 65(4):043008. https://doi.org/10.1103/PhysRevD.65.043008. arXiv:astro-ph/0109545
Biesiada M, Malec B (2003) White dwarf constraints on exotic physics. Astrophys Space Sci 283:601–606. https://doi.org/10.1023/A:1022582802326
Bischoff-Kim A, Montgomery MH, Winget DE (2008a) Fine grid asteroseismology of G117–B15A and R548. Astrophys J 675:1505–1511. https://doi.org/10.1086/527287. arXiv:0711.2039
Bischoff-Kim A, Montgomery MH, Winget DE (2008b) Strong limits on the DFSZ axion mass with G117–B15A. Astrophys J 675:1512–1517. https://doi.org/10.1086/526398. arXiv:0711.2041
Bischoff-Kim A, Østensen RH, Hermes JJ, Provencal JL (2014) Seven-period asteroseismic fit of the Kepler DBV. Astrophys J 794:39. https://doi.org/10.1088/0004-637X/794/1/39
Bischoff-Kim A, Provencal JL, Bradley PA, Montgomery MH, Shipman HL, Harrold ST, Howard B, Strickland W et al (2019) GD358: three decades of observations for the in-depth asteroseismology of a DBV star. Astrophys J 871:13. https://doi.org/10.3847/1538-4357/aae2b1. arXiv:1810.11708
Blöcker T (1995) Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. Astron Astrophys 299:755
Blöcker T (2001) Evolution on the AGB and beyond: on the formation of H-deficient post-AGB stars. Astrophys Space Sci 275:1–14 arXiv:astro-ph/0102135
Blöcker T (1995) Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron Astrophys 297:727
Bognár Z, Paparó M, Córsico AH, Kepler SO, Győrffy Á (2014) Revealing the pulsational properties of the V777 Herculis star KUV 05134+2605 by its long-term monitoring. Astron Astrophys 570:A116. https://doi.org/10.1051/0004-6361/201423757. arXiv:1408.3569
Bognár Z, Paparó M, Molnár L, Pápics PI, Plachy E, Verebélyi E, Sódor Á (2016) G 207–9 and LP 133–144: light-curve analysis and asteroseismology of two ZZ Ceti stars. Mon Not R Astron Soc 461:4059–4070. https://doi.org/10.1093/mnras/stw1597. arXiv:1606.09506
Bognár Z, Kalup C, Sódor Á, Charpinet S, Hermes JJ (2018a) Searching for new white dwarf pulsators for TESS observations at Konkoly observatory. Mon Not R Astron Soc 478:2676–2685. https://doi.org/10.1093/mnras/sty1393. arXiv:1805.10165
Bognár Z, Paparó M, Sódor Á, Jenei DI, Kalup C, Bertone E, Chavez-Dagostino M, Montgomery MH, Győrffy Á, Molnár L, Ollé H, Pápics PI, Plachy E, Verebélyi E (2018b) Wandering near the red edge: photometric observations of three cool ZZ Ceti stars. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/sty2884, arXiv:1810.09711
Bognár Z, Sódor Á (2016) White dwarf period tables I. Pulsators with hydrogen-dominated atmospheres. Inform Bull Var Stars 6184. https://doi.org/10.22444/IBVS.6184, arXiv:1610.07470
Borucki WJ, Koch D, Basri G, Batalha N, Brown T, Caldwell D, Caldwell J, Christensen-Dalsgaard J et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977. https://doi.org/10.1126/science.1185402
Bradley PA (1998) Asteroseismological constraints on the structure of the ZZ Ceti stars G117–B15A and R548. Astrophys J Suppl 116:307–319. https://doi.org/10.1086/313102
Bradley PA (2001) Asteroseismological constraints on the structure of the ZZ Ceti stars L19–2 and GD 165. Astrophys J 552:326–339. https://doi.org/10.1086/320454
Brassard P, Fontaine G (2005) Asteroseismology of the crystallized ZZ Ceti star BPM 37093: a different view. Astrophys J 622:572–576. https://doi.org/10.1086/428116
Brassard P, Fontaine G (1997) Recent advances in the theoretical determination of the ZZ Ceti instability strip. In: Isern J, Hernanz M, Garcia-Berro E (eds) White dwarfs, Astrophysics and Space Science Library, 214. Kluwer, Dordrecht, p 451. https://doi.org/10.1007/978-94-011-5542-7-65
Brassard P, Fontaine G (1999) Convective efficiency and the blue edge in ZZ Ceti Stars. In: Gimenez A, Guinan EF, Montesinos B (eds) Stellar structure: theory and test of connective energy transport, ASP Conference Series, vol 173. Astronomical Society of the Pacific, San Francisco, p 329
Brickhill AJ (1991) The pulsations of ZZ Ceti stars. III—the driving mechanism. Mon Not R Astron Soc 251:673–680. https://doi.org/10.1093/mnras/251.4.673
Brocato E, Matteucci F, Mazzitelli I, Tornambe A (1990) Synthetic colors and the chemical evolution of elliptical galaxies. Astrophys J 349:458–470. https://doi.org/10.1086/168330
Brown WR, Kilic M, Allende Prieto C, Kenyon SJ (2010) The ELM survey. I. A complete sample of extremely low-mass white dwarfs. Astrophys J 723:1072–1081. https://doi.org/10.1088/0004-637X/723/2/1072. arXiv:1011.3050
Brown WR, Kilic M, Allende Prieto C, Kenyon SJ (2012) The ELM survey. III. A successful targeted survey for extremely low mass white dwarfs. Astrophys J 744:142. https://doi.org/10.1088/0004-637X/744/2/142. arXiv:1111.6588
Brown WR, Kilic M, Allende Prieto C, Gianninas A, Kenyon SJ (2013) The ELM survey. V. Merging massive white dwarf binaries. Astrophys J 769:66. https://doi.org/10.1088/0004-637X/769/1/66. arXiv:1304.4248
Brown WR, Gianninas A, Kilic M, Kenyon SJ, Allende Prieto C (2016) The ELM survey. VII. Orbital properties of low-mass white dwarf binaries. Astrophys J 818:155. https://doi.org/10.3847/0004-637X/818/2/155. arXiv:1604.04268
Brown WR, Kilic M, Gianninas A (2017a) The physical nature of subdwarf A stars: white dwarf impostors. Astrophys J 839:23. https://doi.org/10.3847/1538-4357/aa67e4. arXiv:1703.07799
Brown WR, Kilic M, Kosakowski A, Gianninas A (2017b) Discovery of a detached, eclipsing 40 minute period double white dwarf binary and a friend: implications for He+CO white dwarf mergers. Astrophys J 847:10. https://doi.org/10.3847/1538-4357/aa8724. arXiv:1708.05287
Byrne CM, Jeffery CS (2018) Post-common envelope binary stars, radiative levitation, and blue large-amplitude pulsators. Mon Not R Astron Soc 481:3810–3820. https://doi.org/10.1093/mnras/sty2545. arXiv:1809.04183
Calamida A, Corsi CE, Bono G, Stetson PB, Prada Moroni P, Degl’Innocenti S, Ferraro I, Iannicola G, Koester D, Pulone L, Monelli M, Amico P, Buonanno R, Caputo F, D’Odorico S, Freyhammer LM, Marchetti E, Nonino M, Romaniello M (2008) On the white dwarf cooling sequence of the globular cluster \(\omega \) Centauri. Astrophys J Lett 673:L29. https://doi.org/10.1086/527436. arXiv:0712.0603
Calcaferro LM, Córsico AH, Althaus LG (2016) Asteroseismology of the GW Virginis stars SDSS J0349–0059 and VV 47. Astron Astrophys 589:A40. https://doi.org/10.1051/0004-6361/201527996. arXiv:1602.06355
Calcaferro LM, Córsico AH, Althaus LG (2017a) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. IV. The secular rate of period change. Astron Astrophys 600:A73. https://doi.org/10.1051/0004-6361/201630376. arXiv:1701.08880
Calcaferro LM, Córsico AH, Althaus LG (2017b) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars. Astron Astrophys 607:A33. https://doi.org/10.1051/0004-6361/201731230. arXiv:1708.00482
Calcaferro LM, Córsico AH, Camisassa ME, Althaus LG, Shibahashi H (2017c) Pulsational instability of high-luminosity H-rich pre-white dwarf star. Eur Phys J Web Conf 152:06012. https://doi.org/10.1051/epjconf/201715206012
Calcaferro LM, Althaus LG, Córsico AH (2018a) The coolest extremely low-mass white dwarfs. Astron Astrophys 614:A49. https://doi.org/10.1051/0004-6361/201732551. arXiv:1802.06753
Calcaferro LM, Córsico AH, Althaus LG, Romero AD, Kepler SO (2018b) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. VI. Thin H-envelope sequences and asteroseismology of ELMV stars revisited. Astron Astrophys 620:A196. https://doi.org/10.1051/0004-6361/201833781. arXiv:1810.11502
Caloi V (1989) Evolution of extreme horizontal branch stars. Astron Astrophys 221:27–35
Camisassa ME, Córsico AH, Althaus LG, Shibahashi H (2016) Pulsations powered by hydrogen shell burning in white dwarfs. Astron Astrophys 595:A45. https://doi.org/10.1051/0004-6361/201628857. arXiv:1606.04367
Camisassa ME, Althaus LG, Córsico AH, De Gerónimo FC, Miller Bertolami MM, Novarino ML, Rohrmann RD, Wachlin FC, García-Berro E (2019) The evolution of ultra-massive white dwarfs. Astron Astrophys 625:A87. https://doi.org/10.1051/0004-6361/201833822. arXiv:1807.03894
Campos F, Kepler SO, Bonatto C, Ducati JR (2013) Multichromatic colour-magnitude diagrams of the globular cluster NGC 6366. Mon Not R Astron Soc 433:243–250. https://doi.org/10.1093/mnras/stt719. arXiv:1307.4499
Campos F, Bergeron P, Romero AD, Kepler SO, Ourique G, Costa JES, Bonatto CJ, Winget DE, Montgomery MH, Pacheco TA, Bedin LR (2016) A comparative analysis of the observed white dwarf cooling sequence from globular clusters. Mon Not R Astron Soc 456:3729–3742. https://doi.org/10.1093/mnras/stv2911. arXiv:1512.03114
Cantiello M, Mankovich C, Bildsten L, Christensen-Dalsgaard J, Paxton B (2014) Angular momentum transport within evolved low-mass stars. Astrophys J 788:93. https://doi.org/10.1088/0004-637X/788/1/93. arXiv:1405.1419
Carrasco JM, Catalán S, Jordi C, Tremblay PE, Napiwotzki R, Luri X, Robin AC, Kowalski PM (2014) Gaia photometry for white dwarfs. Astron Astrophys 565:A11. https://doi.org/10.1051/0004-6361/201220596. arXiv:1403.6045
Casewell SL, Dobbie PD, Napiwotzki R, Burleigh MR, Barstow MA, Jameson RF (2009) High-resolution optical spectroscopy of Praesepe white dwarfs. Mon Not R Astron Soc 395:1795–1804. https://doi.org/10.1111/j.1365-2966.2009.14593.x. arXiv:0901.4464
Castanheira BG, Kepler SO (2009) Seismological studies of ZZ Ceti stars - II. Application to the ZZ Ceti class. Mon Not R Astron Soc 396:1709–1731. https://doi.org/10.1111/j.1365-2966.2009.14855.x
Castanheira BG, Kepler SO, Mullally F, Winget DE, Koester D, Voss B, Kleinman SJ, Nitta A, Eisenstein DJ, Napiwotzki R, Reimers D (2006) Discovery of eleven new ZZ Ceti stars. Astron Astrophys 450:227–231. https://doi.org/10.1051/0004-6361:20053500. arXiv:astro-ph/0511804
Castanheira BG, Kepler SO, Kleinman SJ, Nitta A, Fraga L (2010) New developments of the ZZ Ceti instability strip: the discovery of 11 new variables. Mon Not R Astron Soc 405:2561–2569. https://doi.org/10.1111/j.1365-2966.2010.16633.x. arXiv:1007.0524
Castanheira BG, Kepler SO, Kleinman SJ, Nitta A, Fraga L (2013) Discovery of five new massive pulsating white dwarf stars. Mon Not R Astron Soc 430:50–59. https://doi.org/10.1093/mnras/sts474
Catelan M (2018) The ages of (the oldest) stars. In: Chiappini C, Minchev I, Starkenburg E, Valentini M (eds) Rediscovering Our Galaxy, IAU Symposium, vol 334. Cambridge University Press, pp 11–20. https://doi.org/10.1017/S1743921318000868, arXiv:1709.08656
Catelan M, Smith HA (2015) Pulsating Stars. Wiley-VCH, Weinheim
Charpinet S, Fontaine G, Brassard P, Dorman B (1997) Gravity-mode instabilities in models of post-extreme horizontal branch stars: another class of pulsating stars? Astrophys J Lett 489:L149. https://doi.org/10.1086/316792. arXiv:astro-ph/9707319
Charpinet S, Fontaine G, Brassard P (2009) Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage. Nature 461:501–503. https://doi.org/10.1038/nature08307
Charpinet S, Van Grootel V, Fontaine G, Green EM, Brassard P, Randall SK, Silvotti R, Østensen RH, Kjeldsen H, Christensen-Dalsgaard J, Kawaler SD, Clarke BD, Li J, Wohler B (2011) Deep asteroseismic sounding of the compact hot B subdwarf pulsator KIC02697388 from Kepler time series photometry. Astron Astrophys 530:A3. https://doi.org/10.1051/0004-6361/201016412
Choi J, Conroy C, Ting YS, Cargile PA, Dotter A, Johnson BD (2018) Star cluster ages in the Gaia Era. Astrophys J 863:65. https://doi.org/10.3847/1538-4357/aad18c. arXiv:1807.03789
Chote P, Sullivan DJ, Montgomery MH, Provencal JL (2013) Time series photometry of the helium atmosphere pulsating white dwarf EC 04207–4748. Mon Not R Astron Soc 431:520–527. https://doi.org/10.1093/mnras/stt180. arXiv:1412.5683
Constantino T, Campbell SW, Christensen-Dalsgaard J, Lattanzio JC, Stello D (2015) The treatment of mixing in core helium burning models - I. Implications for asteroseismology. Mon Not R Astron Soc 452:123–145. https://doi.org/10.1093/mnras/stv1264. arXiv:1506.01209
Copi CJ, Davis AN, Krauss LM (2004) New nucleosynthesis constraint on the variation of \(G\). Phys Rev Lett 92(17):171301. https://doi.org/10.1103/PhysRevLett.92.171301. arXiv:astro-ph/0311334
Córsico AH (2018) Pulsating white dwarf stars and asteroseismology. In: Bassion Lea (ed) Terceras Jornadas de Astrofísica Estelar, AAA Workshop Series, vol 9. Asociación Argentina de Astronomía, La Plata, pp 13–22. arXiv:1703.00934
Córsico AH, Romero AD, Althaus LG, Pelisoli I, Kepler SO (2018) Blue Large-Amplitude Pulsators (BLAPs): possible origin, evolutionary status, and nature of their pulsations. ArXiv e-prints arXiv:1809.07451
Córsico AH, Althaus LG (2014a) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. I. Adiabatic properties. Astron Astrophys 569:A106. https://doi.org/10.1051/0004-6361/201424352. arXiv:1408.6708
Córsico AH, Althaus LG (2014b) Short-period g-mode pulsations in low-mass white dwarfs triggered by H-shell burning. Astrophys J Lett 793:L17. https://doi.org/10.1088/2041-8205/793/1/L17. arXiv:1408.6724
Córsico AH, Althaus LG (2016) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. II. Nonadiabatic analysis. Astron Astrophys 585:A1. https://doi.org/10.1051/0004-6361/201527162. arXiv:1510.00645
Córsico AH, Benvenuto OG, Althaus LG, Isern J, García-Berro E (2001) The potential of the variable DA white dwarf G117–B15A as a tool for fundamental physics. New Astron 6:197–213. https://doi.org/10.1016/S1384-1076(01)00055-0. arXiv:astro-ph/0104103
Córsico AH, García-Berro E, Althaus LG, Isern J (2004) Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores. Astron Astrophys 427:923–932. https://doi.org/10.1051/0004-6361:20040416. arXiv:astro-ph/0408238
Córsico AH, Althaus LG, Miller Bertolami MM, Werner K (2007a) Asteroseismological constraints on the pulsating planetary nebula nucleus (PG 1159-type) RX J2117.1+3412. Astron Astrophys 461:1095–1102. https://doi.org/10.1051/0004-6361:20066452. arXiv:astro-ph/0610420
Córsico AH, Miller Bertolami MM, Althaus LG, Vauclair G, Werner K (2007b) Asteroseismological constraints on the coolest GW Virginis variable star (PG 1159-type) PG 0122+200. Astron Astrophys 475:619–627. https://doi.org/10.1051/0004-6361:20078145. arXiv:0709.0280
Córsico AH, Althaus LG, Kepler SO, Costa JES, Miller Bertolami MM (2008) Asteroseismological measurements on PG 1159–035, the prototype of the GW Virginis variable stars. Astron Astrophys 478:869–881. https://doi.org/10.1051/0004-6361:20078646. arXiv:0712.0795
Córsico AH, Althaus LG, Miller Bertolami MM, García-Berro E (2009a) Asteroseismology of hot pre-white dwarf stars: the case of the DOV stars PG 2131+066 and PG 1707+427, and the PNNV star NGC 1501. Astron Astrophys 499:257–266. https://doi.org/10.1051/0004-6361/200810727. arXiv:0903.3628
Córsico AH, Althaus LG, Miller Bertolami MM, González Pérez JM, Kepler SO (2009b) On the possible existence of short-period g-mode instabilities powered by nuclear-burning shells in post-asymptotic giant branch H-deficient (PG1159-Type) stars. Astrophys J 701:1008–1014. https://doi.org/10.1088/0004-637X/701/2/1008. arXiv:0906.2387
Córsico AH, Althaus LG, Kawaler SD, Miller Bertolami MM, García-Berro E, Kepler SO (2011) Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 0122+200. Mon Not R Astron Soc 418:2519–2526. https://doi.org/10.1111/j.1365-2966.2011.19642.x. arXiv:1108.3359
Córsico AH, Romero AD, Althaus LG, Hermes JJ (2012d) The seismic properties of low-mass He-core white dwarf stars. Astron Astrophys 547:A96. https://doi.org/10.1051/0004-6361/201220114. arXiv:1209.5107
Córsico AH, Althaus LG, Miller Bertolami MM, Bischoff-Kim A (2012a) Asteroseismology of the Kepler V777 Herculis variable white dwarf with fully evolutionary models. Astron Astrophys 541:A42. https://doi.org/10.1051/0004-6361/201118736. arXiv:1112.5882
Córsico AH, Althaus LG, Miller Bertolami MM, Romero AD, García-Berro E, Isern J, Kepler SO (2012) The rate of cooling of the pulsating white dwarf star G117–B15A: a new asteroseismological inference of the axion mass. Mon Not R Astron Soc 424:2792–2799. https://doi.org/10.1111/j.1365-2966.2012.21401.x
Córsico AH, Althaus LG, Romero AD, Mukadam AS, García-Berro E, Isern J, Kepler SO, Corti MA (2012) An independent limit on the axion mass from the variable white dwarf star R548. J Cosmol Astropart Phys 12:010. https://doi.org/10.1088/1475-7516/2012/12/010. arXiv:1211.3389
Córsico AH, Althaus LG, García-Berro E, Romero AD (2013) An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs. J Cosmol Astropart Phys 6:032. https://doi.org/10.1088/1475-7516/2013/06/032. arXiv:1306.1864
Córsico AH, Althaus LG, Miller Bertolami MM, Kepler SO, García-Berro E (2014) Constraining the neutrino magnetic dipole moment from white dwarf pulsations. J Cosmol Astropart Phys 8:054. https://doi.org/10.1088/1475-7516/2014/08/054. arXiv:1406.6034
Córsico AH, Althaus LG, Serenelli AM, Kepler SO, Jeffery CS, Corti MA (2016a) Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. III. The pre-ELM white dwarf instability strip. Astron Astrophys 588:A74. https://doi.org/10.1051/0004-6361/201528032. arXiv:1602.03195
Córsico AH, Romero AD, Althaus LG, García-Berro E, Isern J, Kepler SO, Miller Bertolami MM, Sullivan DJ, Chote P (2016) An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19–2. J Cosmol Astropart Phys 7:036. https://doi.org/10.1088/1475-7516/2016/07/036. arXiv:1605.06458
Corti MA, Kanaan A, Córsico AH, Kepler SO, Althaus LG, Koester D, Sánchez Arias JP (2016) Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars? Astron Astrophys 587:L5. https://doi.org/10.1051/0004-6361/201527458. arXiv:1602.00142
Costa JES, Kepler SO (2008) The temporal changes of the pulsational periods of the pre-white dwarf PG 1159–035. Astron Astrophys 489:1225–1232. https://doi.org/10.1051/0004-6361:20079118. arXiv:0807.5137
Costa JES, Kepler SO, Winget DE, O’Brien MS, Kawaler SD, Costa AFM, Giovannini O, Kanaan A et al (2008) The pulsation modes of the pre-white dwarf PG 1159–035. Astron Astrophys 477:627–640. https://doi.org/10.1051/0004-6361:20053470. arXiv:0711.2244
Cox JP (1980) Theory of stellar pulsation. Princeton University Press, Princeton
Cox AN, Starrfield SG, Kidman RB, Dean Pesnell W (1987) Pulsations of white dwarf stars with thick hydrogen or helium surface layers. Astrophys J 317:303–324. https://doi.org/10.1086/165278
Cukanovaite E, Tremblay PE, Freytag B, Ludwig HG, Bergeron P (2018) Pure-helium 3D model atmospheres of white dwarfs. Mon Not R Astron Soc 481:1522–1537. https://doi.org/10.1093/mnras/sty2383. arXiv:1809.00590
Cummings JD, Kalirai JS, Tremblay PE, Ramirez-Ruiz E, Choi J (2018) The white dwarf initial–final mass relation for progenitor stars from 0.85 to \(7.5\, M_{\odot }\). Astrophys J 866:21. https://doi.org/10.3847/1538-4357/aadfd6. arXiv:1809.01673
Curd B, Gianninas A, Bell KJ, Kilic M, Romero AD, Allende Prieto C, Winget DE, Winget KI (2017) Four new massive pulsating white dwarfs including an ultramassive DAV. Mon Not R Astron Soc 468:239–249. https://doi.org/10.1093/mnras/stx320. arXiv:1702.03343
Dan M, Rosswog S, Brüggen M, Podsiadlowski P (2014) The structure and fate of white dwarf merger remnants. Mon Not R Astron Soc 438:14–34. https://doi.org/10.1093/mnras/stt1766. arXiv:1308.1667
D’Antona F, Mazzitelli I (1990) Cooling of white dwarfs. Annu Rev Astron Astrophys 28:139–181. https://doi.org/10.1146/annurev.aa.28.090190.001035
De Gerónimo FC, Althaus LG, Córsico AH, Romero AD, Kepler SO (2017) Asteroseismology of ZZ Ceti stars with fully evolutionary white dwarf models. I. The impact of the uncertainties from prior evolution on the period spectrum. Astron Astrophys 599:A21. https://doi.org/10.1051/0004-6361/201629806. arXiv:1611.10298
De Gerónimo FC, Althaus LG, Córsico AH, Romero AD, Kepler SO (2018) Asteroseismology of ZZ Ceti stars with full evolutionary white dwarf models. II. The impact of AGB thermal pulses on the asteroseismic inferences of ZZ Ceti stars. Astron Astrophys 613:A46. https://doi.org/10.1051/0004-6361/201731982. arXiv:1801.10589
De Gerónimo FC, Córsico AH, Althaus LG, Wachlin FC, Camisassa ME (2019a) Pulsation properties of ultra-massive DA white dwarf stars with ONe cores. Astron Astrophys 621:A100. https://doi.org/10.1051/0004-6361/201833789. arXiv:1807.03810
De Gerónimo FC, Battich T, Miller Bertolami MM, Althaus LG, Córsico AH (2019b) On the recent parametric determination of an asteroseismological model for the DBV star KIC 08626021. Astron Astrophys. arXiv:1908.08449v1
De Marco O, Soker N (2002) A new look at the evolution of Wolf-Rayet central stars of planetary Nebulae. PASP 114:602–611. https://doi.org/10.1086/341691. arXiv:astro-ph/0204230
Deheuvels S, García RA, Chaplin WJ, Basu S, Antia HM, Appourchaux T, Benomar O, Davies GR, Elsworth Y, Gizon L, Goupil MJ, Reese DR, Regulo C, Schou J, Stahn T, Casagrande L, Christensen-Dalsgaard J, Fischer D, Hekker S, Kjeldsen H, Mathur S, Mosser B, Pinsonneault M, Valenti J, Christiansen JL, Kinemuchi K, Mullally F (2012) Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler. Astrophys J 756:19. https://doi.org/10.1088/0004-637X/756/1/19. arXiv:1206.3312
den Hartogh JW, Eggenberger P, Hirschi R (2019) Constraining transport of angular momentum in stars. Combining asteroseismic observations of core helium burning stars and white dwarfs. Astron Astrophys 622:A187. https://doi.org/10.1051/0004-6361/201834330. arXiv:1902.04293
Dine M, Fischler W, Srednicki M (1981) A simple solution to the strong CP problem with a harmless axion. Phys Lett B 104:199–202. https://doi.org/10.1016/0370-2693(81)90590-6
Dolez N, Vauclair G (1981) Gravity modes instability in DA white dwarfs. Astron Astrophys 102:375–385
Dufour P, Béland S, Fontaine G, Chayer P, Bergeron P (2011) Taking advantage of the COS time-tag capability: observations of pulsating Hot DQ white dwarfs and discovery of a new one. Astrophys J Lett 733:L19. https://doi.org/10.1088/2041-8205/733/2/L19. arXiv:1104.2543
Dunlap BH, Barlow BN, Clemens JC (2010) A new small-amplitude variable Hot DQ white dwarf. Astrophys J Lett 720:L159–L163. https://doi.org/10.1088/2041-8205/720/2/L159. arXiv:1007.5293
Dupret MA, Quirion PO, Fontaine G, Brassard P, Grigahcène A (2008) Time-dependent convection study of the driving mechanism in the DBV white dwarfs. J Phys Conf Ser 118:012051. https://doi.org/10.1088/1742-6596/118/1/012051
Dupuis CM (2018) A Search for Variability in C-rich DQ White Dwarfs. Master’s thesis, Texas A&M University-Commerce
Dziembowski W (1982) Nonlinear mode coupling in oscillating stars. I. Second order theory of the coherent mode coupling. Acta Astron 32:147–171
Dziembowski W, Koester D (1981) Excitation of gravity modes in white dwarfs with chemically stratified envelopes. Astron Astrophys 97:16–26
Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A (2012) Grids of stellar models with rotation. I. Models from 0.8 to \(120\, M_{\odot }\) at solar metallicity (Z = 0.014). Astron Astrophys 537:A146. https://doi.org/10.1051/0004-6361/201117751. arXiv:1110.5049
Farihi J (2016) Circumstellar debris and pollution at white dwarf stars. New Astron Rev 71:9–34. https://doi.org/10.1016/j.newar.2016.03.001. arXiv:1604.03092
Faulkner J (1972) On the nature of the horizontal branch. II. Extremely blue Halo stars: a theoretical viewpoint. Astrophys J 173:401. https://doi.org/10.1086/151430
Fields CE, Farmer R, Petermann I, Iliadis C, Timmes FX (2016) Properties of carbon–oxygen white dwarfs from Monte Carlo stellar models. Astrophys J 823:46. https://doi.org/10.3847/0004-637X/823/1/46. arXiv:1603.06666
Fontaine G, Brassard P (2008) The pulsating white dwarf stars. PASP 120:1043–1096. https://doi.org/10.1086/592788
Fontaine G, Brassard P, Bergeron P (2001) The potential of white dwarf cosmochronology. PASP 113:409–435. https://doi.org/10.1086/319535
Fontaine G, Brassard P, Charpinet S (2013) The angular momentum of isolated white dwarfs. Eur Phys J Web Conf 43:05011. https://doi.org/10.1051/epjconf/20134305011
Fontaine G, Istrate A, Gianninas A, Brassard P, Van Grootel V (2017) Making Sense Out of Pulsating Pre-ELM and ELM White Dwarfs. In: Tremblay PE, Gaensicke B, Marsh T (eds) 20th European White Dwarf Workshop, ASP Conference Series, vol 509. Astronomical Society of the Pacific, San Francisco, p 347
Fu JN, Dolez N, Vauclair G, Fox-Machado L, Kim SL, Li C, Chen L, Alvarez M, Su J, Charpinet S, Chevreton M, Michel R, Yang XH, Li Y, Zhang YP, Molnar L, Plachy E (2013) Asteroseismology of the ZZ Ceti star HS 0507+0434B. Mon Not R Astron Soc 429:1585–1595. https://doi.org/10.1093/mnras/sts438. arXiv:1211.6226
Fu JN, Vauclair G, Su J, Fox Machado L, Colas F, Kim SL, Cang TQ, Li C, Niu HB, Xue HF, Li Y, Jiang XJ, Michel R, Alvarez M, Dolez N, Ma L, Esamdin A, Liu JZ (2019) Precise determination of stellar parameters of the ZZ Ceti and DAZ white dwarf GD 133 through asteroseismology. Mon Not R Astron Soc 486(3):3560–3568. https://doi.org/10.1093/mnras/stz1088. arXiv:1904.07586
Fujikawa K, Shrock RE (1980) Magnetic Moment of a Massive Neutrino and Neutrino-Spin Rotation. Phys Rev Lett 45:963–966. https://doi.org/10.1103/PhysRevLett.45.963
Fuller J, Lai D (2011) Tidal excitations of oscillation modes in compact white dwarf binaries - I. Linear theory. Mon Not R Astron Soc 412:1331–1340. https://doi.org/10.1111/j.1365-2966.2010.18017.x. arXiv:1009.3316
Fuller J, Lai D (2012) Dynamical tides in compact white dwarf binaries: tidal synchronization and dissipation. Mon Not R Astron Soc 421:426–445. https://doi.org/10.1111/j.1365-2966.2011.20320.x. arXiv:1108.4910
Gaia Collaboration, Babusiaux C, van Leeuwen F, Barstow MA, Jordi C, Vallenari A, Bossini D, Bressan A, Cantat-Gaudin T, van Leeuwen M, et al (2018a) Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron Astrophys 616:A10, https://doi.org/10.1051/0004-6361/201832843, arXiv:1804.09378
Gaia Collaboration, Brown AGA, Vallenari A, Prusti T, de Bruijne JHJ, Babusiaux C, Bailer-Jones CAL, Biermann M, Evans DW, Eyer L, et al (2018b) Gaia Data Release 2. Summary of the contents and survey properties. Astron Astrophys 616:A1, https://doi.org/10.1051/0004-6361/201833051, arXiv:1804.09365
Gänsicke BT, Koester D, Girven J, Marsh TR, Steeghs D (2010) Two white dwarfs with oxygen-rich atmospheres. Science 327:188. https://doi.org/10.1126/science.1180228. arXiv:0911.2246
Gänsicke BT, Koester D, Farihi J, Girven J, Parsons SG, Breedt E (2012) The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon Not R Astron Soc 424:333–347. https://doi.org/10.1111/j.1365-2966.2012.21201.x. arXiv:1205.0167
García-Berro E, Oswalt TD (2016) The white dwarf luminosity function. New Astron Rev 72:1–22. https://doi.org/10.1016/j.newar.2016.08.001. arXiv:1608.02631
Garcia-Berro E, Kubyshin Y, Loren-Aguilar P, Isern J (2006) The variation of the gravitational constant inferred from the hubble diagram of type Ia supernovae. Int J Mod Phys D 15:1163–1174. https://doi.org/10.1142/S0218271806008772. arXiv:gr-qc/0512164
García-Berro E, Isern J, Kubyshin YA (2007) Astronomical measurements and constraints on the variability of fundamental constants. Astron Astrophys Rev 14:113–170. https://doi.org/10.1007/s00159-006-0004-8
García-Berro E, Torres S, Althaus LG, Renedo I, Lorén-Aguilar P, Córsico AH, Rohrmann RD, Salaris M, Isern J (2010) A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465:194–196. https://doi.org/10.1038/nature09045. arXiv:1005.2272
García-Berro E, Lorén-Aguilar P, Torres S, Althaus LG, Isern J (2011) An upper limit to the secular variation of the gravitational constant from white dwarf stars. J Cosmol Astropart Phys 5:021. https://doi.org/10.1088/1475-7516/2011/05/021. arXiv:1105.1992
García-Berro E, Lorén-Aguilar P, Aznar-Siguán G, Torres S, Camacho J, Althaus LG, Córsico AH, Külebi B, Isern J (2012) Double degenerate mergers as progenitors of high-field magnetic white dwarfs. Astrophys J 749:25. https://doi.org/10.1088/0004-637X/749/1/25. arXiv:1202.0461
Gauss CF (1809) Theoria motvs corporvm coelestivm in sectionibvs conicis solem ambientivm. Svmtibvs F. Perthes et I. H. Besser, Hambvrgi
Gautschy A, Althaus LG, Saio H (2005) On the excitation of PG 1159-type pulsations. Astron Astrophys 438:1013–1020. https://doi.org/10.1051/0004-6361:20042486. arXiv:astro-ph/0504495
Gentile Fusillo NP, Tremblay PE, Gänsicke BT, Manser CJ, Cunningham T, Cukanovaite E, Hollands M, Marsh T, Raddi R, Jordan S, Toonen S, Geier S, Barstow M, Cummings JD (2019) A Gaia data release 2 catalogue of white dwarfs and a comparison with SDSS. Mon Not R Astron Soc 482:4570–4591. https://doi.org/10.1093/mnras/sty3016. arXiv:1807.03315
Giammichele N, Charpinet S, Brassard P, Fontaine G (2017a) The potential of asteroseismology for probing the core chemical stratification in white dwarf stars. Astron Astrophys 598:A109. https://doi.org/10.1051/0004-6361/201629935. arXiv:1611.05071
Giammichele N, Charpinet S, Fontaine G, Brassard P (2017b) Toward high-precision seismic studies of white dwarf stars: parametrization of the core and tests of accuracy. Astrophys J 834:136. https://doi.org/10.3847/1538-4357/834/2/136. arXiv:1610.06036
Giammichele N, Charpinet S, Fontaine G, Brassard P, Green EM, Van Grootel V, Bergeron P, Zong W, Dupret MA (2018) A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf. Nature 554:73–76. https://doi.org/10.1038/nature25136
Gianninas A, Bergeron P, Dupuis J, Ruiz MT (2010) Spectroscopic analysis of hot, hydrogen-rich white dwarfs: the presence of metals and the Balmer-line problem. Astrophys J 720:581–602. https://doi.org/10.1088/0004-637X/720/1/581
Gianninas A, Bergeron P, Ruiz MT (2011) A spectroscopic survey and analysis of bright, hydrogen-rich white dwarfs. Astrophys J 743:138. https://doi.org/10.1088/0004-637X/743/2/138. arXiv:1109.3171
Gianninas A, Dufour P, Kilic M, Brown WR, Bergeron P, Hermes JJ (2014) Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations. Astrophys J 794:35. https://doi.org/10.1088/0004-637X/794/1/35. arXiv:1408.3118
Gianninas A, Kilic M, Brown WR, Canton P, Kenyon SJ (2015) The ELM Survey. VI. Eleven New Double Degenerates. Astrophys. J. 812:167. https://doi.org/10.1088/0004-637X/812/2/167. arXiv:1509.07134
Gianninas A, Curd B, Fontaine G, Brown WR, Kilic M (2016) Discovery of three pulsating, mixed-atmosphere, extremely low-mass white dwarf precursors. Astrophys J Lett 822:L27. https://doi.org/10.3847/2041-8205/822/2/L27. arXiv:1604.04621
Giannotti M (2017) Axion searches: exciting times. Nat Phys 13:530–531. https://doi.org/10.1038/nphys4139
Giannotti M, Irastorza IG, Redondo J, Ringwald A, Saikawa K (2017) Stellar recipes for axion hunters. J Cosmol Astropart Phys 10:010. https://doi.org/10.1088/1475-7516/2017/10/010. arXiv:1708.02111
Gilliland RL, Jenkins JM, Borucki WJ, Bryson ST, Caldwell DA, Clarke BD, Dotson JL, Haas MR, Hall J, Klaus T, Koch D, McCauliff S, Quintana EV, Twicken JD, van Cleve JE (2010) Initial characteristics of Kepler short cadence data. Astrophys J Lett 713:L160–L163. https://doi.org/10.1088/2041-8205/713/2/L160. arXiv:1001.0142
Goldreich P, Wu Y (1999) Gravity modes in ZZ Ceti stars. I. Quasi-adiabatic analysis of overstability. Astrophys J 511:904–915. https://doi.org/10.1086/306705. arXiv:astro-ph/9804305
González Pérez JM, Solheim JE, Kamben R (2006) A search for photometric variability of hydrogen-deficient planetary-nebula nuclei. Astron Astrophys 454:527–536. https://doi.org/10.1051/0004-6361:20053468
Greggio L, Renzini A (1990) Clues on the hot star content and the ultraviolet output of elliptical galaxies. Astrophys J 364:35–64. https://doi.org/10.1086/169384
Greiss S, Hermes JJ, Gänsicke BT, Steeghs DTH, Bell KJ, Raddi R, Tremblay PE, Breedt E, Ramsay G, Koester D, Carter PJ, Vanderbosch Z, Winget DE, Winget KI (2016) The search for ZZ Ceti stars in the original Kepler mission. Mon Not R Astron Soc 457:2855–2863. https://doi.org/10.1093/mnras/stw053. arXiv:1601.01316
Grigahcène A, Dupret MA, Gabriel M, Garrido R, Scuflaire R (2005) Convection-pulsation coupling. I. A mixing-length perturbative theory. Astron Astrophys 434:1055–1062. https://doi.org/10.1051/0004-6361:20041816
Haft M, Raffelt G, Weiss A (1994) Standard and nonstandard plasma neutrino emission revisited. Astrophys J 425:222–230. https://doi.org/10.1086/173978. arXiv:astro-ph/9309014
Han Z, Tout CA, Eggleton PP (2000) Low- and intermediate-mass close binary evolution and the initial–final mass relation. Mon Not R Astron Soc 319:215–222. https://doi.org/10.1046/j.1365-8711.2000.03839.x. arXiv:astro-ph/0010269
Hansen B (2004) The astrophysics of cool white dwarfs. Phys Rep 399:1–70. https://doi.org/10.1016/j.physrep.2004.07.001
Hansen BMS, Liebert J (2003) Cool white dwarfs. Annu Rev Astron Astrophys 41:465–515. https://doi.org/10.1146/annurev.astro.41.081401.155117
Hansen CJ, Winget DE, Kawaler SD (1985) Upper and lower bounds of periods in variable white dwarfs. Astrophys J 297:544–547. https://doi.org/10.1086/163549
Hansen BMS, Richer H, Kalirai J, Goldsbury R, Frewen S, Heyl J (2015) Constraining neutrino cooling using the hot white dwarf luminosity function in the globular cluster 47 Tucanae. Astrophys J 809(2):141. https://doi.org/10.1088/0004-637X/809/2/141. arXiv:1507.05665
Hermes JJ, Mullally F, Østensen RH, Williams KA, Telting J, Southworth J, Bloemen S, Howell SB, Everett M, Winget DE (2011) Discovery of a ZZ Ceti in the Kepler mission field. Astrophys J Lett 741:L16. https://doi.org/10.1088/2041-8205/741/1/L16. arXiv:1109.6023
Hermes JJ, Montgomery MH, Winget DE, Brown WR, Kilic M, Kenyon SJ (2012) SDSS J184037.78+642312.3: the first pulsating extremely low mass white dwarf. Astrophys J Lett 750:L28. https://doi.org/10.1088/2041-8205/750/2/L28. arXiv:1204.1338
Hermes JJ, Kepler SO, Castanheira BG, Gianninas A, Winget DE, Montgomery MH, Brown WR, Harrold ST (2013a) Discovery of an ultramassive pulsating white dwarf. Astrophys J Lett 771:L2. https://doi.org/10.1088/2041-8205/771/1/L2. arXiv:1306.4024
Hermes JJ, Montgomery MH, Gianninas A, Winget DE, Brown WR, Harrold ST, Bell KJ, Kenyon SJ, Kilic M, Castanheira BG (2013b) A new class of pulsating white dwarf of extremely low mass: the fourth and fifth members. Mon Not R Astron Soc 436:3573–3580. https://doi.org/10.1093/mnras/stt1835. arXiv:1310.0013
Hermes JJ, Montgomery MH, Mullally F, Winget DE, Bischoff-Kim A (2013c) A new timescale for period change in the pulsating DA white dwarf WD 0111+0018. Astrophys J 766:42. https://doi.org/10.1088/0004-637X/766/1/42. arXiv:1302.1875
Hermes JJ, Montgomery MH, Winget DE, Brown WR, Gianninas A, Kilic M, Kenyon SJ, Bell KJ, Harrold ST (2013d) Discovery of pulsations, including possible pressure modes, in two new extremely low mass, He-core white dwarfs. Astrophys J 765:102. https://doi.org/10.1088/0004-637X/765/2/102. arXiv:1211.1022
Hermes JJ, Montgomery MH, Bell KJ, Chote P, Gänsicke BT, Kawaler SD, Clemens JC, Dunlap BH, Winget DE, Armstrong DJ (2015) A second case of outbursts in a pulsating white dwarf observed by Kepler. Astrophys J Lett 810:L5. https://doi.org/10.1088/2041-8205/810/1/L5. arXiv:1507.06319
Hermes JJ, Gänsicke BT, Kawaler SD, Greiss S, Tremblay PE, Gentile Fusillo NP, Raddi R, Fanale SM, Bell KJ, Dennihy E, Fuchs JT, Dunlap BH, Clemens JC, Montgomery MH, Winget DE, Chote P, Marsh TR, Redfield S (2017a) White dwarf rotation as a function of mass and a dichotomy of mode line widths: Kepler observations of 27 pulsating DA white dwarfs through K2 campaign 8. Astrophys J Suppl 232:23. https://doi.org/10.3847/1538-4365/aa8bb5. arXiv:1709.07004
Hermes JJ, Kawaler SD, Bischoff-Kim A, Provencal JL, Dunlap BH, Clemens JC (2017b) A deep test of radial differential rotation in a helium-atmosphere white dwarf. I. Discovery of pulsations in PG 0112+104. Astrophys J 835:277. https://doi.org/10.3847/1538-4357/835/2/277. arXiv:1612.07807
Herwig F (2005) Evolution of asymptotic giant branch stars. Annu Rev Astron Astrophys 43:435–479. https://doi.org/10.1146/annurev.astro.43.072103.150600
Herwig F, Blöcker T, Langer N, Driebe T (1999) On the formation of hydrogen-deficient post-AGB stars. Astron Astrophys 349:L5–L8 arXiv:astro-ph/9908108
Hofmann F, Müller J, Biskupek L (2010) Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. Astron Astrophys 522:L5. https://doi.org/10.1051/0004-6361/201015659
Höfner S, Olofsson H (2018) Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron Astrophys Rev 26:1. https://doi.org/10.1007/s00159-017-0106-5
Hollands MA, Gänsicke BT, Koester D (2018) Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems. Mon Not R Astron Soc 477:93–111. https://doi.org/10.1093/mnras/sty592. arXiv:1801.07714
Hoof S, Kahlhoefer F, Scott P, Weniger C, White M (2019) Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT. JHEP 3:191. https://doi.org/10.1007/JHEP03(2019)191. arXiv:1810.07192
Horowitz CJ, Schneider AS, Berry DK (2010) Crystallization of carbon–oxygen mixtures in white dwarf stars. Phys Rev Lett 104(23):231101. https://doi.org/10.1103/PhysRevLett.104.231101. arXiv:1005.2441
Howell SB, Sobeck C, Haas M, Still M, Barclay T, Mullally F, Troeltzsch J, Aigrain S, Bryson ST, Caldwell D, Chaplin WJ, Cochran WD, Huber D, Marcy GW, Miglio A, Najita JR, Smith M, Twicken JD, Fortney JJ (2014) The K2 mission: characterization and early results. PASP 126:398. https://doi.org/10.1086/676406. arXiv:1402.5163
Hu J, Webb JK, Ayres TR, Bainbridge MB, Barrow JD, Barstow MA, Berengut JC, Carswell RF, Dzuba VA, Flambaum VV, Holberg JB, Lee CC, Preval SP, Reindl N, Tchang-Brillet WÜL (2019) Constraining the magnetic field on white dwarf surfaces; Zeeman effects and fine structure constant variation. Mon Not R Astron Soc 485:5050–5058. https://doi.org/10.1093/mnras/stz739. arXiv:1812.11480
Iben I Jr, MacDonald J (1995) The Born Again AGB Phenomenon. In: Koester D, Werner K (eds) White Dwarfs, Springer, Berlin, Lecture Notes in Physics, vol 443, pp 48–57. https://doi.org/10.1007/3-540-59157-5_173
Iben I Jr (1984) On the frequency of planetary nebula nuclei powered by helium burning and on the frequency of white dwarfs with hydrogen-deficient atmospheres. Astrophys J 277:333–354. https://doi.org/10.1086/161700
Iben I Jr, MacDonald J (1986) The effects of diffusion due to gravity and due to composition gradients on the rate of hydrogen burning in a cooling degenerate dwarf. II. Dependence on initial metallicity and on buffer mass. Astrophys J 301:164–176. https://doi.org/10.1086/163884
Irastorza IG, Redondo J (2018) New experimental approaches in the search for axion-like particles. Prog Part Nuclear Phys 102:89–159. https://doi.org/10.1016/j.ppnp.2018.05.003. arXiv:1801.08127
Isern J, Hernanz M, Garcia-Berro E (1992) Axion cooling of white dwarfs. Astrophys J Lett 392:L23–L25. https://doi.org/10.1086/186416
Isern J, García-Berro E, Torres S, Catalán S (2008) Axions and the cooling of white dwarf stars. Astrophys J Lett 682:L109. https://doi.org/10.1086/591042. arXiv:0806.2807
Isern J, Catalán S, García-Berro E, Torres S (2009) Axions and the white dwarf luminosity function. J Phys Conf Ser 172:012005. https://doi.org/10.1088/1742-6596/172/1/012005. arXiv:0812.3043
Isern J, García-Berro E, Torres S, Cojocaru R, Catalán S (2018) Axions and the luminosity function of white dwarfs: the thin and thick discs, and the halo. Mon Not R Astron Soc 478:2569–2575. https://doi.org/10.1093/mnras/sty1162. arXiv:1805.00135
Istrate AG, Fontaine G, Gianninas A, Grassitelli L, Marchant P, Tauris TM, Langer N (2016a) Asteroseismic test of rotational mixing in low-mass white dwarfs. Astron Astrophys 595:L12. https://doi.org/10.1051/0004-6361/201629876. arXiv:1610.08513
Istrate AG, Marchant P, Tauris TM, Langer N, Stancliffe RJ, Grassitelli L (2016b) Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing. Astron Astrophys 595:A35. https://doi.org/10.1051/0004-6361/201628874. arXiv:1606.04947
Istrate AG, Fontaine G, Heuser C (2017) A model of the pulsating extremely low-mass white dwarf precursor WASP 0247–25B. Astrophys J 847:130. https://doi.org/10.3847/1538-4357/aa8958. arXiv:1708.09388
Ivanova N, Justham S, Chen X, De Marco O, Fryer CL, Gaburov E, Ge H, Glebbeek E, Han Z, Li XD, Lu G, Marsh T, Podsiadlowski P, Potter A, Soker N, Taam R, Tauris TM, van den Heuvel EPJ, Webbink RF (2013) Common envelope evolution: where we stand and how we can move forward. Astron Astrophys Rev 21:59. https://doi.org/10.1007/s00159-013-0059-2. arXiv:1209.4302
Jeffery CS, Saio H (2013) Pulsation in extremely low mass helium stars. Mon Not R Astron Soc 435:885–892. https://doi.org/10.1093/mnras/stt1360
Kanaan A, Kepler SO, Giovannini O, Diaz M (1992) The discovery of a new DAV star using IUE temperature determination. Astrophys J Lett 390:L89–L91. https://doi.org/10.1086/186379
Kanaan A, Nitta A, Winget DE, Kepler SO, Montgomery MH, Metcalfe TS, Oliveira H, Fraga L et al (2005) Whole Earth Telescope observations of BPM 37093: a seismological test of crystallization theory in white dwarfs. Astron Astrophys 432:219–224. https://doi.org/10.1051/0004-6361:20041125. arXiv:astro-ph/0411199
Karakas AI, Lattanzio JC (2014) The Dawes review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. PASA 31:e030. https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062
Kawaler SD (2015) Rotation of White Dwarf Stars. In: Dufour P, Bergeron P, Fontaine G (eds) 19th European Workshop on White Dwarfs, ASP Conference Series, vol 493. Astronomical Society of the Pacific, San Francisco, p 65. arXiv:1410.6934
Kawaler SD (1988) The hydrogen shell game: pulsational instabilities in hydrogen shell-burning planetary nebula nuclei. Astrophys J 334:220–228. https://doi.org/10.1086/166832
Kawaler SD, Winget DE, Hansen CJ, Iben I Jr (1986) The helium shell game—Nonradial g-mode instabilities in hydrogen-deficient planetary nebula nuclei. Astrophys J Lett 306:L41–L44. https://doi.org/10.1086/184701
Kawaler SD, Sekii T, Gough D (1999) Prospects for measuring differential rotation in white dwarfs through asteroseismology. Astrophys J 516:349–365. https://doi.org/10.1086/307087. arXiv:astro-ph/9811286
Kepler SO (2012) White Dwarf Stars: Pulsations and Magnetism. In: Shibahashi H, Takata M, Lynas-Gray AE (eds) Progress in Solar/Stellar Physics with Helio- and Asteroseismology, ASP Conference Series, vol 462. Astronomical Society of the Pacific, San Francisco, p 322
Kepler SO, Bradley PA (1995) Structure and evolution of white dwarfs. Baltic Astron 4:166–220. https://doi.org/10.1515/astro-1995-0213
Kepler SO, Romero AD (2017) Pulsating white dwarfs. Eur Phys J Web Conf 152:01011. https://doi.org/10.1051/epjconf/201715201011. arXiv:1706.07020
Kepler SO, Nather RE, Winget DE, Nitta A, Kleinman SJ, Metcalfe T, Sekiguchi K, Jiang X, Sullivan D, Sullivan T, Janulis R, Meistas E, Kalytis R, Krzesinski J, Ogoza W, Zola S, O’Donoghue D, Romero-Colmenero E, Martinez P, Dreizler S, Deetjen J, Nagel T, Schuh SL, Vauclair G, Ning FJ, Chevreton M, Solheim JE, Gonzalez Perez JM, Johannessen F, Kanaan A, Costa JE, Murillo Costa AF, Wood MA, Silvestri N, Ahrens TJ, Jones AK, Collins AE, Boyer M, Shaw JS, Mukadam A, Klumpe EW, Larrison J, Kawaler S, Riddle R, Ulla A, Bradley P (2003) The everchanging pulsating white dwarf GD358. Astron Astrophys 401:639–654. https://doi.org/10.1051/0004-6361:20030105. arXiv:astro-ph/0301477
Kepler SO, Costa JES, Castanheira BG, Winget DE, Mullally F, Nather RE, Kilic M, von Hippel T, Mukadam AS, Sullivan DJ (2005) Measuring the evolution of the most stable optical clock G 117–B15A. Astrophys J 634:1311–1318. https://doi.org/10.1086/497002. arXiv:astro-ph/0507487
Kepler SO, Fraga L, Winget DE, Bell K, Córsico AH, Werner K (2014) Discovery of a new PG 1159 (GW Vir) pulsator. Mon Not R Astron Soc 442:2278–2281. https://doi.org/10.1093/mnras/stu1019. arXiv:1405.5075
Kepler SO, Pelisoli I, Koester D, Ourique G, Kleinman SJ, Romero AD, Nitta A, Eisenstein DJ, Costa JES, Külebi B, Jordan S, Dufour P, Giommi P, Rebassa-Mansergas A (2015) New white dwarf stars in the Sloan digital sky survey data release 10. Mon Not R Astron Soc 446:4078–4087. https://doi.org/10.1093/mnras/stu2388. arXiv:1411.4149
Kepler SO, Koester D, Ourique G (2016a) A white dwarf with an oxygen atmosphere. Science 352:67–69. https://doi.org/10.1126/science.aad6705
Kepler SO, Pelisoli I, Koester D, Ourique G, Romero AD, Reindl N, Kleinman SJ, Eisenstein DJ, Valois ADM, Amaral LA (2016b) New white dwarf and subdwarf stars in the Sloan digital sky survey data release 12. Mon Not R Astron Soc 455:3413–3423. https://doi.org/10.1093/mnras/stv2526. arXiv:1510.08409
Kepler SO, Pelisoli I, Koester D, Reindl N, Geier S, Romero AD, Ourique G, Oliveira CdP, Amaral LA (2019) White dwarf and subdwarf stars in the Sloan digital sky survey data release 14. Mon Not R Astron Soc 486:2169–2183. https://doi.org/10.1093/mnras/stz960. arXiv:1904.01626
Kilic M, Brown WR, Allende Prieto C, Agüeros MA, Heinke C, Kenyon SJ (2011) The ELM survey. II. Twelve binary white dwarf merger systems. Astrophys J 727:3. https://doi.org/10.1088/0004-637X/727/1/3. arXiv:1011.4073
Kilic M, Brown WR, Allende Prieto C, Kenyon SJ, Heinke CO, Agüeros MA, Kleinman SJ (2012) The ELM survey. IV. 24 white dwarf merger systems. Astrophys J 751:141. https://doi.org/10.1088/0004-637X/751/2/141. arXiv:1204.0028
Kilic M, Hermes JJ, Gianninas A, Brown WR (2015) PSR J1738+0333: the first millisecond pulsar + pulsating white dwarf binary. Mon Not R Astron Soc 446:L26–L30. https://doi.org/10.1093/mnrasl/slu152. arXiv:1410.4898
Kilic M, Munn JA, Harris HC, von Hippel T, Liebert JW, Williams KA, Jeffery E, DeGennaro S (2017) The ages of the thin disk, thick disk, and the Halo from nearby white dwarfs. Astrophys J 837:162. https://doi.org/10.3847/1538-4357/aa62a5. arXiv:1702.06984
Kilic M, Hermes JJ, Córsico AH, Kosakowski A, Brown WR, Antoniadis J, Calcaferro LM, Gianninas A, Althaus LG, Green MJ (2018) A refined search for pulsations in white dwarf companions to millisecond pulsars. Mon Not R Astron Soc 479:1267–1272. https://doi.org/10.1093/mnras/sty1546. arXiv:1806.03650
Kim JE, Carosi G (2010) Axions and the strong CP problem. Rev Mod Phys 82:557–601. https://doi.org/10.1103/RevModPhys.82.557. arXiv:0807.3125
Kippenhahn R, Weigert A, Weiss A (2012) Stellar Structure and Evolution. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30304-3
Kleinman SJ, Kepler SO, Koester D, Pelisoli I, Peçanha V, Nitta A, Costa JES, Krzesinski J, Dufour P, Lachapelle FR, Bergeron P, Yip CW, Harris HC, Eisenstein DJ, Althaus L, Córsico A (2013) SDSS DR7 white dwarf catalog. Astrophys J Suppl Ser 204:5. https://doi.org/10.1088/0067-0049/204/1/5. arXiv:1212.1222
Koester D (2002) White dwarfs: recent developments. Astron Astrophys Rev 11:33–66. https://doi.org/10.1007/s001590100015
Koester D, Chanmugam G (1990) Physics of white dwarf stars. Rep Progr Phys 53:837–915. https://doi.org/10.1088/0034-4885/53/7/001
Koester D, Kepler SO (2015) DB white dwarfs in the Sloan digital sky survey data release 10 and 12. Astron Astrophys 583:A86. https://doi.org/10.1051/0004-6361/201527169. arXiv:1509.08244
Koester D, Voss B, Napiwotzki R, Christlieb N, Homeier D, Lisker T, Reimers D, Heber U (2009) High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey. III. DA white dwarfs. Astron Astrophys 505:441–462. https://doi.org/10.1051/0004-6361/200912531. arXiv:0908.2322
Koester D, Gänsicke BT, Farihi J (2014) The frequency of planetary debris around young white dwarfs. Astron Astrophys 566:A34. https://doi.org/10.1051/0004-6361/201423691. arXiv:1404.2617
Kunz R, Fey M, Jaeger M, Mayer A, Hammer JW, Staudt G, Harissopulos S, Paradellis T (2002) Astrophysical reaction rate of \(^{12}\text{ C }({\alpha }, \gamma )^{16}\text{ O }\). Astrophys J 567:643–650. https://doi.org/10.1086/338384
Kurtz DW, Shibahashi H, Dhillon VS, Marsh TR, Littlefair SP (2008) A search for a new class of pulsating DA white dwarf stars in the DB gap. Mon Not R Astron Soc 389:1771–1779. https://doi.org/10.1111/j.1365-2966.2008.13664.x
Kurtz DW, Shibahashi H, Dhillon VS, Marsh TR, Littlefair SP, Copperwheat CM, Gänsicke BT, Parsons SG (2013) Hot DAVs: a probable new class of pulsating white dwarf stars. Mon Not R Astron Soc 432:1632–1639. https://doi.org/10.1093/mnras/stt585
Landolt AU (1968) A new short-period blue variable. Astrophys J 153:151. https://doi.org/10.1086/149645
Laplace PS (1810) Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres, et sur leur application aux probabilités (suite). Mém Acad Sci pp 301–345
Lauffer GR, Romero AD, Kepler SO (2018) New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA. Mon Not R Astron Soc 480:1547–1562. https://doi.org/10.1093/mnras/sty1925. arXiv:1807.04774
Lecoanet D, Schwab J, Quataert E, Bildsten L, Timmes FX, Burns KJ, Vasil GM, Oishi JS, Brown BP (2016) Turbulent chemical diffusion in convectively bounded carbon flames. Astrophys J 832:71. https://doi.org/10.3847/0004-637X/832/1/71. arXiv:1603.08921
Ledoux P, Walraven T (1958) Variable stars. Handbuch der Physik 51:353–604
Legendre AM (1806) Nouvelles Methodes pour la determination des Orbites des Cometes. Courcier, Paris
Luan J, Goldreich P (2018) DAVs: red edge and outbursts. Astrophys J 863:82. https://doi.org/10.3847/1538-4357/aad0f4. arXiv:1711.06367
Luders G (1954) On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories. Dan Mat Fys Medd 28(5):1–17
Lund MN, Silva Aguirre V, Davies GR, Chaplin WJ, Christensen-Dalsgaard J, Houdek G, White TR, Bedding TR, Ball WH, Huber D, Antia HM, Lebreton Y, Latham DW, Handberg R, Verma K, Basu S, Casagrande L, Justesen AB, Kjeldsen H, Mosumgaard JR (2017) Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY Sample. I. Oscillation mode parameters. Astrophys J 835:172. https://doi.org/10.3847/1538-4357/835/2/172. arXiv:1612.00436
Maeda K, Shibahashi H (2014) Pulsations of pre-white dwarfs with hydrogen-dominated atmospheres. PASJ 66:76. https://doi.org/10.1093/pasj/psu051. arXiv:1405.4568
Malec B, Biesiada M (2013) White Dwarf Constraints on Exotic Physical Theories. In: 18th European White Dwarf Workshop, ASP Conference Series, vol 469. Astronomical Society of the Pacific, San Francisco, p 21
Maoz D, Mannucci F, Nelemans G (2014) Observational Clues to the Progenitors of Type Ia Supernovae. Annu Rev Astron Astrophys 52:107–170. https://doi.org/10.1146/annurev-astro-082812-141031. arXiv:1312.0628
Marino AF, Milone AP, Yong D, Da Costa G, Asplund M, Bedin LR, Jerjen H, Nardiello D, Piotto G, Renzini A, Shetrone M (2017) Spectroscopy and photometry of multiple populations along the ssymptotic giant branch of NGC 2808 and NGC 6121 (M4). Astrophys J 843:66. https://doi.org/10.3847/1538-4357/aa7852
Maxted PFL, Anderson DR, Burleigh MR, Collier Cameron A, Heber U, Gänsicke BT, Geier S, Kupfer T, Marsh TR, Nelemans G, O’Toole SJ, Østensen RH, Smalley B, West RG (2011) Discovery of a stripped red giant core in a bright eclipsing binary system. Mon Not R Astron Soc 418:1156–1164. https://doi.org/10.1111/j.1365-2966.2011.19567.x. arXiv:1107.4986
Maxted PFL, Serenelli AM, Miglio A, Marsh TR, Heber U, Dhillon VS, Littlefair S, Copperwheat C, Smalley B, Breedt E, Schaffenroth V (2013) Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system. Nature 498:463–465. https://doi.org/10.1038/nature12192. arXiv:1307.1654
Maxted PFL, Bloemen S, Heber U, Geier S, Wheatley PJ, Marsh TR, Breedt E, Sebastian D et al (2014a) EL CVn-type binaries—discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon Not R Astron Soc 437:1681–1697. https://doi.org/10.1093/mnras/stt2007. arXiv:1310.4863
Maxted PFL, Serenelli AM, Marsh TR, Catalán S, Mahtani DP, Dhillon VS (2014b) WASP 1628+10 - an EL CVn-type binary with a very low mass stripped red giant star and multiperiodic pulsations. Mon Not R Astron Soc 444:208–216. https://doi.org/10.1093/mnras/stu1465. arXiv:1407.5415
McGraw JT, Starrfield SG, Liebert J, Green R (1979) PG1159-035: A new, hot, non-DA pulsating degenerate. In: van Horn HM, Weidemann V, Savedoff MP (eds) IAU Colloq. 53: White Dwarfs and Variable Degenerate Stars, University of Rochester, Rochester, NY, pp 377–381
Medin Z, Cumming A (2010) Crystallization of classical multicomponent plasmas. Phys Rev E 81(3):036107. https://doi.org/10.1103/PhysRevE.81.036107. arXiv:1002.3327
Mestel L (1952) On the theory of white dwarf stars. I. The energy sources of white dwarfs. Mon Not R Astron Soc 112:583. https://doi.org/10.1093/mnras/112.6.583
Metcalfe TS (2003) White dwarf asteroseismology and the \(^{12}\text{ C }(\alpha,\gamma )^{16}\text{ O }\) rate. Astrophys J Lett 587:L43–L46. https://doi.org/10.1086/375044. arXiv:astro-ph/0303039
Metcalfe TS, Montgomery MH, Kanaan A (2004) Testing white dwarf crystallization theory with asteroseismology of the massive pulsating DA star BPM 37093. Astrophys J Lett 605:L133–L136. https://doi.org/10.1086/420884. arXiv:astro-ph/0402046
Miller Bertolami MM, Althaus LG, Córsico AH (2017) On the Formation of DA White Dwarfs with low Hydrogen Contents: Preliminary Results. In: Tremblay PE, Gaensicke B, Marsh T (eds) 20th European White Dwarf Workshop, ASP Conference Series, vol 509. Astronomical Society of the Pacific, San Francisco, p 435. arXiv:1609.08683
Miller Bertolami MM (2014) Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs. Astron Astrophys 562:A123. https://doi.org/10.1051/0004-6361/201322641. arXiv:1407.1404
Miller Bertolami MM (2016) New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron Astrophys 588:A25. https://doi.org/10.1051/0004-6361/201526577. arXiv:1512.04129
Miller Bertolami MM, Althaus LG (2006) Full evolutionary models for PG 1159 stars. Implications for the helium-rich O(He) stars. Astron Astrophys 454:845–854. https://doi.org/10.1051/0004-6361:20054723. arXiv:astro-ph/0603846
Miller Bertolami MM, Althaus LG (2007) The born-again (very late thermal pulse) scenario revisited: the mass of the remnants and implications for V4334 Sgr. Mon Not R Astron Soc 380:763–770. https://doi.org/10.1111/j.1365-2966.2007.12115.x. arXiv:0706.0714
Miller Bertolami MM, Althaus LG, Olano C, Jiménez N (2011) The diffusion-induced nova scenario: CK Vul and PB8 as possible observational counterparts. Mon Not R Astron Soc 415:1396–1408. https://doi.org/10.1111/j.1365-2966.2011.18790.x. arXiv:1103.5455
Miller Bertolami MM, Althaus LG, García-Berro E (2013) Quiescent nuclear burning in low-metallicity white dwarfs. Astrophys J 775(1):L22. https://doi.org/10.1088/2041-8205/775/1/L22. arXiv:1308.2062
Miller Bertolami MM, Melendez BE, Althaus LG, Isern J (2014) Revisiting the axion bounds from the Galactic white dwarf luminosity function. J Cosmol Astropart Phys 10:069. https://doi.org/10.1088/1475-7516/2014/10/069. arXiv:1406.7712
Montgomery MH, Winget DE (1999) The effect of crystallization on the pulsations of white dwarf stars. Astrophys J 526:976–990. https://doi.org/10.1086/308044. arXiv:astro-ph/9907040
Montgomery MH, Williams KA, Winget DE, Dufour P, DeGennaro S, Liebert J (2008) SDSS J142625.71+575218.3: a prototype for a new class of variable white dwarf. Astrophys J Lett 678:L51. https://doi.org/10.1086/588286. arXiv:0803.2646
Mosser B, Benomar O, Belkacem K, Goupil MJ, Lagarde N, Michel E, Lebreton Y, Stello D, Vrard M, Barban C, Bedding TR, Deheuvels S, Chaplin WJ, De Ridder J, Elsworth Y, Montalban J, Noels A, Ouazzani RM, Samadi R, White TR, Kjeldsen H (2014) Mixed modes in red giants: a window on stellar evolution. Astron Astrophys 572:L5. https://doi.org/10.1051/0004-6361/201425039. arXiv:1411.1082
Mould J, Uddin SA (2014) Constraining a possible variation of G with type Ia Supernovae. PASA 31:e015. https://doi.org/10.1017/pasa.2014.9. arXiv:1402.1534
Mukadam AS, Mullally F, Nather RE, Winget DE, von Hippel T, Kleinman SJ, Nitta A, Krzesiński J, Kepler SO, Kanaan A, Koester D, Sullivan DJ, Homeier D, Thompson SE, Reaves D, Cotter C, Slaughter D, Brinkmann J (2004) Thirty-five new pulsating DA white dwarf stars. Astrophys J 607:982–998. https://doi.org/10.1086/383083
Mukadam AS, Bischoff-Kim A, Fraser O, Córsico AH, Montgomery MH, Kepler SO, Romero AD, Winget DE et al (2013) Measuring the evolutionary rate of cooling of ZZ Ceti. Astrophys J 771:17. https://doi.org/10.1088/0004-637X/771/1/17
Mullally F, Thompson SE, Castanheira BG, Winget DE, Kepler SO, Eisenstein DJ, Kleinman SJ, Nitta A (2005) Eleven new DA white dwarf variable stars from the Sloan Digital Sky Survey. Astrophys J 625:966–972. https://doi.org/10.1086/429885
Nandez JLA, Ivanova N (2016) Common envelope events with low-mass giants: understanding the energy budget. Mon Not R Astron Soc 460:3992–4002. https://doi.org/10.1093/mnras/stw1266. arXiv:1606.04922
Nather RE, Winget DE, Clemens JC, Hansen CJ, Hine BP (1990) The Whole Earth Telescope: a new astronomical instrument. Astrophys J 361:309–317. https://doi.org/10.1086/169196
Nitta A, Kleinman SJ, Krzesinski J, Kepler SO, Metcalfe TS, Mukadam AS, Mullally F, Nather RE, Sullivan DJ, Thompson SE, Winget DE (2009) New pulsating DB white dwarf stars from the Sloan Digital Sky Survey. Astrophys J 690:560–565. https://doi.org/10.1088/0004-637X/690/1/560. arXiv:0809.0921
Nitta A, Kepler SO, Chené AN, Koester D, Provencal JL, Kleinmani SJ, Sullivan DJ, Chote P, Sefako R, Kanaan A, Romero A, Corti M, Kilic M, Montgomery MH, Winget DE (2016) Constraining the physics of carbon crystallization through pulsations of a massive DAV BPM37093. IAU Focus Meeting 29:493–496. https://doi.org/10.1017/S1743921316005962
Norris JE (2004) The helium abundances of \(\omega \) Centauri. Astrophys J Lett 612:L25–L28. https://doi.org/10.1086/423986
O’Brien MS, Kawaler SD (2000) The predicted signature of neutrino emission in observations of pulsating pre-white dwarf stars. Astrophys J 539:372–378. https://doi.org/10.1086/309216. arXiv:astro-ph/0003261
Østensen RH, Silvotti R, Charpinet S, Oreiro R, Handler G, Green EM, Bloemen S, Heber U et al (2010) First Kepler results on compact pulsators—I. Survey target selection and the first pulsators. Mon Not R Astron Soc 409:1470–1486. https://doi.org/10.1111/j.1365-2966.2010.17366.x. arXiv:1007.3170
Østensen RH, Bloemen S, Vučković M, Aerts C, Oreiro R, Kinemuchi K, Still M, Koester D (2011a) At last - A V777 Her pulsator in the Kepler field. Astrophys J Lett 736:L39. https://doi.org/10.1088/2041-8205/736/2/L39
Østensen RH, Silvotti R, Charpinet S, Oreiro R, Bloemen S, Baran AS, Reed MD, Kawaler SD et al (2011) First Kepler results on compact pulsators - VI. Targets in the final half of the survey phase. Mon Not R Astron Soc 414:2860–2870. https://doi.org/10.1111/j.1365-2966.2011.18405.x. arXiv:1101.4150
Paczyński B (1971) Evolution of single stars. VI. Model nuclei of planetary nebulae. Acta Astron 21:417
Pauli W, Rosenfeld L, Weisskopf V (eds) (1955) Niels Bohr and the development of physics. Pergamon Press, New York
Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for experiments in stellar astrophysics (MESA). Astrophys J Suppl 192:3. https://doi.org/10.1088/0067-0049/192/1/3. arXiv:1009.1622
Paxton B, Cantiello M, Arras P, Bildsten L, Brown EF, Dotter A, Mankovich C, Montgomery MH, Stello D, Timmes FX, Townsend R (2013) Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys J Suppl 208:4. https://doi.org/10.1088/0067-0049/208/1/4. arXiv:1301.0319
Paxton B, Marchant P, Schwab J, Bauer EB, Bildsten L, Cantiello M, Dessart L, Farmer R, Hu H, Langer N, Townsend RHD, Townsley DM, Timmes FX (2015) Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys J Suppl 220:15. https://doi.org/10.1088/0067-0049/220/1/15. arXiv:1506.03146
Paxton B, Schwab J, Bauer EB, Bildsten L, Blinnikov S, Duffell P, Farmer R, Goldberg JA, Marchant P, Sorokina E, Thoul A, Townsend RHD, Timmes FX (2018) Modules for experiments in stellar astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys J Suppl 234:34. https://doi.org/10.3847/1538-4365/aaa5a8. arXiv:1710.08424
Paxton B, Smolec R, Gautschy A, Bildsten L, Cantiello M, Dotter A, Farmer R, Goldberg JA, Jermyn AS, Kanbur SM, Marchant P, Schwab J, Thoul A, Townsend RHD, Wolf WM, Zhang M, Timmes FX (2019) Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation. Astrophys J Suppl 243:10. https://doi.org/10.3847/1538-4365/ab2241. arXiv:1903.01426
Peccei RD, Quinn HR (1977) CP conservation in the presence of pseudoparticles. Phys Rev Lett 38:1440–1443. https://doi.org/10.1103/PhysRevLett.38.1440
Pelisoli I, Kepler SO, Koester D (2018a) The sdA problem—I. Physical properties. Mon Not R Astron Soc 475:2480–2495. https://doi.org/10.1093/mnras/sty011. arXiv:1801.00495
Pelisoli I, Kepler SO, Koester D, Castanheira BG, Romero AD, Fraga L (2018b) The sdA problem—II. Photometric and spectroscopic follow-up. Mon Not R Astron Soc 478:867–884. https://doi.org/10.1093/mnras/sty1101. arXiv:1804.09059
Pelisoli I, Bell KJ, Kepler SO, Koester D (2019) The sdA problem—III. New extremely low-mass white dwarfs and their precursors from Gaia astrometry. Mon Not R Astron Soc 482:3831–3842. https://doi.org/10.1093/mnras/sty2979. arXiv:1805.04070
Pietrinferni A, Cassisi S, Salaris M, Castelli F (2004) A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys J 612:168–190. https://doi.org/10.1086/422498. arXiv:astro-ph/0405193
Pietrukowicz P (2018) On the Properties of Blue Large-Amplitude Pulsators. No BLAPs in the Magellanic Clouds. In: Smolec R, Kinemuchi K, Anderson RI (eds) The RR Lyrae 2017 Conference. Revival of the Classical Pulsators: from Galactic Structure to Stellar Interior Diagnostics, vol 6, pp 258–262. arXiv:1802.04405
Pietrukowicz P, Dziembowski WA, Latour M, Angeloni R, Poleski R, di Mille F, Soszyński I, Udalski A, Szymański MK, Wyrzykowski Ł, Kozłowski S, Skowron J, Skowron D, Mróz P, Pawlak M, Ulaczyk K (2017) Blue large-amplitude pulsators as a new class of variable stars. Nat Astron 1:0166. https://doi.org/10.1038/s41550-017-0166. arXiv:1706.07802
Pringle JE (1975) Period changes in eruptive binaries. Mon Not R Astron Soc 170:633–642. https://doi.org/10.1093/mnras/170.3.633
Provencal JL, Montgomery MH, Kanaan A, Shipman HL, Childers D, Baran A, Kepler SO, Reed M et al (2009) 2006 Whole Earth Telescope observations of GD358: a new look at the prototype DBV. Astrophys J 693:564–585. https://doi.org/10.1088/0004-637X/693/1/564. arXiv:0811.0768
Pyrzas S, Gänsicke BT, Hermes JJ, Copperwheat CM, Rebassa-Mansergas A, Dhillon VS, Littlefair SP, Marsh TR, Parsons SG, Savoury CDJ, Schreiber MR, Barros SCC, Bento J, Breedt E, Kerry P (2015) Discovery of ZZ Cetis in detached white dwarf plus main-sequence binaries. Mon Not R Astron Soc 447:691–697. https://doi.org/10.1093/mnras/stu2412. arXiv:1411.5045
Quirion PO, Dupret MA, Fontaine G, Brassard P, Grigahcène A (2008) Hydrogen-Deficient Compact Pulsators: The GW Virginis Stars and the Variable DB White Dwarfs. In: Werner A, Rauch T (eds) Hydrogen-Deficient Stars, ASPConference Series, vol 391. Astronomical Society of the Pacific, San Francisco, p 183
Quirion PO, Fontaine G, Brassard P (2012) Wind competing against settling: a coherent model of the GW virginis instability domain. Astrophys J 755:128. https://doi.org/10.1088/0004-637X/755/2/128
Raffelt G (2012) Neutrinos and the stars. ArXiv e-prints arXiv:1201.1637
Raffelt GG (1986) Axion constraints from white dwarf cooling times. Phys Lett B 166:402–406. https://doi.org/10.1016/0370-2693(86)91588-1
Raffelt GG (1990) Astrophysical methods to constrain axions and other novel particle phenomena. Phys Rep 198:1–113. https://doi.org/10.1016/0370-1573(90)90054-6
Raffelt GG (1996) Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago Press, Chicago
Raffelt GG (2007) Axions–motivation, limits and searches. J Phys A Math Gen 40:6607–6620. https://doi.org/10.1088/1751-8113/40/25/S05. arXiv:hep-ph/0611118
Ramsay G (2018) Identifying blue large-amplitude pulsators in the Galactic plane using Gaia DR2: a case study. Astron Astrophys 620:L9. https://doi.org/10.1051/0004-6361/201834604. arXiv:1811.09522
Redaelli M, Kepler SO, Costa JES, Winget DE, Handler G, Castanheira BG, Kanaan A, Fraga L et al (2011) The pulsations of PG 1351+489. Mon Not R Astron Soc 415:1220–1227. https://doi.org/10.1111/j.1365-2966.2011.18743.x
Redondo J (2016) Axions at the international axion observatory. ArXiv e-prints arXiv:1601.00578
Ricker GR, Winn JN, Vanderspek R, Latham DW, Bakos GÁ, Bean JL, Berta-Thompson ZK, Brown TM et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003. https://doi.org/10.1117/1.JATIS.1.1.014003
Ritossa C, Garcia-Berro E, Iben I Jr (1996) On the evolution of stars that form electron-degenerate cores processed by carbon burning. II. Isotope abundances and thermal pulses in a \(10\, M_{\odot }\) model with an ONe core and applications to long-period variables, classical novae, and accretion-induced collapse. Astrophys J 460:489. https://doi.org/10.1086/176987
Romero AD, Córsico AH, Althaus LG, Kepler SO, Castanheira BG, Miller Bertolami MM (2012) Toward ensemble asteroseismology of ZZ Ceti stars with fully evolutionary models. Mon Not R Astron Soc 420:1462–1480. https://doi.org/10.1111/j.1365-2966.2011.20134.x
Romero AD, Kepler SO, Córsico AH, Althaus LG, Fraga L (2013) Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models. Astrophys J 779:58. https://doi.org/10.1088/0004-637X/779/1/58. arXiv:1310.4137
Romero AD, Córsico AH, Castanheira BG, De Gerónimo FC, Kepler SO, Koester D, Kawka A, Althaus LG, Hermes JJ, Bonato C, Gianninas A (2017) Probing the structure of Kepler ZZ Ceti stars with full evolutionary models-based asteroseismology. Astrophys J 851:60. https://doi.org/10.3847/1538-4357/aa9899. arXiv:1711.01338
Romero AD, Córsico AH, Althaus LG, Pelisoli I, Kepler SO (2018) On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs). Mon Not R Astron Soc 477:L30–L34. https://doi.org/10.1093/mnrasl/sly051. arXiv:1803.09600
Rowan DM, Tucker MA, Shappee BJ, Hermes JJ (2019) Detections and constraints on white dwarf variability from time-series GALEX observations. Mon Not R Astron Soc 486:4574–4589. https://doi.org/10.1093/mnras/stz1116. arXiv:1812.05614
Saio H (2019) r-mode oscillations in accreting white dwarfs in cataclysmic variables. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stz1407. arXiv:1905.08390
Salaris M, Cassisi S (2018) White dwarf stars: cosmic chronometers and dark matter probes. Physica Scr 93(4):044002. https://doi.org/10.1088/1402-4896/aaaef4
Salaris M, Serenelli A, Weiss A, Miller Bertolami M (2009) Semi-empirical white dwarf initial–final mass relationships: a thorough analysis of systematic uncertainties due to stellar evolution models. Astrophys J 692:1013–1032. https://doi.org/10.1088/0004-637X/692/2/1013. arXiv:0807.3567
Schoenberner D (1987) Mass loss and the transformation of AGB stars into central stars of planetary nebulae. In: Kwok S, Pottasch SR (eds) Late Stages of Stellar Evolution, Astrophysics and Space Science Library, vol 132. D. Reidel, Dordrecht
Schwarzschild M (1958) Structure and evolution of the stars. Princeton University Press, Princeton
Scuflaire R (1974) The non radial oscillations of condensed polytropes. Astron Astrophys 36:107
Segretain L, Chabrier G (1993) Crystallization of binary ionic mixtures in dense stellar plasmas. Astron Astrophys 271:L13
Serenelli AM, Althaus LG, Rohrmann RD, Benvenuto OG (2002) Evolution and colours of helium-core white dwarf stars: the case of low-metallicity progenitors. Mon Not R Astron Soc 337:1091–1104. https://doi.org/10.1046/j.1365-8711.2002.05994.x. arXiv:astro-ph/0208408
Shibahashi H (2005) The DB gap and pulsations of white dwarfs. In: Alecian G, Richard O, Vauclair S (eds) Element stratification in stars: 40 years of atomic diffusion, EAS Publications Series, vol 17. EDP sciences, pp 143–148. https://doi.org/10.1051/eas:2005108
Shibahashi H (2007) The DB Gap and Pulsations of White Dwarfs. In: Stancliffe RJ, Houdek G, Martin RG, Tout CA (eds) Unsolved problems in stellar physics: a conference in honor of Douglas Gough, ASP Conference Series, vol 948. American Institute of Physics, pp 35–42. https://doi.org/10.1063/1.2818994
Shibahashi H (2013) A new kind of pulsator in the DB valley of white dwarf stars. In: Alecian G, Lebreton Y, Richard O, Vauclair G (eds) EAS Publications Series, EAS Publications Series, vol 63, pp 185–190. https://doi.org/10.1051/eas/1363021
Siess L (2010) Evolution of massive AGB stars. III. The thermally pulsing super-AGB phase. Astron Astrophys 512:A10. https://doi.org/10.1051/0004-6361/200913556
Silvotti R, Østensen RH, Bloemen S, Telting JH, Heber U, Oreiro R, Reed MD, Farris LE, O’Toole SJ, Lanteri L, Degroote P, Hu H, Baran AS, Hermes JJ, Althaus LG, Marsh TR, Charpinet S, Li J, Morris RL, Sanderfer DT (2012) Orbital properties of an unusually low-mass sdB star in a close binary system with a white dwarf. Mon Not R Astron Soc 424:1752–1761. https://doi.org/10.1111/j.1365-2966.2012.21232.x. arXiv:1205.2457
Sion EM (2011) Hot white dwarfs. In: Hoard DW (ed) White dwarf atmospheres and circumstellar environments. Wiley-VCH, Weinheim, pp 1–24
Smolec R, Pietrzyński G, Graczyk D, Pilecki B, Gieren W, Thompson I, Stȩpień K, Karczmarek P, Konorski P, Górski M, Suchomska K, Bono G, Prada PGM, Nardetto N (2013) Pulsation models for the \(0.26\, M_{\odot }\) star mimicking RR Lyrae pulsator. Model survey for the new class of variable stars. Mon Not R Astron Soc 428:3034–3047. https://doi.org/10.1093/mnras/sts258. arXiv:1210.6030
Sowicka P, Handler G, Jones D (2018) On \(\epsilon \)-mechanism-driven pulsations in VV 47. Mon Not R Astron Soc 479:2476–2480. https://doi.org/10.1093/mnras/sty1660. arXiv:1806.07935
Starrfield SG, Cox AN, Hodson SW, Pesnell WD (1983) The discovery of nonradial instability strips for hot, evolved stars. Astrophys J Lett 268:L27–L32. https://doi.org/10.1086/184023
Starrfield S, Cox AN, Kidman RB, Pesnell WD (1984) Nonradial instability strips based on carbon and oxygen partial ionization in hot, evolved stars. Astrophys J 281:800–810. https://doi.org/10.1086/162158