Skip to main content
Log in

The distribution of dark matter in galaxies

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The distribution of the non-luminous matter in galaxies of different luminosity and Hubble type is much more than a proof of the existence of dark particles governing the structures of the Universe. Here, we will review the complex but well-ordered scenario of the properties of the dark halos also in relation with those of the baryonic components they host. Moreover, we will present a number of tight and unexpected correlations between selected properties of the dark and the luminous matter. Such entanglement evolves across the varying properties of the luminous component and it seems to unequivocally lead to a dark particle able to interact with the Standard Model particles over cosmological times. This review will also focus on whether we need a paradigm shift, from pure collisionless dark particles emerging from “first principles”, to particles that we can discover only by looking to how they have designed the structure of the galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. Only much later the universality of the DM phenomenon in spirals did emerge (Persic et al. 1996).

  2. We take \(R_{\mathrm{opt}}\equiv 3.2 \, R_D\) as the reference stellar disk edge.

  3. The HI component is obtained directly from observations; however, it is always negligible because \(\mathrm{d}V^2_{\mathrm{HI}}/\mathrm{d}r\simeq 0\).

  4. \(R_3\simeq 1.1 \ R_{1/2}\).

  5. Notice that maximal disks are incompatible with cuspy DM halos (van Albada et al. 1985).

  6. See also Lapi et al. (2018) for the analysis of 24 coadded RCs obtained from 3500 individual RCs.

  7. We stress that only the RCs with \(190~\mathrm{km}/\mathrm{s}< V_{\mathrm{opt}} < 230~\mathrm{km}/\mathrm{s}\) and in the radial range \(1 \, R_D<R<4 \, R_D\) can be considered flattish.

  8. In short: the variance of V(xL) is negligible, i.e., the r.m.s. of the values of the RCs in galaxies of same luminosity L and at the same radius x is negligible.

  9. Let us stress that, in this issue, non circular motions in the RCs play a minor role (Oh 2008; Gentile et al. 2005).

  10. The raw kinematical data needed to build the Galaxy RC can be found Pato and Iocco (2017), see Fig. 14.

  11. SKA will exponentially increase the amount of available kinematics.

  12. \(V(r)= (r ~\mathrm{d}\varPhi /\mathrm{d}r)^{1/2}\) with \(\varPhi \) the total gravitational potential.

References

  • Adams JJ, Simon JD, Fabricius MH et al (2014) Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics. ApJ 789:63

    ADS  Google Scholar 

  • Adhikari R, Agostini M, Ky NA et al (2017) A white paper on keV sterile neutrino dark matter. JCAP 1:025

    ADS  Google Scholar 

  • Alabi AB, Forbes DA, Romanowsky AJ et al (2016) The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond. MNRAS 460:3838

    ADS  Google Scholar 

  • Alabi A, Ferré-Mateu A, Romanowsky AJ, Brodie J, Forbes DA, Wasserman A, Bellstedt S, Martín-Navarro I, Pandya V, Stone M, Okabe N (2018) Origins of ultradiffuse galaxies in the Coma cluster—I. Constraints from velocity phase space. Mon Not R Astron Soc 479(3):3308–3318. https://doi.org/10.1093/mnras/sty1616

    Article  ADS  Google Scholar 

  • An JH, Evans NW (2011) Modified virial formulae and the theory of mass estimators. MNRAS 413:1744

    ADS  Google Scholar 

  • Aprile E, Aalbers J, Agostini F (2018) Dark matter search results from a one ton-year exposure of XENON1T (XENON Collaboration). PRL 121:111302

    ADS  Google Scholar 

  • Arcadi G, Dutra M, Ghosh P (2018) The waning of the WIMP? A review of models, searches, and constraints. EPJC 78:203

    ADS  Google Scholar 

  • Auger MW et al (2010) The Sloan Lens ACS Survey. X. Stellar, dynamical, and total mass correlations of massive early-type galaxies. ApJ 724:511

    ADS  Google Scholar 

  • Bacon R, Copin Y, Monnet G (2001) The SAURON project—I. The panoramic integral-field spectrograph. MNRAS 326:23

    ADS  Google Scholar 

  • Bahcall JN (1984) K giants and the total amount of matter near the sun. ApJ 276:169

    ADS  Google Scholar 

  • Bartelmann M, Maturi M (2016) Weak gravitational lensing. ArXiv e-print. arXiv:1612.06535

  • Battaglia G, Helmi A, Breddels M (2013) Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron Rev 57:52

    ADS  Google Scholar 

  • Beasley MA, Romanowsky AJ, Pota V et al (2016) An overmassive dark halo around an ultra-diffuse galaxy in the Virgo cluster. ApJL 819:L20

    ADS  Google Scholar 

  • Bell E, de Jong RS (2001) Stellar mass-to-light ratios and the Tully–Fisher relation. ApJ 550:212

    ADS  Google Scholar 

  • Bell EF, McIntosh DH, Katz N, Weinberg MD (2003) The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. ApJS 149:289

    ADS  Google Scholar 

  • Bellazzini B, Cliche M, Tanedo P (2013) Effective theory of self-interacting dark matter. PRD 88:083506

    ADS  Google Scholar 

  • Bernal N, Heikinheimo Tenkanen NT (2017) The dawn of FIMP dark matter: a review of models and constraints. IJMPA 32:27

    Google Scholar 

  • Bernardi M, Sheth RK, Annis J (2003) Early-type galaxies in the Sloan Digital Sky Survey. II. Correlations between observables. AJ 125:1866

    ADS  Google Scholar 

  • Bershady MA, Verheijen MAW, Westfall KB (2010a) The DiskMass Survey. I. Overview. ApJ 716:234

    ADS  Google Scholar 

  • Bershady MA, Verheijen MAW, Swaters RA (2010b) The DiskMass Survey. II. Error budget. ApJ 716:198

    ADS  Google Scholar 

  • Bertone G (ed) (2010) Particle dark matter: observations, models and searches. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bertone G, Hooper D (2018) History of dark matter. Rev Mod Phys 90(4):045002. https://doi.org/10.1103/RevModPhys.90.045002

    Article  ADS  Google Scholar 

  • Binney J, Tremaine S (2008) Galactic dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Bloom JV (2017) The SAMI Galaxy Survey: the low-redshift stellar mass Tully–Fisher relation. MNRAS 472:1809

    ADS  Google Scholar 

  • Boddy KK, Feng JL, Manoj Kaplinghat M et al (2014) Strongly interacting dark matter: self-interactions and keV lines. PRD 89:115017

    ADS  Google Scholar 

  • Bode P, Ostriker JP, Turok N (2001) Halo formation in warm dark matter models. ApJ 556:93

    ADS  Google Scholar 

  • Bolton AS, Burles S, Koopmans LVE et al (2006) The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies. ApJ 638:703

    ADS  Google Scholar 

  • Bolton AS, Burles S, Treu T (2007) A more fundamental plane. ApJ 665:105

    ADS  Google Scholar 

  • Bolton AS et al (2008) The Sloan Lens ACS Survey. VII. Elliptical galaxy scaling laws from direct observational mass measurements. ApJ 684:248

    ADS  Google Scholar 

  • Bonnivard V et al (2015) Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs. MNRAS 453:849

    ADS  Google Scholar 

  • Bosma A (1981a) 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. AJ 86:1791

    ADS  Google Scholar 

  • Bosma A (1981b) 21-cm line studies of spiral galaxies. I—observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. AJ 86:1825

    ADS  Google Scholar 

  • Bothun GD, Impey CD, Malin DF (1991) Extremely low surface brightness galaxies in the Fornax Cluster—properties, stability, and luminosity fluctuations. ApJ 376:404

    ADS  Google Scholar 

  • Bottema R, Pestaña JLG (2015) The distribution of dark and luminous matter inferred from extended rotation curves. MNRAS 448:2566

    ADS  Google Scholar 

  • Boyarsky A, Nevalainen J, Ruchayskiy O (2007) Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor. A&A 471:51

    ADS  Google Scholar 

  • Breddels MA, Helmi A, van den Bosch RCE et al (2013) Orbit-based dynamical models of the Sculptor dSph galaxy. MNRAS 433:3173

    ADS  Google Scholar 

  • Bringmann T et al (2016) Suppressing structure formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to warm dark matter. PRD 94:103529

    ADS  Google Scholar 

  • Brook CB, Santos-Santos I, Stinson G (2016) The different baryonic Tully–Fisher relations at low masses. MNRAS 459:638

    ADS  Google Scholar 

  • Brown WR, Geller MJ, Kenyon SJ, Diaferio A (2009) The anisotropic spatial distribution of hypervelocity stars. ApJ 690:1639

    ADS  Google Scholar 

  • Bruzual G, Charlot S (2003) Stellar population synthesis at the resolution of 2003. MNRAS 344:1000

    ADS  Google Scholar 

  • Bullock JS, Boylan-Kolchin M (2017) Small-scale challenges to the \(\varLambda \)CDM paradigm. ARAA 55:343

    ADS  Google Scholar 

  • Burkert A (1995) The structure of dark matter halos in dwarf galaxies. ApJL 447:L25

    ADS  Google Scholar 

  • Burkert A (2015) The structure and dark halo core properties of dwarf spheroidal galaxies. ApJ 808:158

    ADS  Google Scholar 

  • Butler J (2018) Dark matter searches at the LHC. PoS(ALPS2018), 030

  • Caldwell JAR, Ostriker JP (1981) The mass distribution within our Galaxy—a three component model. ApJ 251:61

    ADS  Google Scholar 

  • Campbell DJR et al (2017) Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses. MNRAS 469:2335

    ADS  Google Scholar 

  • Cappellari M (2016) Structure and kinematics of early-type galaxies from integral field spectroscopy. ARAA 54:597

    ADS  Google Scholar 

  • Cappellari M, Emsellem E, Krajnović D et al (2011) The ATLAS\(^{3D}\) project—VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation. MNRAS 413:813

    ADS  Google Scholar 

  • Cappellari M et al (2012) Systematic variation of the stellar initial mass function in early-type galaxies. Nature 484:485

    ADS  Google Scholar 

  • Cappellari M et al (2013) The ATLAS\(^{3D}\) project—XX. Mass-size and mass-\(\sigma \) distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. MNRAS 432:1709

    ADS  Google Scholar 

  • Cappellari M, Romanowsky AJ, Brodie JP et al (2015) Small scatter and nearly isothermal mass profiles to four half-light radii from two-dimensional stellar dynamics of early-type galaxies. ApJL 804:L21

    ADS  Google Scholar 

  • Cappellari M et al (2006) The SAURON project—IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies. MNRAS 366:1126

    ADS  Google Scholar 

  • Carignan C, Freeman KC (1985) Basic parameters of dark halos in late-type spirals. ApJ 294:494

    ADS  Google Scholar 

  • Catena R, Ullio P (2010) A novel determination of the local dark matter density. JCAP 08(2010):004

    ADS  Google Scholar 

  • Catena R, Ullio P (2012) The local dark matter phase-space density and impact on WIMP direct detection. JCAP 05(2012):005

    ADS  Google Scholar 

  • Catinella B, Giovanelli R, Haynes MP (2006) Template rotation curves for disk galaxies. ApJ 640:751

    ADS  Google Scholar 

  • Chae K-H (2014) A universal power-law profile of pseudo-phase-space density-like quantities in elliptical galaxies. ApJL 788:L15

    ADS  Google Scholar 

  • Coccato L, Gerhard O, Arnaboldi M et al (2009) Kinematic properties of early-type galaxy haloes using planetary nebulae. MNRAS 394:1249

    ADS  Google Scholar 

  • Corbelli E, Salucci P (2000) The extended rotation curve and the dark matter halo of M33. MNRAS 311:441

    ADS  Google Scholar 

  • Corsini EM, Wegner GA, Thomas J et al (2017) The density of dark matter haloes of early-type galaxies in low-density environments. MNRAS 466:974

    ADS  Google Scholar 

  • Courteau S (1997) Optical rotation curves and linewidths for Tully–Fisher applications. AJ 114:2402

    ADS  Google Scholar 

  • Cretton N, de Zeeuw PT, van der Marel RP, Rix H-W (1999) Axisymmetric three-integral models for galaxies. ApJS 124:383

    ADS  Google Scholar 

  • Deason AJ, Belokurov V, Evans NW, An J (2012) Broken degeneracies: the rotation curve and velocity anisotropy of the Milky Way halo. MNRAS 424:L44

    ADS  Google Scholar 

  • de Blok WJG (2010) The core–cusp problem. Adv Astron 2010:789293

    ADS  Google Scholar 

  • de Blok WJG, McGaugh SS, Rubin VC (2001) High-resolution rotation curves of low surface brightness galaxies. II. Mass models. AJ 122:2396

    ADS  Google Scholar 

  • de Blok WJG, Walter F, Brinks E (2008) High-resolution rotation curves and galaxy mass models from THINGS. AJ 136:2648

    ADS  Google Scholar 

  • De Masi C, Matteucci F, Vincenzo F (2018) The effects of the initial mass function on the chemical evolution of elliptical galaxies. MNRAS 474:5259

    ADS  Google Scholar 

  • Destri C, de Vega P, Sanchez NG (2013) Warm dark matter primordial spectra and the onset of structure formation at redshift z. PRD 88:3512

    Google Scholar 

  • de Swart J, Bertone G, van Dongen J (2017) How dark matter came to matter. Nat Astron 1:005

    Google Scholar 

  • de Vega HJ, Sanchez NG (2017) Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies. EPJC 77:1

    Google Scholar 

  • de Zeeuw PT, Bureau M, Emsellem E (2002) The SAURON project—II. Sample and early results. MNRAS 329:513

    ADS  Google Scholar 

  • Di Cintio A, Brook CB, Dutton AA et al (2014) A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. MNRAS 441:2986

    ADS  Google Scholar 

  • Di Paolo C, Salucci P (2018) The universal rotation curve of low surface brightness galaxies IV: the interrelation between dark and luminous matter. ArXiv e-print. arXiv:1805.07165

  • Di Paolo C, Nesti F, Villante FL (2018) Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. MNRAS 475:5385

    ADS  Google Scholar 

  • Djorgovski S, Davis M (1987) Fundamental properties of elliptical galaxies. ApJ 313:59

    ADS  Google Scholar 

  • Dodelson S, Widrow LM (1994) Sterile neutrinos as dark matter. PRL 72:17

    ADS  Google Scholar 

  • Donato F, Gentile G, Salucci P (2004) Cores of dark matter haloes correlate with stellar scalelengths. MNRAS 353:17

    ADS  Google Scholar 

  • Donato F, Gentile G, Salucci P et al (2009) A constant dark matter halo surface density in galaxies. MNRAS 397:1169

    ADS  Google Scholar 

  • Dressler A, Lynden-Bell D, Burstein D et al (1987) Spectroscopy and photometry of elliptical galaxies. I—a new distance estimator. ApJ 313:42

    ADS  Google Scholar 

  • Ellis G et al (2018) The standard cosmological model: achievements and issues. Found Phys 48:1226

    ADS  MathSciNet  MATH  Google Scholar 

  • Ettori S, Fabian AC (2006) Effects of sedimented helium on the X-ray properties of galaxy clusters. MNRAS 369:L42

    ADS  Google Scholar 

  • Evoli C, Salucci P, Lapi A, Danese L (2011) The HI content of local late-type galaxies. ApJ 743:45

    ADS  Google Scholar 

  • Faber SM, Gallagher JS (1979) Masses and mass-to-light ratios of galaxies. ARAA 17:135

    ADS  Google Scholar 

  • Fabricant D, Rybicki G, Gorenstein P (1984) Further evidence for M87’s massive, dark halo. ApJ 286:186

    ADS  Google Scholar 

  • Freeman KC (1970) On the disks of spiral and so galaxies. ApJ 160:811

    ADS  Google Scholar 

  • Freese K (2017) Status of dark matter in the universe. IJMPD 26:1730012

    ADS  Google Scholar 

  • Gammaldi V (2015) Indirect searchers of TeV dark matter. PhD thesis, UCM Madrid

  • Gammaldi V (2016) Highlights on gamma rays, neutrinos and antiprotons from TeV dark matter. EPJ Web Conf 121:06003

    Google Scholar 

  • García-Bellido J (2017) Massive primordial black holes as dark matter and their detection with gravitational waves. J Phys Conf Ser 840:012032

    Google Scholar 

  • Gentile G, Salucci P, Klein U, Vergani D, Kalberla P (2004) The cored distribution of dark matter in spiral galaxies. MNRAS 351:903

    ADS  Google Scholar 

  • Gentile G, Burkert A, Salucci P et al (2005) The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. ApJ 634:145

    ADS  Google Scholar 

  • Genzel R, Schreiber NMF, Übler H et al (2017) Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature 543:397

    ADS  Google Scholar 

  • Gondolo P (2002) Recoil momentum spectrum in directional dark matter detectors. PRD 66:103513

    ADS  Google Scholar 

  • Gratier P, Braine J, Rodriguez-Fernandez NJ et al (2010) Molecular and atomic gas in the Local Group galaxy M 33. A&A 522:A3

    ADS  Google Scholar 

  • Graves GJ, Faber SM (2010) Dissecting the red sequence. III. Mass-to-light variations in three-dimensional fundamental plane space. ApJ 717:803

    ADS  Google Scholar 

  • Green AM (2016) Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function. PRD 94:063530

    ADS  Google Scholar 

  • Grillo C, Gobat R, Lombardi M, Rosati P (2009) Photometric mass and mass decomposition in early-type lens galaxies. A&A 501:461

    ADS  Google Scholar 

  • Gurovich S, McGaugh SS, Freeman KC (2004) The baryonic Tully–Fisher relation. PASA 21:412

    ADS  Google Scholar 

  • Hammer F, Yang Y, Arenou F, Babusiaux C, Wang J, Puech M, Flores H (2018) Galactic forces rule the dynamics of milky way dwarf galaxies. Astrophys J 860(1):76. https://doi.org/10.3847/1538-4357/aac3da

    ADS  Google Scholar 

  • Hessman FV (2017) Estimating the baryonic masses of face-on spiral galaxies from stellar kinematics. MNRAS 469:1147

    ADS  Google Scholar 

  • Hoekstra H, Jain B (2008) Weak gravitational lensing and its cosmological applications. Annu Rev Nucl Part Sci 58:99

    ADS  Google Scholar 

  • Honma M, Nagayama T, Ando K et al (2012) Fundamental parameters of the Milky Way galaxy based on VLBI astrometry. PASJ 64:136

    ADS  Google Scholar 

  • Hudson MJ, Gillis BR, Coupon J et al (2015) CFHTLenS: co-evolution of galaxies and their dark matter haloes. MNRAS 447:298

    ADS  Google Scholar 

  • Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. PRD 95:043541

    ADS  Google Scholar 

  • Hyde JB, Bernardi M (2009) The luminosity and stellar mass Fundamental Plane of early-type galaxies. MNRAS 396:1171

    ADS  Google Scholar 

  • Impey C, Bothun G, Malin D (1988) Virgo dwarfs—new light on faint galaxies. ApJ 330:634

    ADS  Google Scholar 

  • Jorgensen I, Franx M, Kjaergaard P (1996) The fundamental plane for cluster E and S0 galaxies. MNRAS 280:167

    ADS  Google Scholar 

  • Jungman G, Kamionkowski M, Griest K (1996) Supersymmetric dark matter. Phys Rep 267:195

    ADS  Google Scholar 

  • Jurić M, Ivezić Ž, Brooks A (2008) The Milky Way tomography with SDSS. I. Stellar number density distribution. ApJ 673:864

    ADS  Google Scholar 

  • Kang S, Scopel S, Tomar G, Yoon J-H (2018) Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings. ArXiv e-print. arXiv:1805.06113

  • Kaplinghat M, Linden T, Yu H-B (2015) Galactic center excess in \(\gamma \) rays from annihilation of self-interacting dark matter. PRL 114:211303

    ADS  Google Scholar 

  • Karukes EV, Salucci P (2017) The universal rotation curve of dwarf disc galaxies. MNRAS 465:4703

    ADS  Google Scholar 

  • Karukes EV, Salucci P, Gentile G (2015) The dark matter distribution in the spiral NGC 3198 out to 0.22 R\(_{{\rm vir}}\). A&A 578:A13

    ADS  Google Scholar 

  • Kennedy R, Frenk C, Cole S, Benson A (2014) Constraining the warm dark matter particle mass with Milky Way satellites. MNRAS 442:2487

    ADS  Google Scholar 

  • Klypin A, Trujillo-Gomez S, Primack J (2011) Dark matter halos in the standard cosmological model: results from the Bolshoi simulation. ApJ 740:102

    ADS  Google Scholar 

  • Kolb EW, Turner MS (1990) The early universe. Addison Wesley, New York

    MATH  Google Scholar 

  • Kormendy J, Freeman KC (2004) Scaling laws for dark matter halos in late-type and dwarf spheroidal galaxies. In: Ryder SD et al (eds) Dark matter in galaxies (IAU S220). ASP, San Francisco, p 377

    Google Scholar 

  • Korsaga M, Carignan C, Amram P et al (2018) GHASP: an H\(\alpha \) kinematical survey of spiral galaxies—XI. Distribution of luminous and dark matter in spiral and irregular nearby galaxies using WISE photometry. MNRAS 478:50

    ADS  Google Scholar 

  • Koushiappas SM, Loeb A (2017) Dynamics of dwarf galaxies disfavor stellar-mass black holes as dark matter. PRL 119:041102

    ADS  Google Scholar 

  • Kregel M, van der Kruit PC, de Grijs R (2002) Flattening and truncation of stellar discs in edge-on spiral galaxies. MNRAS 334:646

    ADS  Google Scholar 

  • Kusenko A (2009) Sterile neutrinos: the dark side of the light fermions. Phys Rep 481:1

    ADS  Google Scholar 

  • Kuzio de Naray R, McGaugh SS, de Blok WJG (2008) Mass models for low surface brightness galaxies with high-resolution optical velocity fields. ApJ 676:920

    ADS  Google Scholar 

  • Lapi A, Salucci P, Danese L (2018) Precision scaling relations for disk galaxies in the local universe. ApJ 859:2

    ADS  Google Scholar 

  • Lelli F, McGaugh SS, Schombert JM (2016a) The small scatter of the baryonic Tully–Fisher relation. ApJL 816:L14

    ADS  Google Scholar 

  • Lelli F, McGaugh SS, Schombert JM (2016b) SPARC: mass models for 175 disk galaxies with Spitzer photometry and accurate rotation curves. AJ 152:157

    ADS  Google Scholar 

  • Li B, Shapiro PR, Rindler-Daller T (2017) Bose–Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: new cosmological constraints and its detectability by LIGO. PRD 96:063505

    ADS  Google Scholar 

  • Lisanti M (2017) Lectures on dark matter physics. In: Polchinski J, Vieira P, DeWolfe O (eds) New frontiers in fields and strings. World Scientific, Singapore, pp 399–446

    Google Scholar 

  • Magoulas C, Springob CM, Colless M et al (2012) The 6dF Galaxy Survey: the near-infrared Fundamental Plane of early-type galaxies. MNRAS 427:245

    ADS  Google Scholar 

  • Mamon G, Lokas EL (2005) Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. MNRAS 363:705

    ADS  Google Scholar 

  • Maraston C (2013) In: Thomas D, Pasquali A, Ferreras I (eds) The intriguing life of massive galaxies (IAU S295). Cambridge University Press, Cambridge, p 272

  • Martinsson T, Verheijen M, Westfall K et al (2013) The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies. A&A 557:131

    Google Scholar 

  • Matteucci F (2012) Chemical evolution of galaxies. Springer, Berlin

    Google Scholar 

  • McGaugh SS (2005) The baryonic Tully–Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. ApJ 632:859

    ADS  Google Scholar 

  • McGaugh SS, Schombert JM, Bothun GD, de Blok WJG (2000) The baryonic Tully–Fisher relation. ApJL 533:L99

    ADS  Google Scholar 

  • McMillan PJ (2011) Mass models of the Milky Way. MNRAS 414:2446

    ADS  Google Scholar 

  • Moster BP, Somerville RS, Maulbetsch C et al (2010) Constraints on the relationship between stellar mass and halo mass at low and high redshift. ApJ 710:903

    ADS  Google Scholar 

  • Müller O, Pawlowski MS, Jerjen T et al (2018) A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 359:534

    ADS  MathSciNet  MATH  Google Scholar 

  • Munshi D, Valageas P, van Waerbeke L, Heavens A (2008) Cosmology with weak lensing surveys. Phys Rep 462:67

    ADS  Google Scholar 

  • Naab T, Ostriker JP (2017) Theoretical challenges in galaxy formation. ARAA 55:59

    ADS  Google Scholar 

  • Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. ApJ 490:493

    ADS  Google Scholar 

  • Nesti F, Salucci P (2013) The dark matter halo of the Milky Way, AD 2013. JCAP 7:16

    ADS  Google Scholar 

  • Noordermeer E, van der Hulst JM, Sancisi R et al (2007) The mass distribution in early-type disc galaxies: declining rotation curves and correlations with optical properties. MNRAS 376:1513

    ADS  Google Scholar 

  • Oguri M et al (2014) The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses. MNRAS 439:2494

    ADS  Google Scholar 

  • Oh S-H (2008) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 136:2761

    ADS  Google Scholar 

  • Oh S-H, Brook C, Governato F (2011) Dark and luminous matter in THINGS dwarf galaxies. AJ 142:24

    ADS  Google Scholar 

  • Oh S-H, Hunter DA, Brinks E et al (2015) High-resolution mass models of dwarf galaxies from LITTLE THINGS. AJ 149:180

    ADS  Google Scholar 

  • Oman KA, Navarro JF, Fattahi A et al (2015) The unexpected diversity of dwarf galaxy rotation curves. MNRAS 452:3650

    ADS  Google Scholar 

  • Palunas P, Williams TB (2000) Maximum disk mass models for spiral galaxies. AJ 120:2884

    ADS  Google Scholar 

  • Pascale R, Posti L, Nipoti C, Binney J (2018) Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax. MNRAS 480:927

    ADS  Google Scholar 

  • Pato M, Iocco F (2017) galkin: a new compilation of Milky Way rotation curve data. SoftwareX 6:54

    ADS  Google Scholar 

  • Persic M, Salucci P (1990) Mass decomposition of spiral galaxies from disc kinematics. MNRAS 245:577

    ADS  Google Scholar 

  • Persic M, Salucci P (1991) The universal galaxy rotation curve. ApJ 368:60

    ADS  Google Scholar 

  • Persic M, Salucci P (1995) Rotation curves of 967 spiral galaxies. ApJS 99:501

    ADS  Google Scholar 

  • Persic M, Salucci P, Stel F (1996) The universal rotation curve of spiral galaxies—I. The dark matter connection. MNRAS 281:27

    ADS  Google Scholar 

  • Collaboration Planck, Ade PAR, Aghanim N (2016) Planck 2015 results. XIII. Cosmological parameters. A&A 594:A13

    ADS  Google Scholar 

  • Plummer HC (1915) The distribution of stars in globular clusters. MNRAS 76:107

    ADS  Google Scholar 

  • Poci A, Cappellari M, McDermid RM (2017) Systematic trends in total-mass profiles from dynamical models of early-type galaxies. MNRAS 467:1397

    ADS  Google Scholar 

  • Ponomareva AA, Verheijen MAW, Papastergis E (2018) The multiwavelength Tully–Fisher relation with spatially resolved HI kinematics. MNRAS 474:4366

    ADS  Google Scholar 

  • Posacki S, Cappellari M, Treu T et al (2015) The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS\(^{3D}\) and Sloan Lens ACS galaxies. MNRAS 446:493

    ADS  Google Scholar 

  • Pulsoni C, Gerhard O, Arnaboldi M et al (2017) The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: the kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass. A&A 618:A94

    ADS  Google Scholar 

  • Ratnam C, Salucci P (2000) The mass distribution in the innermost regions of spiral galaxies. NewA 5:427

    ADS  Google Scholar 

  • Richards EE, van Zee L, Barnes KL (2015) Baryonic distributions in galaxy dark matter haloes—II. Final results. MNRAS 449:3981

    ADS  Google Scholar 

  • Ringwald A (2012) Exploring the role of axions and other WISPs in the dark universe. Phys Dark Univ 1:116

    Google Scholar 

  • Roberts MS (1978) The rotation curves of galaxies. AJ 83:1026

    ADS  Google Scholar 

  • Roszkowski L, Sessolo EM, Trojanowski S (2017) WIMP dark matter candidates and searches—current status and future prospects. Rep Prog Phys 81:066201

    ADS  MathSciNet  Google Scholar 

  • Rubin VC, Ford WK Jr, Thonnard N (1980) Rotational properties of 21 Sc galaxies with a large range of luminosities and radii, from NGC 4605 (\(R = 4\) kpc) to UGC 2885 (\(R = 122\) kpc). ApJ 238:471

    ADS  Google Scholar 

  • Salucci P (2001) The constant-density region of the dark haloes of spiral galaxies. MNRAS 320:L1

    ADS  Google Scholar 

  • Salucci P, Burkert A (2000) Dark matter scaling relations. ApJL 537:L9

    ADS  Google Scholar 

  • Salucci P, Turini N (2017) Evidences for collisional dark matter in galaxies? ArXiv e-print. arXiv:1707.01059

  • Salucci P, Frenk CS, Persic M (1993) A physical distance indicator for spiral galaxies and the determination of \(H_0\). MNRAS 262:392

    ADS  Google Scholar 

  • Salucci P, Lapi A, Tonini C, Gentile G, Yegorova I, Klein U (2007) The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. MNRAS 378:41

    ADS  Google Scholar 

  • Salucci P, Yegorova IA, Drory N (2008) The disc mass of spiral galaxies. MNRAS 388:159

    ADS  Google Scholar 

  • Salucci P, Nesti F, Gentile G, Frigerio Martins C (2010) Dark matter scaling relations. A&A 523:83

    ADS  Google Scholar 

  • Salucci P, Wilkinson MI, Walker MG et al (2012) Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. MNRAS 420:2034

    ADS  Google Scholar 

  • Schneider P (1996) Detection of (dark) matter concentrations via weak gravitational lensing. MNRAS 283:837

    ADS  Google Scholar 

  • Serra P, Oosterloo T, Cappellari M, den Heijer M, Jozsa GIG (2016) Linear relation between HI circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles. MNRAS 460:1382

    ADS  Google Scholar 

  • Shankar F, Lapi A, Salucci P (2006) New relationships between galaxy properties and host halo mass, and the role of feedbacks in galaxy formation. ApJ 643:14

    ADS  Google Scholar 

  • Shi X, Fuller GM (1999) New dark matter candidate: nonthermal sterile neutrinos. PRL 82:2832

    ADS  Google Scholar 

  • Shi D (2017) Deep imaging of the HCG 95 field. I. Ultra-diffuse galaxies. ApJ 846:26

    ADS  Google Scholar 

  • Simon JD, Bolatto AD, Leroy A, Blitz L, Gates EL (2005) High-resolution measurements of the halos of four dark matter-dominated galaxies: deviations from a universal density profile. Astrophys J 621(2):757–776. https://doi.org/10.1086/427684

    Article  ADS  Google Scholar 

  • Sofue Y (2013) Rotation curve and mass distribution in the galactic center—from black hole to entire galaxy. PASJ 65:118

    ADS  Google Scholar 

  • Sofue Y (2017) Rotation and mass in the Milky Way and spiral galaxies. PASJ 69:R1

    ADS  Google Scholar 

  • Somerville RS, Dave R (2015) Physical models of galaxy formation in a cosmological framework. ARAA 53:51

    ADS  Google Scholar 

  • Spano M, Marcelin M, Amram P et al (2008) GHASP: an H\(\alpha \) kinematic survey of spiral and irregular galaxies—V. Dark matter distribution in 36 nearby spiral galaxies. MNRAS 383:297

    ADS  Google Scholar 

  • Spekkens K, Giovanelli R, Haynes MP (2005) The cusp/core problem in galactic halos: long-slit spectra for a large dwarf galaxy sample. AJ 129:2119

    ADS  Google Scholar 

  • Spergel DN, Steinhardt PJ (2000) Observational evidence for self-interacting cold dark matter. PRL 84:3760

    ADS  Google Scholar 

  • Steigman S, Turner MS (1985) Cosmological constraints on the properties of weakly interacting massive particles. Nucl Phys B 253:375

    ADS  Google Scholar 

  • Strauss MJ, Willick JA (1995) The density and peculiar velocity fields of nearby galaxies. Phys Rep 261:271

    ADS  Google Scholar 

  • Strigari LE, Bullock JS, Kaplinghat M et al (2008) A common mass scale for satellite galaxies of the Milky Way. Nature 454:1096

    ADS  Google Scholar 

  • Strigari LE, Frenk CS, White SDM (2018) Dynamical constraints on the dark matter distribution of the sculptor dwarf spheroidal from stellar proper motions. ApJ 860:56

    ADS  Google Scholar 

  • Thomas J, Saglia RP, Bender R et al (2011) Dynamical masses of early-type galaxies: a comparison to lensing results and implications for the stellar initial mass function and the distribution of dark matter. MNRAS 415:545

    ADS  Google Scholar 

  • Tinsley BM (1981) Correlation of the dark mass in galaxies with Hubble type. MNRAS 194:63

    ADS  Google Scholar 

  • Tiret O, Salucci P, Bernardi M, Maraston C, Pforr J (2011) The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of \(z \sim 2\) galaxies. MNRAS 411:1435

    ADS  Google Scholar 

  • Toloba E, Lim S, Peng E et al (2018) Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. ApJL 856:L31

    ADS  Google Scholar 

  • Tortora C, La Barbera F, Napolitano NR et al (2014) Systematic variations of central mass density slopes in early-type galaxies. MNRAS 445:115

    ADS  Google Scholar 

  • Tortora C, Napolitano NR, Roy N et al (2018) The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey. MNRAS 473:969

    ADS  Google Scholar 

  • Treu T (2010) Strong lensing by galaxies. ARAA 48:87

    ADS  Google Scholar 

  • Tulin S, Yu H, Zurek KM (2013) Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure. PRD 87:115007

    ADS  Google Scholar 

  • Tully RB, Fisher JR (1977) A new method of determining distances to galaxies. A&A 54:661

    ADS  Google Scholar 

  • Turner MS (2018) \(\varLambda \)CDM: much more than we expected, but now less than what we want. Found Phys 48:1261

    ADS  MATH  Google Scholar 

  • van Albada TS, Bahcall JN, Begeman K et al (1985) Distribution of dark matter in the spiral galaxy NGC 3198. ApJ 295:305

    ADS  Google Scholar 

  • van der Kruit PC (1988) The three-dimensional distribution of light and mass in disks of spiral galaxies. A&A 192:117

    ADS  Google Scholar 

  • van der Kruit PC, Freeman KC (2011) Galaxy disks. ARAA 49:301–371

    ADS  Google Scholar 

  • van der Kruit PC, Searle L (1981) Surface photometry of edge-on spiral galaxies. I—a model for the three-dimensional distribution of light in galactic disks. A&A 95:105

    ADS  Google Scholar 

  • van Dokkum PG, Romanowsky AJ, Abraham R et al (2015) Spectroscopic confirmation of the existence of large, diffuse galaxies in the coma cluster. ApJL 804:L26

    ADS  Google Scholar 

  • Verheijen MAW (2001) The ursa major cluster of galaxies. V. HI rotation curve shapes and the Tully–Fisher relations. ApJ 563:694

    ADS  Google Scholar 

  • Viel M, Branchini E, Cen R et al (2005) Tracing the warm-hot intergalactic medium in the local Universe. MNRAS 360:1110

    ADS  Google Scholar 

  • Vogelsberger M, Genel S, Springel V et al (2014) Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509:177

    ADS  Google Scholar 

  • Vogt NP, Haynes MP, Herter T, Giovanelli R (2004a) \(M/L\), H\(\alpha \) rotation curves, and HI gas measurements for 329 nearby cluster and field spirals. III. Evolution in fundamental galaxy parameters. AJ 127:3273

    ADS  Google Scholar 

  • Vogt NP, Haynes MP, Herter T, Giovanelli R (2004b) \(M/L\), H\(\alpha \) rotation curves, and HI measurements for 329 nearby cluster and field spirals. I. Data. AJ 127:3325

    ADS  Google Scholar 

  • Walker M (2013) Dark matter in the galactic dwarf spheroidal satellites. In: Oswalt TD, Gilmore G (eds) Planets, stars and stellar systems 5. Springer, Dordrecht, pp 1039–1089

    Google Scholar 

  • Walker MG, Penarrubia J (2011) A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. ApJ 742:20

    ADS  Google Scholar 

  • Walker MG, Mateo M, Olszewski EW (2009a) Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. AJ 137:3100

    ADS  Google Scholar 

  • Walker MG, Mateo M, Olszewski EW et al (2009b) A universal mass profile for dwarf spheroidal galaxies? ApJ 704:1274

    ADS  Google Scholar 

  • Wang J, Fu J, Aumer M et al (2014) An observational and theoretical view of the radial distribution of HI gas in galaxies. MNRAS 441:2159

    ADS  Google Scholar 

  • Watkins LL, Evans NW, An JH (2010) The masses of the Milky Way and Andromeda galaxies. MNRAS 406:264

    ADS  Google Scholar 

  • Wechsler RH, Tinker JL (2018) The connection between galaxies and their dark matter halos. ARAA 56:435

    ADS  Google Scholar 

  • Wechsler RH, Zentner AR, Bullock JS et al (2006) The dependence of halo clustering on halo formation history, concentration, and occupation. ApJ 652:71

    ADS  Google Scholar 

  • Weinberg S (1978) A new light boson? PRL 40:223

    ADS  Google Scholar 

  • Wolf J, Martinez GD, Bullock JS et al (2010) Accurate masses for dispersion-supported galaxies. MNRAS 406:1220

    ADS  Google Scholar 

  • Xue XX et al (2008) The Milky Way’s circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of \(\sim \)2400 SDSS blue horizontal-branch stars. ApJ 684:1143

    ADS  Google Scholar 

  • Yegorova IA, Salucci P (2007) The radial Tully–Fisher relation for spiral galaxies—I. MNRAS 377:507

    ADS  Google Scholar 

  • Zaritsky D (2012) Implications and applications of kinematic galaxy scaling relations. ISRN Astron Astrophys 2012:189625

    Google Scholar 

  • Zavala J, Vogelsberger M, Walker MG (2013) Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. MNRAS 431:L20

    ADS  Google Scholar 

  • Zhao H (1996) Analytical models for galactic nuclei. MNRAS 278:488

    ADS  Google Scholar 

  • Zu Y, Mandelbaum R (2015) Mapping stellar content to dark matter haloes using galaxy clustering and galaxy-galaxy lensing in the SDSS DR7. MNRAS 454:1161

    ADS  Google Scholar 

Download references

Acknowledgements

I thank Francesca Matteucci for motivating me towards the enterprise of writing this review. I thank N. Turini, V. Gammaldi, F. Nesti, M. Cobal, A. Bressan, M. Cappellari, G. Danese, A. Lapi, C. Frenk, C. Baccigalupi, A. Pillepich, M. F. de Laurentis, R. Valdarnini and C. di Paolo for very useful discussions. I thank Brigitte Greinoecker for help in the process of writing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Salucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salucci, P. The distribution of dark matter in galaxies. Astron Astrophys Rev 27, 2 (2019). https://doi.org/10.1007/s00159-018-0113-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-018-0113-1

Keywords

Navigation