Skip to main content
Log in

Small Solar System Bodies as granular media

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Asteroids and other Small Solar System Bodies (SSSBs) are of high general and scientific interest in many aspects. The origin, formation, and evolution of our Solar System (and other planetary systems) can be better understood by analysing the constitution and physical properties of small bodies in the Solar System. Currently, two space missions (Hayabusa2, OSIRIS-REx) have recently arrived at their respective targets and will bring a sample of the asteroids back to Earth. Other small body missions have also been selected by, or proposed to, space agencies. The threat posed to our planet by near-Earth objects (NEOs) is also considered at the international level, and this has prompted dedicated research on possible mitigation techniques. The DART mission, for example, will test the kinetic impact technique. Even ideas for industrial exploitation have risen during the last years. Lastly, the origin of water and life on Earth appears to be connected to asteroids. Hence, future space mission projects will undoubtedly target some asteroids or other SSSBs. In all these cases and research topics, specific knowledge of the structure and mechanical behaviour of the surface as well as the bulk of those celestial bodies is crucial. In contrast to large telluric planets and dwarf planets, a large proportion of such small bodies is believed to consist of gravitational aggregates (‘rubble piles’) with no—or low—internal cohesion, with varying macro-porosity and surface properties (from smooth regolith covered terrain, to very rough collection of boulders), and varying topography (craters, depressions, ridges). Bodies with such structure can sustain some plastic deformation without being disrupted in contrast to the classical visco-elastic models that are generally valid for planets, dwarf planets, and large satellites. These SSSBs are hence better described through granular mechanics theories, which have been a subject of intense theoretical, experimental, and numerical research over the last four decades. This being the case, it has been necessary to use the theoretical, numerical and experimental tools developed within soil mechanics, granular dynamics, celestial mechanics, chemistry, condensed matter physics, planetary and computer sciences, to name the main ones, in order to understand the data collected and analysed by observational astronomy (visible, thermal, and radio), and different space missions. In this paper, we present a review of the multi-disciplinary research carried out by these different scientific communities in an effort to study SSSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html.

  2. More precisely the macroscopic porosity.

  3. Micro-porosity on the other hand is in the matrix of the grains or meteorites. Micro-porosity is a porosity that will survive entry in the atmosphere.

  4. Possibly including relativistic effects, but this is not relevant in this paper on small bodies.

  5. SpaceGrains ESA Topical Team from the European Space Agency https://spacegrains.org.

  6. Sizes, when not measured directly, are estimated from the absolute magnitude H and by assuming an albedo of 0.2.

References

  • Abe S, Mukai T, Hirata N, Barnouin-Jha OS, Cheng AF, Demura H, Gaskell RW, Hashimoto T, Hiraoka K, Honda T et al (2006) Mass and local topography measurements of Itokawa by Hayabusa. Science 312(5778):1344–1347

    Article  ADS  Google Scholar 

  • Agnolin I, Roux JN (2007a) Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys Rev E 76(6):061302

  • Agnolin I, Roux JN (2007b) Internal states of model isotropic granular packings III. Elastic properties. Phys Rev E Stat Nonlin Soft Matter Phys 76:061304

  • Ahrens TJ, Harris AW (1992) Deflection and fragmentation of near-Earth asteroids. Nature 360(6403):429–433

    Article  ADS  Google Scholar 

  • Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. https://doi.org/10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  • Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459–466. https://doi.org/10.1063/1.1730376

    Article  ADS  MathSciNet  Google Scholar 

  • Alder BJ, Wainwright TE (1960) Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J Chem Phys 33(5):1439–1451. https://doi.org/10.1063/1.1731425

  • Andert T, Rosenblatt P, Pätzold M, Häusler B, Dehant V, Tyler G, Marty J (2010) Precise mass determination and the nature of Phobos. Geophys Res Lett 37(9):L09202

    Article  ADS  Google Scholar 

  • Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78:641

    Article  ADS  Google Scholar 

  • Asphaug E (2009) Growth and evolution of asteroids. Annu Rev Earth Planet Sci 37:413–448

    Article  ADS  Google Scholar 

  • Asphaug E, Ostro SJ, Hudson R, Scheeres DJ, Benz W (1998) Disruption of kilometre-sized asteroids by energetic collisions. Nature 393(6684):437

    Article  ADS  Google Scholar 

  • Asphaug E, Ryan EV, Zuber MT (2002) Asteroid interiors. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 463–484

    Google Scholar 

  • Azéma E, Sánchez P, Scheeres DJ (2018) Scaling behavior of cohesive self-gravitating aggregates. Phys Rev E 98:030901. https://doi.org/10.1103/PhysRevE.98.030901

    Article  ADS  Google Scholar 

  • Azéma E, Estrada N, Preechawuttipong I, Delenne JY, Radjai F (2017) Systematic description of the effect of particle shape on the strength properties of granular media. EPJ Web Conf 140:06026. https://doi.org/10.1051/epjconf/201714006026

    Article  Google Scholar 

  • Baer J, Chesley SR (2017) Simultaneous mass determination for gravitationally coupled asteroids. Astron J 154(2):76

    Article  ADS  Google Scholar 

  • Bagatin AC, Petit JM, Farinella P (2001) How many rubble piles are in the asteroid belt? Icarus 149(1):198–209

    Article  ADS  Google Scholar 

  • Ballouz R (2017) Numerical simulations of granular physics in the solar system. Ph.D. thesis, University of Maryland, College Park

  • Ballouz RL, Richardson DC, Michel P, Schwartz SR, Yu Y (2015) Numerical simulations of collisional disruption of rotating gravitational aggregates: dependence on material properties. Planet Space Sci 107:29–35

    Article  ADS  Google Scholar 

  • Bancelin D, Pilat-Lohinger E, Maindl TI, Ragossnig F, Schäfer C (2017) The influence of orbital resonances on the water transport to objects in the circumprimary habitable zone of binary star systems. Astron J 153(6):269

    Article  ADS  Google Scholar 

  • Bardyn A, Baklouti D, Cottin H, Fray N, Briois C, Paquette J, Stenzel O, Engrand C, Fischer H, Hornung K et al (2017) Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. Mon Not R Astron Soc 469(Suppl 2):S712–S722

    Article  Google Scholar 

  • Barnes J, Hut P (1986) A hierarchical \(\text{ O }(N \log N)\) force-calculation algorithm. Nature 324:446–449. https://doi.org/10.1038/324446a0

    Article  ADS  Google Scholar 

  • Belskaya I, Cellino A, Gil-Hutton R, Muinonen K, Shkuratov Y (2015) Asteroid polarimetry. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 151–163

    Google Scholar 

  • Ben-Naim E, Knight J, Nowak E, Jaeger H, Nagel S (1998) Slow relaxation in granular compaction. Phys D 123(1–4):380–385

    Article  Google Scholar 

  • Benner LAM, Busch MW, Giorgini JD, Taylor PA, Margot JL (2015) Radar observations of near-Earth and main-belt asteroids. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 165–182. https://doi.org/10.2458/azu_uapress_9780816532131-ch009

  • Binzel RP, Gehrels T, Matthews MS (eds) (1989) Asteroids II. University of Arizona Press, Tucson

    Google Scholar 

  • Biele J, Kesseler L, Grimm CD, Schröder S, Mierheim O, Lange M, Ho TM (2017) Experimental determination of the structural coefficient of restitution of a bouncing asteroid lander. arXiv:1705.00701

  • Binzel RP, Morbidelli A, Merouane S, DeMeo FE, Birlan M, Vernazza P, Thomas CA, Rivkin AS, Bus SJ, Tokunaga AT (2010) Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463(7279):331

    Article  ADS  Google Scholar 

  • Board SS, Council NR et al (2010) Defending planet earth: near-Earth-object surveys and hazard mitigation strategies. National Academies Press, Washington

    Google Scholar 

  • Bockelée-Morvan D, Gil-Hutton R, Hestroffer D, Belskaya IN, Davidsson BJ, Dotto E, Fitzsimmons A, Kawakita H, Mothe-Diniz T, Licandro J et al (2016) Division F Commission 15: Physical study of comets and minor planets. Proc IAU 11(T29A):316–339

    Article  Google Scholar 

  • Bottke WF Jr, Cellino A, Paolicchi P, Binzel RP (eds) (2002) Asteroids III. University of Arizona Press, Tucson

    Google Scholar 

  • Bottke WF Jr, Durda DD, Nesvornỳ D, Jedicke R, Morbidelli A, Vokrouhlickỳ D, Levison H (2005) The fossilized size distribution of the main asteroid belt. Icarus 175(1):111–140

    Article  ADS  Google Scholar 

  • Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38(11):125

    Article  Google Scholar 

  • Braga-Ribas F, Sicardy B, Ortiz J, Snodgrass C, Roques F, Vieira-Martins R, Camargo J, Assafin M, Duffard R, Jehin E et al (2014) A ring system detected around the Centaur (10199) Chariklo. Nature 508(7494):72

    Article  ADS  Google Scholar 

  • Brian Dade W, Huppert HE (1998) Long-runout rockfalls. Geology 26(9):803–806

    Article  ADS  Google Scholar 

  • Brilliantov NV, Pöschel T (2010) Kinetic theory of granular gases. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Brilliantov NV, Formella A, Pöschel T (2018) Increasing temperature of cooling granular gases. Nat Commun 9:797

    Article  ADS  Google Scholar 

  • Brisset J, Heißelmann D, Kothe S, Weidling R, Blum J (2016) Submillimetre-sized dust aggregate collision and growth properties. experimental study of a multi-particle system on a suborbital rocket. Astron Astrophys 593:A3

  • Brisset J, Heißelmann D, Kothe S, Weidling R, Blum J (2017) Low-velocity collision behaviour of clusters composed of sub-millimetre sized dust aggregates. Astron Astrophys 603:A66

    Article  ADS  Google Scholar 

  • Britt DT, Consolmagno GJ (2001) Modeling the structure of high porosity asteroids. Icarus 152(1):134–139

    Article  ADS  Google Scholar 

  • Britt DT, Yeomans D, Housen K, Consolmagno G (2002) Asteroid density, porosity, and structure. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 485–500

    Google Scholar 

  • Burtally N, King PJ, Swift MR (2002) Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science 295(5561):1877–1879. https://doi.org/10.1126/science.1066850

    Article  ADS  Google Scholar 

  • Busch MW, Ostro SJ, Benner LAM, Brozovic M, Giorgini JD, Jao JS, Scheeres DJ, Magri C, Nolan MC, Howell ES, Taylor PA, Margot JL, Brisken W (2011) Radar observations and the shape of near-Earth asteroid 2008 EV5. Icarus 212:649–660. https://doi.org/10.1016/j.icarus.2011.01.013. arXiv:1101.3794

    Article  ADS  Google Scholar 

  • Butcher JC (2016) Numerical methods for ordinary differential equations. Wiley, New York

    Book  MATH  Google Scholar 

  • Campins H, Hargrove K, Pinilla-Alonso N, Howell ES, Kelley MS, Licandro J, Mothé-Diniz T, Fernández Y, Ziffer J (2010) Water ice and organics on the surface of the asteroid 24 Themis. Nature 464(7293):1320

    Article  ADS  Google Scholar 

  • Campo Bagatin A, Alemañ RA, Benavidez PG, Richardson DC (2018a) Gravitational re-accumulation as the origin of most contact binaries and other small body shapes. Icarus 302:343–359. https://doi.org/10.1016/j.icarus.2017.11.024

    Article  ADS  Google Scholar 

  • Campo Bagatin A, Alemañ RA, Benavidez PG, Richardson DC (2018b) Internal structure of asteroid gravitational aggregates. Icarus 302:343–359

    Article  ADS  Google Scholar 

  • Cantelaube F, Bideau D (1995) Radial segregation in a 2d drum: an experimental analysis. Europhy Lett 30:3

    Article  Google Scholar 

  • Caps H, Michel R, Lecoq N, Vandewalle N (2003) Long lasting instabilities in granular mixtures. Phys A 326:313

    Article  Google Scholar 

  • Carry B (2012) Density of asteroids. Planet Space Sci 73(1):98–118

    Article  ADS  Google Scholar 

  • Cattuto C, Marconi UMB (2004) Ordering phenomena in cooling granular mixtures. Phys Rev Lett 92:174502

    Article  ADS  Google Scholar 

  • Chamberlin A (2018) NEO discovery statistics. http://neo.jpl.nasa.gov/stats. Accessed July 2018

  • Chapman C (1977) The evolution of asteroids as meteorite parent-bodies. Comets, asteroids, meteorites: interrelations, evolution and origins. IAU Colloq 39:265–275

    ADS  Google Scholar 

  • Chapman C, Veverka J, Thomas P, Klaasen K, Belton M, Harch A, McEwen A, Johnson T, Helfenstein P, Davies M et al (1995) Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida. Nature 374(6525):783–785

    Article  ADS  Google Scholar 

  • Cheng AF, Izenberg N, Chapman CR, Zuber MT (2002) Ponded deposits on asteroid 433 Eros. Meteorit Planet Sci 37:1095–1105. https://doi.org/10.1111/j.1945-5100.2002.tb00880.x

    Article  ADS  Google Scholar 

  • Cheng AF, Michel P, Jutzi M, Rivkin AS, Stickle A, Barnouin O, Ernst C, Atchison J, Pravec P, Richardson DC et al (2016) Asteroid impact and deflection assessment mission: kinetic impactor. Planet Space Sci 121:27–35

    Article  ADS  Google Scholar 

  • Chujo T, Mori O, Kawaguchi J, Yano H (2017) Categorization of Brazil nut effect and its reverse under less-convective conditions for microgravity geology. Mon Not R Astron Soc 474(4):4447–4459

    Article  ADS  Google Scholar 

  • Cizeau P, Makse HA, Stanley HE (1999) Mechanisms of granular spontaneous stratification and segregation in two-dimensional silos. Phys Rev E 59:4408

    Article  ADS  Google Scholar 

  • Cleary PW, Sawley ML (2002) DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 26:89–111

    Article  MATH  Google Scholar 

  • Clement E, Rajchenbach J, Duran J (1995) Mixing of a granular material in a bidimensional rotating drum. Europhy Lett 30:1

    Article  ADS  Google Scholar 

  • Coulomb CA (1776) Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mémoires de l’Académie Royale des Sciences 7:343–382

  • Comito C (2012) Numerical \(N\)-body approach to binary asteroid formation and evolution. Ph.D. thesis, Università degli studi di Torino; Université Nice Sophia Antipolis

  • Comito C, Thirouin A, Campo Bagatin A, Tanga P, Ortiz JL, Richardson DC (2011) Deformation and splitting of asteroids by YORP spin-up. In: EPSC-DPS joint meeting 2011, p 420

  • Cotto-Figueroa D, Statler TS, Richardson DC, Tanga P (2015) Coupled spin and shape evolution of small rubble-pile asteroids: self-limitation of the YORP effect. Astrophys J 803(1):25

    Article  ADS  Google Scholar 

  • Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Daniels KE (2013) Rubble-pile near Earth objects: insights from granular physics. In: Badescu V (ed) Asteroids: prospective energy and material resources. Springer, Berlin, Heidelberg, pp 271–286. https://doi.org/10.1007/978-3-642-39244-3_11

  • Delbo M, Mueller M, Emery JP, Rozitis B, Capria MT (2015) Asteroid thermophysical modeling. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 107–128

    Google Scholar 

  • DeMeo F, Alexander C, Walsh K, Chapman C, Binzel R (2015) The compositional structure of the asteroid belt. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 13–41. https://doi.org/10.2458/azu_uapress_9780816532131-ch002

  • Dijksman JA, Rietz F, Lõrincz KA, van Hecke M, Losert W (2012) Invited article: refractive index matched scanning of dense granular materials. Rev Sci Instrum 83(1):011301. https://doi.org/10.1063/1.3674173

    Article  ADS  Google Scholar 

  • Dobrovolskis AR (1982) Internal stresses in Phobos and other triaxial bodies. Icarus 52(1):136–148

    Article  ADS  Google Scholar 

  • Dohnanyi JS (1969) Collisional model of asteroids and their debris. J Geophys Res 74(10):2531–2554

    Article  ADS  Google Scholar 

  • Donev A, Cisse I, Dand Sachs EA, Variano Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993

    Article  ADS  Google Scholar 

  • Dove A, Anderson S, Gomer G, Fraser M, John K, Fries M (2018) Regolith stratification and migration in an asteroid-like environment. Lunar Planet Sci Conf 49:2993

    ADS  Google Scholar 

  • Drube L, Harris AW, Engel K, Falke A, Johann U, Eggl S, Cano JL, Ávila JM, Schwartz SR, Michel P (2016) The NEOT\(\omega \)IST mission (Near-Earth Object Transfer of angular momentum spin test). Acta Astronaut 127:103–111. https://doi.org/10.1016/j.actaastro.2016.05.009

    Article  ADS  Google Scholar 

  • Durda DD, Bagatin AC, Alemañ RA, Flynn GJ, Strait MM, Clayton AN, Patmore EB (2015) The shapes of fragments from catastrophic disruption events: effects of target shape and impact speed. Planet Space Sci 107:77–83. https://doi.org/10.1016/j.pss.2014.10.006 (VIII workshop on catastrophic disruption in the solar system)

  • Durech J, Carry B, Delbo M, Kaasalainen M, Viikinkoski M (2015) Asteroid models from multiple data sources. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 183–202. https://doi.org/10.2458/azu_uapress_9780816532131-ch010

  • Dziugys A, Navakas R (2009) The role of friction in mixing and segregation of granular material. Granul Matter 11:403–416

    Article  MATH  Google Scholar 

  • Eggl S, Hestroffer D, Thuillot W, Bancelin D, Cano JL, Cichocki F (2015) Post mitigation impact risk analysis for asteroid deflection demonstration missions. Adv Space Res 56:528–548. https://doi.org/10.1016/j.asr.2015.02.030

    Article  ADS  Google Scholar 

  • Eggl S, Hestroffer D, Cano JL, Ávila JM, Drube L, Harris AW, Falke A, Johann U, Engel K, Schwartz SR, Michel P (2016) Dealing with uncertainties in asteroid deflection demonstration missions: NEOT\(\omega \)IST. In: Chesley SR, Morbidelli A, Jedicke R, Farnocchia D (eds) IAU symposium, vol 318, pp 231–238, https://doi.org/10.1017/S1743921315008698. arXiv:1601.02103

  • Falcon E, Wunenburger R, Evesque P, Fauve S, Chabot C, Garrabos Y, Beysens D (1999) Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys Rev Lett 83:440

    Article  ADS  Google Scholar 

  • Falcon E, Bacri JC, Laroche C (2013) Equation of state of a granular gas homogeneously driven by particle rotations. Europhys Lett 103(64):004

    Google Scholar 

  • Fall A, Weber B, Pakpour M, Lenoir N, Shahidzadeh N, Fiscina J, Wagner C, Bonn D (2014) Sliding friction on wet and dry sand. Phys Rev Lett 112(175):502. https://doi.org/10.1103/PhysRevLett.112.175502

    Article  Google Scholar 

  • Fan Y, Boukerkour Y, Blanc T, Umbanhowar P, Ottino JM, Lueptow RM (2012) Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps. Phys Rev E 86(051):305

    Google Scholar 

  • Faraday M (1831) On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos Trans R Soc London 121:299–340. http://www.jstor.org/stable/107936

  • Farinella P, Paolicchi P, Tedesco E, Zappala V (1981) Triaxial equilibrium ellipsoids among the asteroids? Icarus 46(1):114–123

    Article  ADS  Google Scholar 

  • Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet Sci Lett 221(1–4):197–213

    Article  ADS  Google Scholar 

  • Ferellec JF, McDowell GR (2010) A method to model realistic particle shape and inertia in DEM. Granul Matter 12:459–467

    Article  MATH  Google Scholar 

  • Festou M, Keller HU, Weaver HA (2004) Comets II. University of Arizona Press, Tucson

    Google Scholar 

  • Finger T, von Rüling F, Lévay S, Szabó B, Börzsönyi T, Stannarius R (2016) Segregation of granular mixtures in a spherical tumbler. Phys Rev E 93:032903

    Article  ADS  Google Scholar 

  • Fischer D, Finger T, Angenstein F, Stannarius R (2009) Diffusive and subdiffusive axial transport of granular material in rotating mixers. Phys Rev E 80:061302

    Article  ADS  Google Scholar 

  • Fries M, Abell P, Brisset J, Britt D, Colwell J, Dove A, Durda D, Graham L, Hartzell C, Hrovat K, John K, Karrer D, Leonard M, Love S, Morgan J, Poppin J, Rodriguez V, Sánchez-Lana P, Scheeres D, Whizin A (2018) The Strata-1 experiment on small body regolith segregation. Acta Astronaut 142:87–94. https://doi.org/10.1016/j.actaastro.2017.10.025

    Article  ADS  Google Scholar 

  • Fries M, Abell P, Brisset J, Britt D, Colwell J, Durda D, Dove A, Graham L, Hartzell C, John K, Leonard M, Love S, Sánchez DP, Scheeres DJ (2016) Strata-1: an international space station experiment into fundamental regolith properties in microgravity. In: Lunar and planetary science conference, LPI contributions, vol 1903, p 2799

  • Fujiwara A, Kawaguchi J, Yeomans D, Abe M, Mukai T, Okada T, Saito J, Yano H, Yoshikawa M, Scheeres D et al (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312(5778):1330–1334

    Article  ADS  Google Scholar 

  • Gaia-Collaboration Spoto F, Tanga P, Mignard F, Berthier J, Carry B, Cellino A (2018) Gaia data release 2: observations of solar system objects. Astron Astrophys 616:A13. https://doi.org/10.1051/0004-6361/201832900

    Article  Google Scholar 

  • Galache J, Graps A, Asime 2016 Contributors (2017) ASIME 2016 white paper: answers to questions from the asteroid miners. In: European planetary science congress, vol 11, p 985

  • Gao Z, Zhao J, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38:370–390

    Article  Google Scholar 

  • Garcimartin A, Maza D, Ilquimiche JL, Zuriguel I (2002) Convective motion in a vibrated granular layer. Phys Rev E 65:031303

    Article  ADS  Google Scholar 

  • Gehrels T, Matthews MS (eds) (1979) Asteroids. University of Arizona Press, Tucson

    Google Scholar 

  • Gehrels T, Drummond J, Levenson N (1987) The absence of satellites of asteroids. Icarus 70(2):257–263

    Article  ADS  Google Scholar 

  • Godoy S, Risso D, Soto R, Cordero P (2008) Rise of a Brazil nut: a transition line. Phys Rev E 78:031301

    Article  ADS  Google Scholar 

  • Goldhirsch I, Zanetti G (1993) Clustering instability in dissipative gases. Phys Rev Lett 70:1619

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine S (1978) The velocity dispersion in Saturn’s rings. Icarus 34(2):227–239

    Article  ADS  Google Scholar 

  • Gray JNMT, Ancey C (2011) Multi-component particle size-segregation in shallow granular avalanches. J Fluid Mech 678:535–558

    Article  ADS  MATH  Google Scholar 

  • Gray JNMT, Thornton AR (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc R Soc Lond Ser A 461:1447

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348. https://doi.org/10.1016/0021-9991(87)90140-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guillard F, Forterre Y, Pouliquen O (2014) Lift forces in granular media. Phys Fluids 26(4):043301

    Article  ADS  Google Scholar 

  • Gundlach B, Blum G (2013) A new method to determine the grain size of planetary regolith. Icarus 223:479–492

    Article  ADS  Google Scholar 

  • Güttler C, von Borstel I, Schräpler R, Blum J (2013) Granular convection and the Brazil nut effect in reduced gravity. Phys Rev E 87:044201

    Article  ADS  Google Scholar 

  • Haff P (1983) Grain flow as a fluid-mechanical phenomenon. J Fluid Mech 134:401–430

    Article  ADS  MATH  Google Scholar 

  • Hajra SK, Khakhar DV (2011) Radial segregation of ternary granular mixtures in rotating cylinders. Granul Matter 13(4):475–486

    Article  Google Scholar 

  • Harrington M, Weijs JH, Losert W (2013) Suppression and emergence of granular segregation under cyclic shear. Phys Rev Lett 111:078001. https://doi.org/10.1103/PhysRevLett.111.078001

    Article  ADS  Google Scholar 

  • Harrington M, Lin M, Nordstrom KN, Losert W (2014) Experimental measurements of orientation and rotation of dense 3D packings of spheres. Granul Matter 16(2):185–191. https://doi.org/10.1007/s10035-013-0474-0

    Article  Google Scholar 

  • Harris AW (1996) The rotation rates of very small asteroids: evidence for ‘rubble pile’ structure. In: Lunar and planetary science conference, vol 27

  • Harris AW, Lagerros JS (2002) Asteroids in the thermal infrared. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson

    Google Scholar 

  • Harris AW, Fahnestock EG, Pravec P (2009) On the shapes and spins of ‘rubble pile’ asteroids. Icarus 199(2):310–318

    Article  ADS  Google Scholar 

  • Harris A, Barucci M, Cano J, Fitzsimmons A, Fulchignoni M, Green S, Hestroffer D, Lappas V, Lork W, Michel P et al (2013) The European Union funded NEOShield project: a global approach to near-Earth object impact threat mitigation. Acta Astronaut 90(1):80–84

    Article  ADS  Google Scholar 

  • Harth K, Kornek U, Trittel T, Strachauer U, Höme S, Will K, Stannarius R (2013) Granular gases of rod-shaped grains in microgravity. Phys Rev Lett 110:144102

    Article  ADS  Google Scholar 

  • Harthong B, Jérier JF, Dorémus P, Imbault D, Donzé FV (2009) Modeling of high-density compaction of granular materials by the discrete element method. Int J Solids Struct 46(18):3357–3364

    Article  MATH  Google Scholar 

  • Hartzell C, Carter D (2017) Electrostatic forces on grains near asteroids and comets. In: EPJ web conference, EDP sciences, vol 140, p 14009

  • Heisselmann D, Blum J, Fraser HJ, Wolling K (2010) Microgravity experiments on the collisional behavior of Saturnian ring particles. Icarus 206:424–430

    Article  ADS  Google Scholar 

  • Henych T, Holsapple KA (2018) Interpretations of family size distributions: the Datura example. Icarus 304:127–134. https://doi.org/10.1016/j.icarus.2017.05.018

    Article  ADS  Google Scholar 

  • Herique A, Agnus B, Asphaug E, Barucci A, Beck P, Bellerose J, Biele J, Bonal L et al (2018) Direct observations of asteroid interior and regolith structure: science measurement requirements. Adv Space Res 62:2141–2162. https://doi.org/10.1016/j.asr.2017.10.020

    Article  ADS  Google Scholar 

  • Hernquist L (1987) Performance characteristics of tree codes. Astrophys J Suppl Ser 64:715–734. https://doi.org/10.1086/191215

    Article  ADS  Google Scholar 

  • Herrmann H, Luding S (1998) Modeling granular media on the computer. Contin Mech Thermodyn 10:189–231. https://doi.org/10.1007/s001610050089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hestroffer D (1998) Photocentre displacement of minor planets: analysis of Hipparcos astrometry. Astron Astrophys 336:776–781

    ADS  Google Scholar 

  • Hestroffer D, Dell’Oro A, Cellino A, Tanga P (2010) The Gaia mission and the asteroids. In: Souchay JJ, Dvorak R (eds) Dynamics of small solar system bodies and exoplanets. Springer, Berlin, pp 251–340. https://doi.org/10.2458/azu_uapress_9780816532131-ch012

  • Hestroffer D, Agnan M, Segret B, Quinsac G, Vannitsen J, Rosenblatt P, Miau JJ (2017a) BIRDY—interplanetary CubeSat for planetary geodesy of small solar system bodies (SSSB). In: AGU fall meeting abstracts

  • Hestroffer D, Bagatín AC, Losert W, Opsomer E, Sánchez P, Scheeres DJ, Staron L, Taberlet N, Yano H, Eggl S et al (2017b) Small solar system bodies as granular systems. EPJ Web Conf 140:14011. https://doi.org/10.105epjconf/201714014011

  • Hill KM, Gioia G, Amaravadi D (2004) Radial segregation patterns in rotating granular mixtures: waviness selection. Phys Rev Lett 93:224301

    Article  ADS  Google Scholar 

  • Hilton JL (2002) Asteroid masses and densities. In: Bottke WF Jr, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 103–112

    Google Scholar 

  • Hirabayashi M (2014) Structural failure of two-density-layer cohesionless biaxial ellipsoids. Icarus 236:178–180. https://doi.org/10.1016/j.icarus.2014.02.024

    Article  ADS  Google Scholar 

  • Hirabayashi M, Scheeres DJ (2014) Analysis of asteroid (216) Kleopatra using dynamical and structural constraints. Astrophys J 780(2):160

    Article  ADS  Google Scholar 

  • Hirabayashi M, Scheeres DJ (2015) Stress and failure analysis of rapidly rotating asteroid (29075) 1950DA. Astrophys J Lett 798(1):L8

    Article  ADS  Google Scholar 

  • Hirabayashi M, Scheeres DJ, Sánchez DP, Gabriel T (2014) Constraints on the Physical properties of main belt comet P/2013 R3 from its breakup event. Astrophys J Lett 789(1):L12

    Article  ADS  Google Scholar 

  • Hirabayashi M, Sánchez DP, Scheeres DJ (2015) Internal structure of asteroids having surface shedding due to rotational instability. Astrophys J 808(1):63

    Article  ADS  Google Scholar 

  • Hirabayashi M, Scheeres DJ, Chesley SR, Marchi S, McMahon JW, Steckloff J, Mottola S, Naidu SP, Bowling T (2016) Fission and reconfiguration of bilobate comets as revealed by 67P/Churyumov-Gerasimenko. Nature 534(7607):352

    Article  ADS  Google Scholar 

  • Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Holsapple KA (2001) Equilibrium configurations of solid cohesionless bodies. Icarus 154(2):432–448. https://doi.org/10.1006/icar.2001.6683

    Article  ADS  Google Scholar 

  • Holsapple KA (2004) Equilibrium figures of spinning bodies with self-gravity. Icarus 172:272–303. https://doi.org/10.1016/j.icarus.2004.05.023

    Article  ADS  Google Scholar 

  • Holsapple KA (2007) Spin limits of solar system bodies: from the small fast-rotators to 2003 EL61. Icarus 187(2):500–509. https://doi.org/10.1016/j.icarus.2006.08.012

    Article  ADS  MathSciNet  Google Scholar 

  • Holsapple K, Giblin I, Housen K, Nakamura A, Ryan E (2002) Asteroid impacts: laboratory experiments and scaling laws. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 443–462

    Google Scholar 

  • Hong DC, Quinn PV, Luding S (2001) Reverse brazil nut problem: competition between percolation and condensation. Phys Rev Lett 86:15

    Article  Google Scholar 

  • Hou M, Liu R, Zhai G, Sun Z, Lu K, Garrabos Y, Evesque P (2008) Velocity distribution of vibration-driven granular gas in Knudsen regime in microgravity. Microgravity Sci Technol 20:73–80

    Article  ADS  Google Scholar 

  • Hsieh HH, Jewitt D (2006) A population of comets in the main asteroid belt. Science 312(5773):561–563

    Article  ADS  Google Scholar 

  • Huerta DA, Ruiz-Suarez JC (2004) Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys Rev Lett 92:11

    Article  Google Scholar 

  • Hut P, Makino J, McMillan S (1995) Building a better leapfrog. Astrophys J 443:L93–L96

    Article  ADS  Google Scholar 

  • Jacobson SA, Scheeres DJ (2011) Dynamics of rotationally fissioned asteroids: source of observed small asteroid systems. Icarus 214:161–178. https://doi.org/10.1016/j.icarus.2011.04.009

    Article  ADS  Google Scholar 

  • Jacobson R, Spitale J, Porco C, Beurle K, Cooper N, Evans M, Murray C (2007) Revised orbits of Saturn’s small inner satellites. Astron J 135(1):261

    Article  ADS  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996a) Granular solids, liquids, and gases. Rev Mod Phys 68:1259–1273. https://doi.org/10.1103/RevModPhys.68.1259

    Article  ADS  Google Scholar 

  • Jaeger HM, Nagel SR, Behringer RP (1996b) The physics of granular materials. Phys Today 49(4):32–38

    Article  Google Scholar 

  • Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jenkins J, Richman M (1985) Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys Fluids 28(12):3485–3494

    Article  ADS  MATH  Google Scholar 

  • Jenkins JT, Savage SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 130:187–202

    Article  ADS  MATH  Google Scholar 

  • Jewitt D (2009) The active centaurs. Astron J 137:4296–4312. https://doi.org/10.1088/0004-6256/137/5/4296

    Article  ADS  Google Scholar 

  • Jewitt D, Agarwal J, Weaver H, Mutchler M, Larson S (2013) The extraordinary multi-tailed main-belt comet P/2013 P5. Astrophys J Lett 778(1):L21

    Article  ADS  Google Scholar 

  • Jewitt D, Agarwal J, Li J, Weaver H, Mutchler M, Larson S (2014) Disintegrating asteroid P/2013 R3. Astrophys J Lett 784(1):L8

    Article  ADS  Google Scholar 

  • Jewitt D, Hsieh H, Agarwal J (2015) The active asteroids. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV. University of Arizona Press, Tucson, pp 221–241. https://doi.org/10.2458/azu_uapress_9780816532131-ch012

  • John KK, Saucedo VL, Fisher KR, Fries MD, Dove AR, Leonard MJ, Graham LD, Abell PA (2018) Hermes microgravity research facility on the ISS. In: Lunar and planetary science conference, vol 49, p 1790

  • Jones R, Chesley S, Connolly A, Harris A, Ivezic Z, Knezevic Z, Kubica J, Milani A, Trilling D, Collaboration LSSS et al (2009) Solar System science with LSST. Earth Moon Planets 105(2–4):101–105

    Article  ADS  Google Scholar 

  • Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727

    Article  ADS  MATH  Google Scholar 

  • Jutzi M, Michel P (2014) Hypervelocity impacts on asteroids and momentum transfer I. Numerical simulations using porous targets. Icarus 229:247–253

    Google Scholar 

  • Jutzi M, Michel P, Benz W, Richardson DC (2010) Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207(1):54–65. https://doi.org/10.1016/j.icarus.2009.11.016

    Article  ADS  Google Scholar 

  • Kaasalainen M, Torppa J (2001) Optimization methods for asteroid lightcurve inversion. I. Shape determination. Icarus 153:24–36

    Google Scholar 

  • Kaasalainen M, Torppa J, Muinonen K (2001) Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem. Icarus 153:37–51

    Google Scholar 

  • Kaasalainen M, Mottola S, Fulchignoni M (2002) Asteroid models from disk-integrated data. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 139–150

    Google Scholar 

  • Kay JP, Dombard AJ (2018) Formation of the bulge of Iapetus through long-wavelength folding of the lithosphere. Icarus 302:237–244

    Article  ADS  Google Scholar 

  • Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J Geophys Res 116:B08209. https://doi.org/10.1029/2010JB007622

    Article  ADS  Google Scholar 

  • Kerr RA (1985) Could an asteroid be a comet in disguise; two asteroids of the inner solar system are strong candidates for once-active comets that now masquerade as inert hunks of rock. Science 227:930–932

    Article  ADS  Google Scholar 

  • Khakhar DV, McCarthy J, Shinbrot T, Ottino JM (1997) Radial segregation of granular mixtures in rotating cylinders. Phys Fluids 9:3600

    Article  ADS  Google Scholar 

  • Khakhar DV, Orpe VA, Hajra SK (2003) Segregation of granular materials in rotating cylinders. Phys A 318:126

    Article  Google Scholar 

  • Kim T, Nam J, Yun J, Lee K, You S, (2009) Relationship between cohesion and tensile strength in wet sand at low normal stresses. In: Proceedings of 17th international conference on soil mechanics and geotechnical engineering, Olexandria, (2009) vol 367. JOS Press, Amsterdam, Berlin, Tokyo, Washington, p 364

  • Klypin A (2017) Methods for cosmological \(N\)-body simulations. http://www.skiesanduniverses.org/resources/KlypinNbody.pdf. Accessed July 2018

  • Knight JB, Jaeger HM, Nagel S (1993) Vibration-induced size separation in granular media: the convection connection. Phys Rev Lett 70:24

    Article  Google Scholar 

  • Koeppe JP, Enz M, Kakalios J (1998) Phase diagram for avalanche stratification of granular media. Phys Rev E 58:R4104

    Article  ADS  Google Scholar 

  • Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Progr Phys 75(10):106901

    Article  ADS  Google Scholar 

  • Konopliv AS, Miller JK, Owen WM, Yeomans DK, Giorgini JD, Garmier R, Barriot JP (2002) A global solution for the gravity field, rotation, landmarks, and ephemeris of Eros. Icarus 160(2):289–299

    Article  ADS  Google Scholar 

  • Kou B, Cao Y, Li J, Xia C, Li Z, Dong H, Zhang A, Zhang J, Kob W, Wang Y (2017) Granular materials flow like complex fluids. Nature 551(7680):360

    Article  ADS  Google Scholar 

  • Kudrolli A (2004a) Size separation in vibrated granular matter. Rep Progr Phys 67(3):209

    Article  ADS  Google Scholar 

  • Kudrolli A (2004b) Size separation in vibrated granular matter. Rep Progr Phys 67:209

    Article  ADS  Google Scholar 

  • Lagrée PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a \(\mu \) (I)-rheology. J Fluid Mech 686:378–408

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Landau LD, Lifshitz E (1986) Theory of elasticity, course of theoretical physics, vol 7. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Lauretta DS, Team Osiris-Rex et al (2019) The unexpected surface of asteroid (101955) Bennu. Nature 568(7750):55–60. https://doi.org/10.1038/s41586-019-1033-6

    Article  ADS  Google Scholar 

  • Leconte M, Garrabos Y, Falcon E, Lecoutre-Chabot C, Palencia F, Evesque P, Beysens D (2006) Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics. J Stat Mech 7:07012

    Article  MATH  Google Scholar 

  • Lee V, Waitukaitis SR, Miskin MZ, Jaeger HM (2015) Direct observation of particle interactions and clustering in charged granular streams. Nat Phys 11:733–737

    Article  Google Scholar 

  • Leinhardt ZM, Richardson DC, Quinn T (2000) Direct N-body simulations of rubble pile collisions. Icarus 146:133–151. https://doi.org/10.1006/icar.2000.6370. arXiv:astro-ph/9908221

    Article  ADS  Google Scholar 

  • Levasseur-Regourd AC, Rotundi A, Bentley M, Della Corte V, Fulle M, Hadamcik E, Hilchenbach M, Hines D, Lasue J, Merouane S, et al (2015) Physical properties of dust particles in cometary comae: from clues to evidence with the Rosetta mission. In: European planetary science congress 2015, vol 10, p EPSC2015-932

  • Li JY, Helfenstein P, Buratti B, Takir D, Clark BE (2015) Asteroid photometry. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 129–150. https://doi.org/10.2458/azu_uapress_9780816532131-ch007

  • Liu AJ, Nagel SR (1998) Nonlinear dynamics: jamming is not just cool any more. Nature 396(6706):21–22

    Article  ADS  Google Scholar 

  • Liu C, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S, Narayan O, Witten TA (1995) Force fluctuations in bead packs. Science 269:513

    Article  ADS  Google Scholar 

  • Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele K, van der Hoef M, Kuipers H (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93:198003. https://doi.org/10.1103/PhysRevLett.93.198003

    Article  ADS  Google Scholar 

  • Losert W, Cooper DGW, Delour J, Kudrolli A, Gollub JP (1999) Velocity statistics in excited granular media. Chaos 9:682

    Article  ADS  MATH  Google Scholar 

  • Louge MY, Jenkins JT, Xu H, Arnarson BÖ (2002) Granular segregation in collisional shearing flows. In: Aref H, Phillips JW (eds) Mechanics for a New Millennium. Springer, Dordrecht, pp 239–252

    Chapter  Google Scholar 

  • Lu M, McDowell GR (2007) The importance of modelling ballast particle shape in the discrete element method. Granul Matter 9:69

    Article  Google Scholar 

  • Lu XP, Cellino A, Hestroffer D, Ip WH (2016) Cellinoid shape model for hipparcos data. Icarus 267:24–33

    Article  ADS  Google Scholar 

  • Lubachevsky BD (1991) How to simulate billiards and similar systems. J Comput Phys 94(2):255–283. https://doi.org/10.1016/0021-9991(91)90222-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5:3417

    Article  ADS  Google Scholar 

  • Lucchitta BK (1979) Landslides in Valles Marineris. Mars. J Geophys Res 84(B14):8097–8113

    Article  ADS  Google Scholar 

  • Ludewig F, Vandewalle N (2012) Strong interlocking of nonconvex particles in random packings. Phys Rev E 85:051307

    Article  ADS  Google Scholar 

  • Maaß CC, Isert N, Maret G, Aegerter CM (2008) Experimental investigation of the freely cooling granular gas. Phys Rev Lett 100:248001

    Article  ADS  Google Scholar 

  • Makse HA (1999) Continuous avalanche segregation of granular mixtures in thin rotating drums. Phys Rev Lett 83:3186

    Article  ADS  Google Scholar 

  • Makse HA, Ball RC, Stanley HE, Warr S (1998) Dynamics of granular stratification. Phys Rev Lett 58:3357

    ADS  Google Scholar 

  • Marchis F, Hestroffer D, Descamps P, Berthier J, Bouchez AH, Campbell RD, Chin JC, Van Dam MA, Hartman SK, Johansson EM et al (2006) A low density of \(0.8\,\text{ g } \text{ cm }^{-3}\) for the Trojan binary asteroid 617 Patroclus. Nature 439(7076):565

  • Margot JL, Pravec P, Taylor P, Carry B, Jacobson S (2015) Asteroid systems: binaries, triples, and pairs. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 355–374

    Google Scholar 

  • Masiero JR, Grav T, Mainzer AK, Nugent CR, Bauer JM, Stevenson R, Sonnett S (2014) Main-belt Asteroids with WISE/NEOWISE: near-infrared Albedos. Astrophys J 791:121. https://doi.org/10.1088/0004-637X/791/2/121. arXiv:1406.6645

    Article  ADS  Google Scholar 

  • Masiero JR, Nugent C, Mainzer AK, Wright EL, Bauer JM, Cutri RM, Grav T, Kramer E, Sonnett S (2017) NEOWISE reactivation mission year three: asteroid diameters and albedos. Astron J 154(4):168

    Article  ADS  Google Scholar 

  • Matsumura S, Richardson DC, Michel P, Schwartz SR, Ballouz RL (2014) The Brazil nut effect and its application to asteroids. Mon Not R Astron Soc 443:3368–3380

    Article  ADS  Google Scholar 

  • Mattson W, Rice BM (1999) Near-neighbor calculations using a modified cell-linked list method. Comput Phys Commun 119(2–3):135–148

    Article  ADS  Google Scholar 

  • Maurel C, Ballouz RL, Richardson DC, Michel P, Schwartz SR (2017) Numerical simulations of oscillation-driven regolith motion: Brazil-nut effect. Mon Not R Astron Soc 464:2866–2881. https://doi.org/10.1093/mnras/stw2641

    Article  ADS  Google Scholar 

  • McCarthy DF, McCarthy DF (1977) Essentials of soil mechanics and foundations. Reston Publishing Company, Reston

    Google Scholar 

  • McMahon J, Scheeres D, Hesar S, Farnocchia D, Chesley S, Lauretta D (2018) The OSIRIS-REx radio science experiment at Bennu. Space Sci Rev 214(1):43. https://doi.org/10.1007/s11214-018-0480-y

    Article  ADS  Google Scholar 

  • McNamara S, Young WR (1994) Inelastic collapse in two dimensions. Phys Rev E 50:R28–R31. https://doi.org/10.1103/PhysRevE.50.R28

    Article  ADS  Google Scholar 

  • Meech KJ, Weryk R, Micheli M, Kleyna JT, Hainaut OR, Jedicke R, Wainscoat RJ, Chambers KC, Keane JV, Petric A et al (2017) A brief visit from a red and extremely elongated interstellar asteroid. Nature 552(7685):378

    Article  ADS  Google Scholar 

  • Mehta A (1994) Granular matter: an interdisciplinary approach. Springer, New York. https://doi.org/10.1007/978-1-4612-4290-1

    Article  Google Scholar 

  • Merline WJ, Close L, Dumas C, Chapman C, Roddier F, Menard F, Slater D, Duvert G, Shelton C, Morgan T (1999) Discovery of a moon orbiting the asteroid 45 Eugenia. Nature 401(6753):565

    Article  ADS  Google Scholar 

  • Merline WJ, Weidenschilling SJ, Durda DD, Margot JL, Pravec P, Storrs AD (2002) Asteroids do have satellites. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona, Tucson, pp 289–312

    Google Scholar 

  • Metzger MJ, Remy B, Glasser BJ (2011) All the Brazil nuts are not on top: vibration induced granular size segregation of binary, ternary and multi-sized mixtures. Powder Technol 205:42–51

    Article  Google Scholar 

  • Michel P, Richardson DC (2013) Collision and gravitational reaccumulation: possible formation mechanism of the asteroid Itokawa. Astron Astrophys 554:L1

    Article  ADS  Google Scholar 

  • Michel P, Benz W, Tanga P, Richardson DC (2001) Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294(5547):1696–1700

    Article  ADS  Google Scholar 

  • Michel P, Tanga P, Benz W, Richardson DC (2002) Formation of asteroid families by catastrophic disruption: simulations with fragmentation and gravitational reaccumulation. Icarus 160:10–23. https://doi.org/10.1006/icar.2002.6948

    Article  ADS  Google Scholar 

  • Michel P, Richardson DC, Durda DD, Jutzi M, Asphaug E (2015a) Collisional formation and modeling of asteroid families. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 341–354

    Chapter  Google Scholar 

  • Michel P, DeMeo FE, Bottke WF (eds) (2015b) Asteroids IV. University of Arizona Press, Tucson. https://doi.org/10.2458/azu_uapress_9780816532131

  • Michel P, Kueppers M, Sierks H, Carnelli I, Cheng AF, Mellab K, Granvik M, Kestilä A et al (2018) European component of the AIDA mission to a binary asteroid: characterization and interpretation of the impact of the DART mission. Adv Space Res 62:2261–2272. https://doi.org/10.1016/j.asr.2017.12.020

    Article  ADS  Google Scholar 

  • MiDi-GDR, (2004) On dense granular flows. Eur Phys J E 14:341–365. https://doi.org/10.1140/epje/i2003-10153-0

  • Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O, Cheng AF, Demura H, Gaskell RW, Hirata N, Ishiguro M, Michikami T, Nakamura AM, Nakamura R, Saito J, Sasaki S (2007) Regolith migration and sorting on asteroid Itokawa. Science. https://doi.org/10.1126/science.1134390

    Article  Google Scholar 

  • Möbius M, Lauderdale BE, Nagel SR, Jaeger HM (2001) Brazil-nut effect: size separation of granular particles. Nature 414:270

    Article  ADS  Google Scholar 

  • Morbidelli A, Chambers J, Lunine J, Petit JM, Robert F, Valsecchi G, Cyr K (2000) Source regions and timescales for the delivery of water to the Earth. Meteorit Planet Sci 35(6):1309–1320

    Article  ADS  Google Scholar 

  • Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A 13:93–114

    MathSciNet  MATH  Google Scholar 

  • Mouret S, Hestroffer D, Mignard F (2007) Asteroid masses and improvement with Gaia. Astron Astrophys 472:1017–1027. https://doi.org/10.1051/0004-6361:20077479

    Article  ADS  Google Scholar 

  • Movshovitz N, Asphaug E, Korycansky D (2012) Numerical modeling of the disruption of comet D/1993 F2 Shoemaker-Levy 9 representing the progenitor by a gravitationally bound assemblage of randomly shaped polyhedra. Astrophys J 759(2):93

    Article  ADS  Google Scholar 

  • Müller TG, Marciniak A, Kiss C, Duffard R, Alí-Lagoa V, Bartczak P, Butkiewicz-Ba̧k M, Dudziński G, et al (2018) Small bodies near and Far (SBNAF): a benchmark study on physical and thermal properties of small bodies in the solar system. Adv Space Res 62:2326–2341. https://doi.org/10.1016/j.asr.2017.10.018

  • Murdoch N, Michel P, Richardson DC, Nordstrom K, Berardi CR, Green SF, Losert W (2012) Numerical simulations of granular dynamics II: particle dynamics in a shaken granular material. Icarus 219(1):321–335

  • Murdoch N, Rozitis B, Green S, Lophem TL, Michel P, Losert W (2013a) Granular shear flow in varying gravitational environments. Granul Matter 15(2):129–137. https://doi.org/10.1007/s10035-013-0395-y

  • Murdoch N, Rozitis B, Green S, Michel P, de Lophem TL, Losert W (2013b) Simulating regoliths in microgravity. Mon Not R Astron Soc 433(1):506–514

    Article  ADS  Google Scholar 

  • Murdoch N, Rozitis B, Nordstrom K, Green S, Michel P, de Lophem T, Losert W (2013) Granular convection in microgravity. Phys Rev Lett 110(1):018307. https://doi.org/10.1103/PhysRevLett.110.018307

    Article  ADS  Google Scholar 

  • Murdoch N, Sánchez P, Schwartz SR, Miyamoto H (2015) Asteroid surface geophysics. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 767–792. https://doi.org/10.2458/azu_uapress_9780816532131-ch039

  • Murdoch N, Avila Martinez I, Sunday C, Zenou E, Cherrier O, Cadu A, Gourinat Y (2017a) An experimental study of low-velocity impacts into granular material in reduced gravity. Mon Not R Astron Soc 468(2):1259–1272

    ADS  Google Scholar 

  • Murdoch N, Hempel S, Pou L, Cadu A, Garcia RF, Mimoun D, Margerin L, Karatekin O (2017b) Probing the internal structure of the asteroid Didymoon with a passive seismic investigation. Planet Space Sci 144:89–105

    Article  ADS  Google Scholar 

  • Murdoch N, Cadu A, Mimoun D, Karatekin O, Garcia R, Carrasco J, Garcia de Quiros J, Vasseur H, Ritter B, Eubanks M, et al (2016) Investigating the surface and subsurface properties of the Didymos binary asteroid with a landed CubeSat. In: EGU general assembly conference abstracts, vol 18, p 12140

  • Neuffer D, Schultz R (2006) Mechanisms of slope failure in Valles Marineris. Mars. Q J Eng Geol Hydrogeol 39(3):227–240

    Article  Google Scholar 

  • Noirhomme M, Fand Ludewig N, Vandewalle Opsomer E (2017) Cluster growth in driven granular gases. Phys Rev E 95(022):905

    Google Scholar 

  • Noll KS, Grundy WM, Chiang EI, Margot JL, Kern SD (2008) Binaries in the Kuiper belt. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (eds) The solar system beyond neptune. University of Arizona Press, Tucson, pp 345–363

    Google Scholar 

  • O’Brien DP, Walsh KJ, Morbidelli A, Raymond SN, Mandell AM (2014) Water delivery and giant impacts in the ’Grand Tack’ scenario. Icarus 239:74–84

    Article  ADS  Google Scholar 

  • Ogawa S (1978) Multitemperature theory of granular materials. In: Proceedings of the US–Japan seminar on continuum mechanical and statistical approaches in the mechanics of granular materials, Gakajutsu Bunken Fukyu-Kai, pp 208–217

  • Opsomer E, Ludewig F, Vandewalle N (2011) Phase transitions in vibrated granular systems in microgravity. Phys Rev E 84(051):306

    Google Scholar 

  • Opsomer E, Vandewalle N, Noirhomme M, Ludewig F (2014) Clustering and segregation in driven granular fluids. Eur Phys J E 37:115. https://doi.org/10.1140/epje/i2014-14115-1

    Article  Google Scholar 

  • Opsomer E, Noirhomme M, Vandewalle N, Falcon E, Merminod S (2017) Segregation and pattern formation in dilute granular media under microgravity conditions. npj Microgravity 3:1

  • Orpe A, Khakhar DV (2001) Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Phys Rev E 64:031302

    Article  ADS  Google Scholar 

  • Ortiz JL, Santos-Sanz P, Sicardy B, Benedetti-Rossi G, Bérard D, Morales N, Duffard R, Braga-Ribas F, Hopp U, Ries C et al (2017) The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550(7675):219

    Article  ADS  Google Scholar 

  • Ostro SJ, Hudson RS, Benner LAM, Giorgini JD, Magri C, Margot JL, Nolan MC (2002) Asteroid radar astronomy. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 151–168

    Google Scholar 

  • Ottino JM, Khakhar DV (2000) Mixing and segregation of granular materials. Annu Rev Fluid Mech 32(1):55–91. https://doi.org/10.1146/annurev.fluid.32.1.55

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Oyama Y (1939) Axial segregation of granular materials. Bull Inst Phys Chem Res (Tokyo) Rep 5 18:600

  • Paetzold M (2017) Mass determination of small bodies in the solar system. In: AGU fall meeting abstracts

  • Pähtz T, Herrmann HJ, Shinbrot T (2010) Why do particle clouds generate electric charges? Nat Phys 6:364. https://doi.org/10.1038/nphys1631

    Article  Google Scholar 

  • Patrick R, Nicodemi M, Delannay R, Ribiere P, Bideau D (2005) Slow relaxation and compaction of granular systems. Nat Mat 4(2):121

    Article  Google Scholar 

  • Peale S, Canup R (2015) The origin of the natural satellites. In: Schubert G (ed) Treatise on geophysics, 2nd edn. Elsevier, Oxford, pp 559–604. https://doi.org/10.1016/B978-0-444-53802-4.00177-9

  • Pelton JN, Allahdadi F (eds) (2015) Handbook of cosmic hazards and planetary defense. Springer, Cham. https://doi.org/10.1007/978-3-319-03952-7

  • Pena AA, Garcia-Rojo R, Herrmann HJ (2007) Influence of particle shape on sheared dense granular media. Granul Matter 9:279–291

    Article  MATH  Google Scholar 

  • Perera V, Jackson AP, Asphaug E, Ballouz RL (2016) The spherical Brazil nut effect and its significance to asteroids. Icarus 278:194–203

    Article  ADS  Google Scholar 

  • Perna D, Dotto E, Ieva S, Barucci MA, Bernardi F, Fornasier S, De Luise F, Perozzi E, Rossi A, Mazzotta Epifani E, Micheli M, Deshapriya JDP (2016) Grasping the nature of potentially hazardous asteroids. Astron J 151:11. https://doi.org/10.3847/0004-6256/151/1/11

    Article  ADS  Google Scholar 

  • Pletser V (2004) Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns. Acta Astronaut 55:829–854

    Article  ADS  Google Scholar 

  • Polishook D, Moskovitz N, Binzel R, Burt B, DeMeo F, Hinkle M, Lockhart M, Mommert M, Person M, Thirouin A et al (2016) A 2 km-size asteroid challenging the rubble-pile spin barrier–a case for cohesion. Icarus 267:243–254

    Article  ADS  Google Scholar 

  • Pöschel T, Brilliantov NV (2003) Granular gas dynamics, lecture notes in physics, vol 624. Springer, Berlin. https://doi.org/10.1007/b12449

    Article  ADS  Google Scholar 

  • Pouliquen O, Cassar C, Jop P, Forterre Y, Nicolas M (2006) Flow of dense granular material: towards simple constitutive laws. J Stat Mech 07:P07020

    MATH  Google Scholar 

  • Poux M, Fayote P, Bertrand J, Bridons D, Bousquet J (1991) Strong interlocking of nonconvex particles in random packings. Powder Technol 8:63

    Google Scholar 

  • Pravec P, Harris AW (2000) Fast and slow rotation of asteroids. Icarus 148(1):12–20. https://doi.org/10.1006/icar.2000.6482

    Article  ADS  Google Scholar 

  • Pravec P, Harris AW, Michalowski T (2002) Asteroid rotations. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 113–122

    Google Scholar 

  • Pravec P, Vokrouhlickỳ D, Polishook D, Scheeres DJ, Harris AW, Galad A, Vaduvescu O, Pozo F, Barr A, Longa P et al (2010) Formation of asteroid pairs by rotational fission. Nature 466(7310):1085

    Article  ADS  Google Scholar 

  • Procopio AT, Zavaliangos A (2005) Simulation of multi-axial compaction of granular media from loose to high relative densities. J Mech Phys Solids 53(7):1523–1551

    Article  ADS  MATH  Google Scholar 

  • Radjai F (2015) Modeling force transmission in granular materials. C R Phys 16:3–9

    Article  ADS  Google Scholar 

  • Radjaï F, Dubois F (2011) Discrete-element modeling of granular materials. Wiley-ISTE, New York

  • Radjai F, Richefeu V (2009a) Bond anisotropy and cohesion of wet granular materials. Philos Trans R Soc A 367:5123–5138

    Article  ADS  Google Scholar 

  • Radjai F, Richefeu V (2009b) Contact dynamics as a nonsmooth discrete element method. Mech Mater 41(6):715–728

  • Radjai F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two-dimensional granular systems. Phys Rev Lett 77(2):274

  • Radjai F, Schäfer J, Dipple S, Wolf D (1997) Collective friction of an array of particles: a crucial test for numerical algorithms. J Phys I 7(9):1053–1070

    Google Scholar 

  • Richardson DC (1993) A new tree code method for simulation of planetesimal dynamics. Mon Not R Astron Soc 261:396–414. https://doi.org/10.1093/mnras/261.2.396

  • Richardson DC (1994) Tree code simulations of planetary rings. Mon Not R Astron Soc 269:493. https://doi.org/10.1093/mnras/269.2.493

    Article  ADS  Google Scholar 

  • Richardson DC, Quinn T, Stadel J, Lake G (2000) Direct large-scale \(N\)-body simulations of planetesimal dynamics. Icarus 143(1):45–59. https://doi.org/10.1006/icar.1999.6243

    Article  ADS  Google Scholar 

  • Richardson DC, Leinhardt ZM, Melosh HJ, Bottke WF Jr, Asphaug E (2002) Gravitational aggregates: evidence and evolution. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 501–515

  • Richardson JE, Melosh HJ, Greenberg R (2004) Impact-induced seismic activity on asteroid 433 Eros: a surface modification process. Science 306(5701):1526–1529

    Article  ADS  Google Scholar 

  • Richardson D, Michel P, Walsh K, Flynn K (2009) Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planet Space Sci 57(2):183–192

  • Richardson DC, Walsh KJ, Murdoch N, Michel P (2011) Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212(1):427–437

  • Rietz F, Stannarius R (2008) On the brink of jamming: granular convection in densely filled containers. Phys Rev Lett 100(7):078002. https://doi.org/10.1103/PhysRevLett.100.078002

    Article  ADS  Google Scholar 

  • Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464(7293):1322

    Article  ADS  Google Scholar 

  • Rocchetti N, Frascarelli D, Nesmachnow S, Tancredi G (2018) Performance improvements of a parallel multithreading self-gravity algorithm. In: Mocskos E, Nesmachnow S (eds) High performance computing (CARLA 2017). Springer, Cham, pp 291–306. https://doi.org/10.2458/azu_uapress_9780816532131-ch038

  • Rognon P, Einav I (2010) Thermal transients and convective particle motion in dense granular materials. Phys Rev Lett 105(218):301. https://doi.org/10.1103/PhysRevLett.105.218301

    Article  Google Scholar 

  • Rosato A, Starndburg KJ, Prinz F, Swendsen RH (1987) Why the brazil nuts are on the top: size segregation of particulate matter by shaking. Phys Rev Lett 58:1038

    Article  ADS  MathSciNet  Google Scholar 

  • Rosenblatt P, Lainey V, Le Maistre S, Marty J, Dehant V, Pätzold M, Van Hoolst T, Häusler B (2008) Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons. Planet Space Sci 56(7):1043–1053

    Article  ADS  Google Scholar 

  • Rosenblatt P, Charnoz S, Dunseath KM, Terao-Dunseath M, Trinh A, Hyodo R, Genda H, Toupin S (2016) Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nat Geosci 9(8):581–583

    Article  ADS  Google Scholar 

  • Roux S, Radjai F (1998) Texture-dependent rigid-plastic behavior. In: Herrmann HJ, Hovi JP, Luding S (eds) Physics of dry granular media. Springer, Dordrecht, pp 229–236

    Chapter  Google Scholar 

  • Rouyer F, Menon N (2000) Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys Rev Lett 85:3676

    Article  ADS  Google Scholar 

  • Rozitis B, MacLennan E, Emery JP (2014) Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513):174–176. https://doi.org/10.1038/nature13632

    Article  ADS  Google Scholar 

  • Rubincam DP (2000) Radiative spin-up and spin-down of small asteroids. Icarus 148(1):2–11. https://doi.org/10.1006/icar.2000.6485

    Article  ADS  Google Scholar 

  • Russell HN (1906) On the light-variations of asteroids and satellites. Astrophys J 24:1–18. https://doi.org/10.1086/141361

    Article  ADS  Google Scholar 

  • Saito J, Miyamoto H, Nakamura R, Ishiguro M, Michikami T, Nakamura A, Demura H, Sasaki S, Hirata N, Honda C et al (2006) Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312(5778):1341–1344

    Article  ADS  Google Scholar 

  • Salo H (2001) Numerical simulations of the collisional dynamics of planetary rings. In: Pöschel T, Luding S (eds) Granular gases. Springer, Berlin, Heidelberg, pp 330–349

    Chapter  Google Scholar 

  • Sánchez DP, Scheeres DJ (2015) Scaling rule between cohesive forces and the size of a self-gravitating aggregate. In: 46th lunar and planetary science conference, LPI contributions, vol 1832, p 2556

  • Sánchez P (2015) Asteroid evolution: role of geotechnical properties. Proc IAU 10(S318):111–121. https://doi.org/10.1017/S1743921315008583

    Article  Google Scholar 

  • Sánchez P, Scheeres DJ (2011) Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model. Astrophys J 727(2):120

    Article  ADS  Google Scholar 

  • Sánchez DP, Scheeres DJ (2012) DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids. Icarus 218(2):876–894. https://doi.org/10.1016/j.icarus.2012.01.014

    Article  ADS  Google Scholar 

  • Sánchez P, Scheeres DJ (2014) The strength of regolith and rubble pile asteroids. Meteorit Planet Sci 49(5):788–811. https://doi.org/10.1111/maps.12293

    Article  ADS  Google Scholar 

  • Sánchez P, Scheeres DJ (2016) Disruption patterns of rotating self-gravitating aggregates: a survey on angle of friction and tensile strength. Icarus 271:453–471. https://doi.org/10.1016/j.icarus.2016.01.016

    Article  ADS  Google Scholar 

  • Sánchez P, Scheeres DJ (2018) Rotational evolution of self-gravitating aggregates with cores of variable strength. Planet Space Sci. https://doi.org/10.1016/j.pss.2018.04.001

    Article  Google Scholar 

  • Sanchez P, Colombo C, Vasile M, Radice G (2009) Multicriteria comparison among several mitigation strategies for dangerous near-Earth objects. J Guid Control Dyn 32(1):121–142

    Article  ADS  Google Scholar 

  • Sánchez P, Scheeres DJ (2009) Granular mechanics in asteroid regolith: simulating and scaling the Brazil nut effects. In: Lunar and planetary science conference, LPI contributions, vol 40, p 2228

  • Savage SB (1989) Flow of granular materials. In: Theoretical and applied mechanics. Elsevier, pp 241–266

  • Savage SB (1993) Banding or pattern formation in horizontal drum mixers. In: Bideau D, Hansen A (eds) Disorder and granular media. North-Holland, Amsterdam, pp 255–285

    Google Scholar 

  • Savage S, Lun C (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J Fluid Mech 189:311–335

    Article  ADS  Google Scholar 

  • Scheeres DJ, Team Osiris-Rex et al (2019) The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nat Astron 3:352–361. https://doi.org/10.1038/s41550-019-0721-3

    Article  ADS  Google Scholar 

  • Scheeres DJ (2015) Landslides and mass shedding on spinning spheroidal asteroids. Icarus 247:1–17. https://doi.org/10.1016/j.icarus.2014.09.017

    Article  ADS  Google Scholar 

  • Scheeres DJ, Hartzell CM, Sánchez P, Swift M (2010) Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210(2):968–984. https://doi.org/10.1016/j.icarus.2010.07.009

    Article  ADS  Google Scholar 

  • Scheeres DJ, Britt D, Carry B, Holsapple KA (2015) Asteroid interiors and morphology. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 745–766. https://doi.org/10.2458/azu_uapress_9780816532131-ch038

  • Scholz C, Pöschel T (2017) Velocity distribution of a homogeneously driven two-dimensional granular gas. Phys Rev Lett 118:198003

    Article  ADS  Google Scholar 

  • Schorghofer N (2008) The lifetime of ice on main belt asteroids. Astrophys J 682(1):697

    Article  ADS  Google Scholar 

  • Schröter M, Ulrich S, Kerft J, Swift JB, Swinney HL (2006) Mechanisms in the size segregation of a binary granular mixture. Phys Rev E 74:011307

    Article  ADS  Google Scholar 

  • Schwamb ME, Jones RL, Chesley SR, Fitzsimmons A, Fraser WC, Holman MJ, Hsieh H, Ragozzine D, Thomas CA, Trilling DE, Brown ME, Bannister MT, Bodewits D, de Val-Borro M, Gerdes D, Granvik M, Kelley MSP, Knight MM, Seaman RL, Ye QZ, Young LA (2018) Large synoptic survey telescope solar system science roadmap. arXiv:1802.01783

  • Schwartz SR, Richardson DC, Michel P (2012) An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granul Matter 14(3):363–380

    Article  Google Scholar 

  • Schwartz SR, Michel P, Richardson DC (2013) Numerically simulating impact disruptions of cohesive glass bead agglomerates using the soft-sphere discrete element method. Icarus 226(1):67–76

    Article  ADS  Google Scholar 

  • Schwartz SR, Michel P, Jutzi M, Marchi S, Zhang Y, Richardson DC (2018) Catastrophic disruptions as the origin of bilobate comets. Nat Astron 2:379–382. https://doi.org/10.1038/s41550-018-0395-2

    Article  ADS  Google Scholar 

  • Seiden G, Thomas PJ (2011) Complexity, segregation, and pattern formation in rotating-drum flows. Rev Mod Phys 83:1323

    Article  ADS  Google Scholar 

  • Serero D, Noskowicz SH, Tan ML, Goldhirsch I (2009) Binary granular gas mixtures: theory, layering effects and some open questions. Eur Phys J Spec Top 179:221–247

    Article  Google Scholar 

  • Shäfer J, Dippel S, Wolf D (1996) Force schemes in simulations of granular materials. J Phys I 6(1):5–20

    Google Scholar 

  • Sharma I (2013) Structural stability of rubble-pile asteroids. Icarus 223(1):367–382

    Article  ADS  Google Scholar 

  • Sharma I, Jenkins JT, Burns JA (2009) Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus 200(1):304–322. https://doi.org/10.1016/j.icarus.2008.11.003

    Article  ADS  Google Scholar 

  • Shimokawa M, Suetsugu Y, Hiroshige R, Hirano T, Sakaguchi H (2015) Pattern formation in a sandpile of ternary granular mixtures. Phys Rev E 91(062):205

    Google Scholar 

  • Shinbrot T, Duong NH, Kwan L, Alvarez MM (2004) Dry granular flows can generate surface features resembling those seen in Martian gullies. Proc Natl Acad Sci 101(23):8542–8546. https://doi.org/10.1073/pnas.0308251101

    Article  ADS  Google Scholar 

  • Sierks H, Lamy P, Barbieri C, Koschny D, Rickman H, Rodrigo R, A’Hearn MF, Angrilli F, Barucci MA, Bertaux JL, Bertini I, Besse S, Carry B, Cremonese G, Da Deppo V, Davidsson B, Debei S, De Cecco M, De Leon J, Ferri F, Fornasier S, Fulle M, Hviid SF, Gaskell RW, Groussin O, Gutierrez P, Ip W, Jorda L, Kaasalainen M, Keller HU, Knollenberg J, Kramm R, Kührt E, Küppers M, Lara L, Lazzarin M, Leyrat C, Moreno JJL, Magrin S, Marchi S, Marzari F, Massironi M, Michalik H, Moissl R, Naletto G, Preusker F, Sabau L, Sabolo W, Scholten F, Snodgrass C, Thomas N, Tubiana C, Vernazza P, Vincent JB, Wenzel KP, Andert T, Pätzold M, Weiss BP (2011) Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334:487. https://doi.org/10.1126/science.1207325

    Article  ADS  Google Scholar 

  • Spahn F, Schmidt J (2006) Hydrodynamic description of planetary rings. GAMM-Mitteilungen 29(1):118–143

    Article  MathSciNet  MATH  Google Scholar 

  • Stadel JG (2001) Cosmological \(N\)-body simulations and their analysis. Ph.D. thesis, University of Washington, Washington, DC

  • Stansberry J, Grundy W, Brown M, Cruikshank D, Spencer J, Trilling D, Margot J (2008) Physical properties of kuiper belt and centaur objects: constraints from the Spitzer Space Telescope. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (eds) The solar system beyond Neptune. University of Arizona Press, Tucson, pp 161–179

    Google Scholar 

  • Staron L (2016) Segregation mechanisms in granular systems: role of gravity and velocity fluctuations. In: EGU general assembly conference abstracts, vol 18, p 8047

  • Staron L, Lagrée PY, Popinet S (2012) The granular silo as a continuum plastic flow: the hour-glass vs. the clepsydra. Phys Fluids 24(10):103301

  • Sugimoto Y, Radice G, Ceriotti M, Sanchez JP (2014) Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics. Acta Astronaut 103:333–357. https://doi.org/10.1016/j.actaastro.2014.02.022

    Article  ADS  Google Scholar 

  • Sugita S et al (2019) The geomorphology, color, and thermal properties of Ryugu: implications for parent-body processes. Science 364:252–252. https://doi.org/10.1126/science.aaw0422

    Article  ADS  Google Scholar 

  • Sunday C, Murdoch N, Cherrier O, Serrano SM, Nardi CV, Janin T, Martinez IA, Gourinat Y, Mimoun D (2016) A novel facility for reduced-gravity testing: a setup for studying low-velocity collisions into granular surfaces. Rev Sci Instrum 87(8):084504. https://doi.org/10.1063/1.4961575

    Article  ADS  Google Scholar 

  • Syal MB, Dearborn DS, Schultz PH (2013) Limits on the use of nuclear explosives for asteroid deflection. Acta Astronaut 90(1):103–111. https://doi.org/10.1016/j.actaastro.2012.10.025

    Article  ADS  Google Scholar 

  • Tancredi G, Maciel A, Heredia L, Richeri P, Nesmachnow S (2012) Granular physics in low-gravity environments using discrete element method. Mon Not R Astron Soc 420(4):3368–3380

    Article  ADS  Google Scholar 

  • Tanga P, Comito C, Paolicchi P, Hestroffer D, Cellino A, Dell’Oro A, Richardson DC, Walsh K, Delbo M (2009a) Rubble-pile reshaping reproduces overall asteroid shapes. Astrophys J Lett 706(1):L197

    Article  ADS  Google Scholar 

  • Tanga P, Hestroffer D, Delbo M, Richardson DC (2009b) Asteroid rotation and shapes from numerical simulations of gravitational re-accumulation. Planet Space Sci 57(2):193–200

    Article  ADS  Google Scholar 

  • Tanga P, Campo Bagatin A, Thirouin A, Cellino A, Comito C, Ortiz J, Hestroffer D, Richardson D (2013) Possible routes to spin up fission for the formation of asteroid binaries and pairs. In: European planetary science congress, vol 8

  • Tardivel S, Sánchez P, Scheeres DJ (2018) Equatorial cavities on asteroids, an evidence of fission events. Icarus 304:192–208. https://doi.org/10.1016/j.icarus.2017.06.037

    Article  ADS  Google Scholar 

  • Tatsumi S, Murayama Y, Hayakawa H, Sano M (2009) Experimental study on the kinetics of granular gases under microgravity. J Fluid Mech 641:521–539

    Article  ADS  MATH  Google Scholar 

  • Taylor PA, Howell ES, Nolan MC, Thane AA (2012) The shape and spin distributions of near-Earth asteroids observed with the arecibo radar system. In: AAS meeting abstracts #220, vol 220. American Astronomical Society, p 128.02

  • Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley, New York

    Google Scholar 

  • Thomas P (2010) Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission. Icarus 208(1):395–401

    Article  ADS  Google Scholar 

  • Thomas PA, Bray JD (1999) Capturing nonspherical shape of granular media with disk clusters. J Geotechnol Geoenviron Eng 125:169–178

    Article  Google Scholar 

  • Thuillet F, Maurel C, Michel P, Biele J, Ballouz RL, Richardson DC (2017) Numerical simulations of surface package landing on a low-gravity granular surface: application to the landing of MASCOT onboard Hayabusa2. In: Lunar and planetary science conference, LPI contributions, vol 1964, p 1810

  • Tiscareno MS, Murray CD (2018) Planetary ring systems: properties, structure, and evolution, vol 19. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Toiya M, Stambaugh J, Losert W (2004) Transient and oscillatory granular shear flow. Phys Rev Lett 93(8):088001

    Article  ADS  Google Scholar 

  • van der Hucht KA (2008) Proceedings of the twenty sixth general assembly Prague 2006: transactions of the international astronomical union XXVIB, vol 26. Cambridge University Press, Cambridge

    Google Scholar 

  • Verlet L (1967) Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98

  • Von Kampen P, Kaczmarczik U, Rath HJ (2006) The new drop tower catapult system. Acta Astronaut 59:278–283

    Article  ADS  Google Scholar 

  • Vu-Quoc L, Zhang X, Walton OR (2000) A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput Methods Appl Mech Eng 187:483–528

    Article  ADS  MATH  Google Scholar 

  • Wadsley JW, Stadel J, Quinn T (2004) Gasoline: a flexible, parallel implementation of TreeSPH. New Astron 9:137–158. https://doi.org/10.1016/j.newast.2003.08.004. arXiv:astro-ph/0303521

    Article  ADS  Google Scholar 

  • Walker R, Binns D, Carnelli I, Kueppers M, Galvez A (2016) CubeSat opportunity payload intersatellite network sensors (COPINS) on the ESA asteroid impact mission (AIM). In: 5th interplanetary CubeSat workshop (iCubeSat)

  • Walsh KJ, Team Osiris-Rex et al (2019) Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nat Geosci 12:242–246. https://doi.org/10.1038/s41561-019-0326-6

    Article  ADS  Google Scholar 

  • Walsh KJ, Jacobson SA (2015) Formation and evolution of binary asteroids. In: Michel P, DeMeo F, Bottke W (eds) Asteroids IV. University of Arizona Press, Tucson, pp 375–393

    Google Scholar 

  • Walsh KJ, Richardson DC (2006) Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1):201–216

    Article  ADS  Google Scholar 

  • Walsh K, Richardson D (2008) A steady-state model of NEA binaries formed by tidal disruption of gravitational aggregates. Icarus 193(2):553–566

    Article  ADS  Google Scholar 

  • Walsh KJ, Richardson DC, Michel P (2008) Rotational breakup as the origin of small binary asteroids. Nature 454(7201):188

    Article  ADS  Google Scholar 

  • Walsh KJ, Richardson DC, Michel P (2012) Spin-up of rubble-pile asteroids: disruption, satellite formation, and equilibrium shapes. Icarus 220(2):514–529. https://doi.org/10.1016/j.icarus.2012.04.029

    Article  ADS  Google Scholar 

  • Warner BD, Harris AW, Pravec P (2009) The asteroid lightcurve database. Icarus 202:134–146. 10.1016/j.icarus.2009.02.003. http://www.minorplanet.info/lightcurvedatabase.html. Accessed 24 June 2018

  • Watanabe S et al (2019) Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu–a spinning top-shaped rubble pile. Science 364(6437):268–272. https://doi.org/10.1126/science.aav8032

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Paolicchi P, Zappala V (1989) Do asteroids have satellites? In: Binzel R, Gehrels T, Matthews M (eds) Asteroids II. University of Arizona Press, Tucson, pp 643–658

    Google Scholar 

  • Weissman PR, A’Hearn MF, McFadden L, Rickman H (2002) Evolution of comets into asteroids. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 669–686

    Google Scholar 

  • Wilkening LL, Matthews MS (1982) Comets. University of Arizona Press, Tucson

    Google Scholar 

  • Will CM (2014) The confrontation between general relativity and experiment. Living Rev Relativ 17:4. https://doi.org/10.12942/lrr-2014-4. arXiv:1403.7377

  • Wisdom J, Tremaine S (1988) Local simulations of planetary rings. Astron J 95:925–940

    Article  ADS  Google Scholar 

  • Yeomans DK, Barriot JP, Dunham D, Farquhar R, Giorgini J, Helfrich C, Konopliv A, McAdams J, Miller J, Owen W et al (1997) Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278(5346):2106–2109

    Article  ADS  Google Scholar 

  • Yeomans D, Antreasian P, Barriot JP, Chesley S, Dunham D, Farquhar R, Giorgini J, Helfrich C, Konopliv A, McAdams J et al (2000) Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. Science 289(5487):2085–2088

    Article  ADS  Google Scholar 

  • Yu Y, Richardson DC, Michel P (2017) Structural analysis of rubble-pile asteroids applied to collisional evolution. Astrodynamics 1(1):57–69

    Article  Google Scholar 

  • Zhang Y, Richardson DC, Barnouin OS, Michel P, Schwartz SR, Ballouz RL (2018) Rotational failure of rubble-pile bodies: influences of shear and cohesive strengths. Astrophys J 857(1):15

    Article  ADS  Google Scholar 

  • Zik O, Levine D, Lipson SG, Shtrikman S, Stavans J (1994) Rotationally induced segregation of granular materials. Phys Rev Lett 73:644

    Article  ADS  Google Scholar 

  • Zuriguel I, Gray JMNT, Peixinho J, Mullin T (2006) Pattern selection by a granular wave in a rotating drum. Phys Rev E 73:061302

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is a direct result of support by the International Space Science Institute, ISSI Bern, Switzerland, through the hosting and provision of financial support for the international team “Asteroids and Self-Gravitating Bodies as Granular Systems” led by DH. The authors would like to thank the ISSI Institute and staff for their support, and the Paris observatory for financial support. Thanks to MIAPP, Munich Institute for Astro and Particle Physics of the DFG cluster of excellence “Origin and Structure of the Universe” and participants of the the workshop on NEOS for fruitful discussions. EO thanks Prodex (Belspo) and ESA (Topical Team no. 4000103461) for financial support. DCR was supported in part by NASA grant NNX15AH90G awarded by the Solar System Workings program. SRS acknowledges support from the Academies of Excellence: Complex systems and Space, environment, risk, and resilience, part of the IDEX JEDI of the Université Côte d’Azur. SE acknowledges support from the DiRAC Institute in the Department of Astronomy at the University of Washington. The DiRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation. We are grateful to all the other members of the ISSI international team for discussions, exchanges, inputs, and contributions. We are grateful to Brian Warner for kindly providing us an up-to-date ‘spin-rate versus diameter’ figure. This work has made use of Wm R. Johnston archive data http://www.johnstonsarchive.net, and intensive use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hestroffer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Made possible by the International Space Science Institute (ISSI, Bern) support to the international team “Asteroids and Self-Gravitating Bodies as Granular Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hestroffer, D., Sánchez, P., Staron, L. et al. Small Solar System Bodies as granular media. Astron Astrophys Rev 27, 6 (2019). https://doi.org/10.1007/s00159-019-0117-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-019-0117-5

Keywords

Navigation