Skip to main content

Origin and evolution of the atmospheres of early Venus, Earth and Mars

Abstract

We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

According to Lebrun et al. (2013), the shaded area marks the condensation time of steam atmospheres to form planetary oceans (courtesy of P. Odert) (After Odert et al. 2018)

Fig. 6
Fig. 7

Right figure shows the atmospheric partial surface pressure evolution (courtesy of P. Odert) (After Odert et al. 2018)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

(e.g. Schlesinger 1997; Jacob 1999; Galloway 2003; Goldblatt et al. 2009, and references therein; Fowler et al. 2013; Stüeken et al. 2016a, b; Zerkle and Mikhail 2017) (courtesy of L. Sproß)

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Notes

  1. Martian SNC meteorites are named after the three representative members Shergotty, Nakhla, Chassigny of a group of 33 achondrite meteorites.

References

  • Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Inter 100:27–39

    ADS  Google Scholar 

  • Abe Y, Matsui T (1985) The formation of an impact-generated \(\text{ H }_2\text{ O }\) atmosphere and its implications for the early thermal history of the Earth. J Geophys Res 90:C545–C559

    Google Scholar 

  • Abe Y, Matsui T (1988) Evolution of an impact-generated H\(_2\)O-CO\(_2\) atmosphere and formation of a hot proto-ocean on Earth. J Atmos Sci 45:3081–3101

    ADS  Google Scholar 

  • Airapetian VS, Glocer A, Gronoff G, Hébrard E, Danchi W (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci 9:452–455

    ADS  Google Scholar 

  • Albaréde F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus and Moon. Geochemistry 339:917–927

    Google Scholar 

  • Albaréde F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461:1227–1233

    ADS  Google Scholar 

  • Alexander CMOD, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler NR (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–723

    ADS  Google Scholar 

  • Amerstorfer UV, Gröller H, Lammer H, Tian F, Noack L, Sherf M, Johnstone C, Tu L, Güdel M (2017) Escape and evolution of Mars’ \(\text{ CO }_2\) atmosphere: influence of suprathermal atom. J Geophys Res 122:1321–1337

    Google Scholar 

  • Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342:255–257

    ADS  Google Scholar 

  • Atreya SK, Trainer MG, Franz HB, Wong MH, Manning HLK, Malespin CA, Mahaffy PR, Conrad PG, Brunner AE, Leshin LA, Jones JH, Webster CR, Owen TC, Pepin RO, Navarro-González R (2016) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys Res Lett 40:5605–5609

    ADS  Google Scholar 

  • Aulbach S, Stagno V (2016) Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44:751–754

    ADS  Google Scholar 

  • Auvergne M, Bodin P, Boisnard L, Buey J-T, Chaintreuil S, the CoRoT Team (2009) The CoRoT satellite in flight: description and performance. Astron Astrophys 506:411–424

  • Ayres TR (1997) Evolution of the solar ionizing flux. J Geophys Res 102:1641–1651

    ADS  Google Scholar 

  • Baes M, Gerya T, Sobolev SV (2016) 3D thermo-mechanical modeling of plume-induced subduction initiation. Earth Planet Sci Lett 453:193–203

    ADS  Google Scholar 

  • Bakos G, Noyes RW, Kovács G, Stanek KZ, Sasselov DD, Domsa I (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. Publ Astron Soc Pac 116:266–277

    ADS  Google Scholar 

  • Ballmer MD, Lourenago DL, Hirose K, Caracas R, Nomura R (2017) Reconciling magma-ocean crystallization models with the present-day structure of the Earth’s mantle. Geochem Geophys Geosyst 18:2785–2806

    ADS  Google Scholar 

  • Becker RH, Clayton RN, Galimov EM, Lammer H, Marty B, Pepin RO, Wieler R (2003) Isotopic signatures of volatiles in terrestrial planets. Space Sci Rev 106:377–410

    ADS  Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    ADS  Google Scholar 

  • Berner RA, Kothvala Z (2001) GEOCARB III: a revised model of atmospheric \(\text{ CO }_2\) over phanerozoic time. Am J Sci 301:182–204

    ADS  Google Scholar 

  • Bockelée-Morvan D, Crovisier J, Mumma MJ, Weaver HA (2004) The composition of cometary volatiles. In: Festou MC, Keller HU, Weaver HA (eds) Comets 2. University Arizona Press, Tucson, pp 391–423

    Google Scholar 

  • Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67:391–408

    ADS  Google Scholar 

  • Bonsor A, Leinhardt ZM, Carter PJ, Elliott T, Walter MJ, Stewart ST (2014) A collisional origin to Earth’s non-chondritic composition? Icarus 257:291–300

    Google Scholar 

  • Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:1–12

    Google Scholar 

  • Borucki WJ, Koch D, Basri G, Batalha N, Brown T, the Kepler Team (2010) Kepler planet-detection mission: introduction and first results. Science 327:977–980

  • Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81

    ADS  Google Scholar 

  • Bouhifd MA, Jephcoat AP (2011) Convergence of Ni and Co metal-silicate partion coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet Sci Lett 307:341–348

    ADS  Google Scholar 

  • Bouvier A, Boyet M (2016) Primitive Solar System materials and Earth share a common initial \(^{142}\text{ Nd }\) abundance. Nature 537:399–402

    ADS  Google Scholar 

  • Boyet M, Carlson RW (2005) \(^{142}\text{ Nd }\) evidence for early (\(>\)4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    ADS  Google Scholar 

  • Bösswetter A, Lammer H, Kulikov YuN, Motschmann U, Simon S (2010) nonthermal water loss of the early Mars: 3D multi-ion hybrid simulations. Planet Space Sci 58:2013–2043

    Google Scholar 

  • Brack A, Horneck G, Cockell CS, Bérces A, Belisheva NK, Eiroa C, Henning T, Tom Herbst, Kaltenegger L, Alain Léger, Liseau R, Lammer H, Selsis F, Beichman C, Danchi W, Fridlund M, Lunine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Schneider J, Stam D, Tinetti G, White GJ (2010) Origin and evolution of life on terrestrial planets. Astrobiology 10:69–76

    ADS  Google Scholar 

  • Brasser R (2013) The formation of Mars: building blocks and accretion time scale. Space Sci Rev 174:1–4

    ADS  Google Scholar 

  • Brasser R, Matsumura S, Ida S, Mojzsis SJ, Werner SC (2016a) Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. Astrophys J 821:18–36

    Google Scholar 

  • Brasser R, Mojzsis SJ, Werner SC, S Matsumura, Ida S (2016b) Late veneer and late accretion to the terrestrial planets. Earth Planet Sci Lett 455:85–93

    ADS  Google Scholar 

  • Brasser R, Mojzsis SJ, Matsumura S, Ida S (2017) The cool and distant formation of Mars. Earth Planet Sci Lett 468:85–93

    ADS  Google Scholar 

  • Broeg CH, Benz W (2012) Giant planet formation: episodic impacts versus gradual core growth. Astron Astrophys 538:90

    ADS  MATH  Google Scholar 

  • Brown M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:961–64

    ADS  Google Scholar 

  • Buhler PB, Fasset CI, Head JW III, Lamb MP (2017) Timescales of fluvial activity and intermittency in Milna crater, Mars. Icarus 241:130–147

    ADS  Google Scholar 

  • Buick R (2007) Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100

    ADS  Google Scholar 

  • Busigny V, Cartigny P, Philippot P (2011) Nitrogen isotopes in ophiolitic metagabbros: a re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim Cosmochim Acta 75:7502–7521

    ADS  Google Scholar 

  • Busigny V, Bebout GE (2013) Nitrogen in the silicate Earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9:353–358

    Google Scholar 

  • Caffee MW, Hudson GB, Velsko C, Jr Alexander E C, Huss GR, Chivas AR (1988) Non-atmospheric noble gases from \(\text{ CO }_2\) well gases. Lunar Planet Sci XIX. Lunar Planetary Institute, Houston, pp 154–155

    Google Scholar 

  • Caffee MW, Hudson GB, Velsko C, Huss GR, Jr Alexander E C, Chivas AR (1999) Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 285:2115–2118

    Google Scholar 

  • Campbell IH, H O’Neill, C St (2012) Evidence against a chondritic Earth. Nature 483:553–558

    ADS  Google Scholar 

  • Cameron AGW (1983) Origin of the atmospheres of the terrestrial planets. Icarus 56:195–201

    ADS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowiski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    ADS  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90

    ADS  Google Scholar 

  • Canup RM (2004) Origin of terrestrial planets and the Earth–Moon system. Phys Today 57:56–62

    Google Scholar 

  • Carlucci AF, McNally PM (1969) Nitrification by marine bacteria in low concentrations of substrate and oxygen. Limnol Oceanogr 14:736–739

    ADS  Google Scholar 

  • Carr MH (1989) Recharge of the early atmosphere of Mars by impact-induced release of \(\text{ CO }_2\). Icarus 79:311–327

    ADS  Google Scholar 

  • Carter PJ, Leinhardt ZM, Elliott T, Walter MJ, Stewart ST (2015) Compositional evolution during rocky protoplanet accretion. Astrophys J 813:72

    ADS  Google Scholar 

  • Cartigny P, Marty B (2013) Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9:359–366

    Google Scholar 

  • Cassata WS (2017) Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet Sci Lett 479:322–329

    ADS  Google Scholar 

  • Castillo-Rogez J, Johnson TV, Lee MH, Turner NJ, Matson DL, Lunine J (2009) 26 Al decay: heat production and a revised age for iapetus. Icarus 204:658–662

    ADS  Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–844

    ADS  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    ADS  Google Scholar 

  • Catling DC, Glein C, Zahnle KJ, McKay CP (2005) Why \(\text{ O }_2\) is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5:415–438

    ADS  Google Scholar 

  • Catling DC, Kasting JF (2017) Atmospheric evolution on inhabited and lifeless worlds. Cambridge Univ Press, Cambridge, p 592

    Google Scholar 

  • Cawood PA, Kröner A, Pisarevsky S (2006) Precambrian plate tectonics: criteria and evidence. Geol Soc Am Today 16:4–11

    Google Scholar 

  • Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327

    ADS  Google Scholar 

  • Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224

    ADS  Google Scholar 

  • Charnay B, Forget F, Wordsworth R, Leconde J, Millour E, Codron F, Spiga A (2013) Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J Geophys Res 118:10414–10431

    Google Scholar 

  • Charnay B, Le Hir G, Fluteau F, Catling DC (2017) A warm or a cold early Earth? New insights from a 3-D climate-carbon model. Earth Planet Sci Lett 474:97–109

    ADS  Google Scholar 

  • Chassefiére E (1996a) Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J Geophys Res 101:26039–26056

    ADS  Google Scholar 

  • Chassefiére E (1996b) Hydrodynamic escape of oxygen from primitive atmospheres: application to the cases of Venus and Mars. Icarus 124:537–552

    ADS  Google Scholar 

  • Chassefiére E, Leblanc F (2011) Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet Sci Lett 310:262–271

    ADS  Google Scholar 

  • Claire MW, Sheets J, Cohen M, Ribas I, Meadows VS, Catling DC (2012) The evolution of solar flux from 0.1 nm to 160 \(\mu \text{ m }\): quantitative estimates for planetary studies. Astrophys J 757:95

    ADS  Google Scholar 

  • Clarke WB, Beg MA, Craig H (1969) Excess \(^3\text{ He }\) in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220

    ADS  Google Scholar 

  • PE Cloud (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736

    Google Scholar 

  • Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J Geophys Res 112:E2

    Google Scholar 

  • Conrad PG, Malespin CA, Franz HB, Pepin RO, Trainer MG, Schwenzer SP, Atreya SK, Freissinet C, Jones JH, Manning H, Owen T, Pavlova AA, Wiens RC, Wong MH, Mahaffy PR (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet Sci Lett 454:1–9

    ADS  Google Scholar 

  • Craig H, Lupton JE (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385

    ADS  Google Scholar 

  • Cubillos P, Erkaev EV, Juvan I, Fossati L, Johnstone CP, Lammer H, Lendl M, Odert P, Kislyakova KG (2017) An overabundance of low-density Neptune-like planets. MNRAS 466:1868–1879

    ADS  Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Limnol Oceanogr 54:1643–1652

    Google Scholar 

  • Dauphas N, Kasting JF (2011) Low \(\text{ P }\text{ CO }_2\) in the pore water not in the Archean air. Nature 474:E2

    Google Scholar 

  • Dauphas N, Pourmand A (2011) Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492

    ADS  Google Scholar 

  • Debaille V, Brandon AD, Yin QZ, Jacobsen B (2007) Coupled \(^{142}\text{ Nd }-^{143}\text{ Nd }\) evidence for a protracted magma ocean in Mars. Nature 450:525–528

    ADS  Google Scholar 

  • Dehant V, Lammer H, Kulikov YuN, Grießmeier J-M, Breuer D, Verhoeven O, Karatekin Ö, van Hoolst T, Korablev O, Lognonné P (2007) Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci Rev 129:279–300

    ADS  Google Scholar 

  • Delano JW (2001) Redox history of the Earth’s Interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341

    ADS  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336

    ADS  Google Scholar 

  • Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nat Geosci 8:552–555

    ADS  Google Scholar 

  • Dixon ET, Honda M, McDougall I, Campbell IH, Sigridsson I (2000) Preservation of neon-solar neon isotopic ratios in Icelandic basalds. Earth Planet Lett 180:309–324

    ADS  Google Scholar 

  • Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44

    ADS  Google Scholar 

  • Dohm JM, Baker VR, Boynton WV, Fairén AG, Ferris JC, Finch M, Furfaro R, Hare TM, Janes DM, Kargel JS, Karunatillake S, Keller J, Kerry K, Kimi KJ, Komatsu G, Mahaneyk WC, Schulze-Makuch D, Marinangeli L, Ori GG, Ruiz J, Wheelock SJ (2008) GRS evidence and the possibility of paleooceans on Mars. Planet Space Sci 57:664–684

    ADS  Google Scholar 

  • Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–65

    ADS  Google Scholar 

  • Domagal-Goldman SD, Segura A, Claire MW, Robinson TD, Meadows VS (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys J 792:15

    Google Scholar 

  • Driese SG, Jirsa MA, Ren Minghua, Brantley SL, Sheldon ND, Parker D, Scmitz M (2011) Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189:1–17

    ADS  Google Scholar 

  • Elkins-Tanton LT (2008) Linked magma ocean solidifcation and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191

    ADS  Google Scholar 

  • Elkins-Tanton LT (2011) Formation of early water oceans on rocky planets. Astrophys Space Sci 332:359–364

    ADS  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40:113–139

    ADS  Google Scholar 

  • Elkins-Tanton LT, Weiss BP, Zuber MT (2003) Chondrites as samples of differentiated planetesimals. Earth Planet Sci Lett 305:1–10

    ADS  Google Scholar 

  • Erkaev NV, Lammer H, Odert P, Kulikov YuN, Kislyakova KG, Khodachenko ML, Güdel M, Hanslmeier A, Biernat HK (2013) XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. Astrobiology 13:1011–1029

    ADS  Google Scholar 

  • Erkaev NV, Lammer H, Elkins-Tanton LT, Stökl A, Odert P, Marcq E, Dorfi EA, Kislyakova KG, Kulikov YuN, Leitzinger M, Güdel M (2014) Escape of the Martian protoatmosphere and initial water inventory. Planet Space Sci 98:106–119

    ADS  Google Scholar 

  • Fairén AG (2017) Icy Mars lakes warmed by methane. Nat Geosci 10:717–718

    ADS  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2014) Geologic and geochemical constraints on Earth’s early atmosphere. In: Holland DH, Turekian K (eds) Treatise in geochemistry: reference module in earth systems and environmental sciences, vol 6, pp 91–138

  • Fassett CI, Head JWIII (2005) New evidence for fluvial sedimentary deposits on Mars: deltas formed in a crater lake in the Nili Fossae region. Geophys Res Lett 32:L14201

    ADS  Google Scholar 

  • Feigelson ED, Garmire GP, Pravdo SH (2002) Magnetic flaring in the pre-main-sequence Sun and implications for the early solar system. Astrophys J 572:335–349

    ADS  Google Scholar 

  • Fennel K, Follows M, Falkowski P (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am J Sci 305:526–45

    ADS  Google Scholar 

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50:1–29

    Google Scholar 

  • Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157

    ADS  Google Scholar 

  • Fischer-Gödde M, Kleine T (2017) Ruthenium isotopic evidence for an inner solar system origin of the later vaneer. Nature 541:525–527

    ADS  Google Scholar 

  • Flament N, Coltice N, Rey PF (2008) A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet Sci Lett 275:326–336

    ADS  Google Scholar 

  • Forget F, Wordsworth R, Millour E, Madeleine J-B, Kerber L, Leconte J, Marcq E, Haberle RM (2013) 3D modelling of the early Martian climate under a denser \(\text{ CO }_2\) atmosphere: temperatures and \(\text{ CO }_2\) ice clouds. Icarus 222:81–99

    ADS  Google Scholar 

  • Fossati L, Erkaev NV, Lammer H, Cubillos PE, Odert P, Juvan I, Kislyakova KG, Lendl M, Kubyshkina D, Bauer SJ (2017) Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron Astrophys 598:A90

    ADS  Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bowman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B 368:1621

    Google Scholar 

  • Fox JL (1993) The production and escape of nitrogen atoms on Mars. J Geophys Res 98:3297–3310

    ADS  Google Scholar 

  • Frey HV (2006) Impact constraints on the age and origin of the lowlands of Mars. Geophys Res Lett 33:L08S02

    Google Scholar 

  • Fridlund M, Eiroa C, Henning T, Herbst T, Kaltenegger L, Léger A, Liseau R, Lammer H, Selsis F, Beichman C, Danchi W, Lunine J, Paresce F, Penny A, Quirrenbach A, Röttgering H, Schneider J, Stam D, Tinetti G, White GJ (2010) A roadmap for the detection and characterization of other Earths. Astrobiology 10:113–119

    ADS  Google Scholar 

  • Frost DJ, Liebske C, McCammon C, Rubie DC (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    ADS  Google Scholar 

  • Füri E, Marty B (2015) Nitrogen isotope variations in the solar system. Nat Geosci 8:515–522

    ADS  Google Scholar 

  • Gaillard F, Scaillet B, Arndt NT (2011) Atmospehric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232

    ADS  Google Scholar 

  • Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ (2009) Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–48

    ADS  Google Scholar 

  • Gallet F, Bouvier J (2013) Improved angular momentum evolution model for solar-like stars. Astron Astrophys 556:A36

    ADS  Google Scholar 

  • Galloway JN (2003) The global nitrogen cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 557–583

    Google Scholar 

  • Gebauer S, Grenfell JL, Stock JW, Lehmann R, Godolt M, von Paris P, Rauer H (2017) Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analog planets with a coupled atmosphere biogeochemical model. Astrobiology 17:27–54

    ADS  Google Scholar 

  • Geiss J (1973) Solar wind composition and implications about the history of the solar system. In: Internat Cosmic Ray Conf, 13th Conf Papers. Univ Denver, vol 5, pp 3375–3398

  • Genda H, Abe Y (2003) Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164:149–162

    ADS  Google Scholar 

  • Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–844

    ADS  Google Scholar 

  • Gerya TV, Stern RJ, Baes M, Sobolev SV, Whattam SA (2015) Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527:221–225

    ADS  Google Scholar 

  • Gillmann C, Chassefiére E, Lognonné P (2009) A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet Sci Lett 286:503–513

    ADS  Google Scholar 

  • Godfrey LV, Falkowski PG (2009) The cycling and redox state of nitrogen in the Archaean ocean. Nat Geosci 2:725–729

    ADS  Google Scholar 

  • Goldblatt C (2008) Bistability of atmospheric oxygen, the great oxidation and climate. Ph.D. thesis

  • Goldblatt C, Claire MW, Lenton TM, Matthews AJ, Watson AJ, Zahnle KJ (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci 2:891–896

    ADS  Google Scholar 

  • Goldblatt C, Zahnle KJ (2011) Faint young Sun paradox remains. Nature 474:E1

    ADS  Google Scholar 

  • Greber ND, Dauphas N, Bekker A, Ptáček MP (2017) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357:1271–1274

    ADS  Google Scholar 

  • Grott M, Morschhauser A, Breuer D, Hauber E (2011) Volcanic outgassing of \(\text{ CO }_2\) and \(\text{ H }_2\text{ O }\) on Mars. Earth Planet Sci Lett 308:391–400

    ADS  Google Scholar 

  • Grenfell JL, Gebauer S, von Paris P, Godolt M, Hedelt P, Patzer ABC, Stracke B, Rauer H (2011) Sensitivity of biomarkers to changes in chemical emissions in the Earth’s Proterozoic atmosphere. Icarus 211:81–88

    ADS  Google Scholar 

  • Güdel M, Guinan EF, Skinner SL (1997) The X-ray Sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys J 483:947–960

    ADS  Google Scholar 

  • Güdel M (2007) The Sun in time: activity and environment. Living Rev Sol Phys 4:3

    ADS  Google Scholar 

  • Haendel D, Mühle K, Nitzsche H-M, Stiehl G, Wand U (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50:749–758

    ADS  Google Scholar 

  • Halama R, Bebout GE, John T, Scambelluri M (2014) Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle. Int J Earth Sci 103:2081–2099

    Google Scholar 

  • Halliday AN, Wänke H, Birck JL, Clayton RN (2001) The accretion, composition and early differentiation of Mars. Space Sci Rev 96:197–230

    ADS  Google Scholar 

  • Halliday AN (2013) The origins of volatiles in the terrestrial planets. Geochim Cosmochim Acta 105:146–171

    ADS  Google Scholar 

  • Halliday AN (2014) The origin and earliest history of the Earth. In: Davis AM (ed) Planets, asteroids, comets and the solar system. Treatise on geochemistry, pp 149–211

  • Hamano K, Abe Y, Genda H (2013) Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497:607–610

    ADS  Google Scholar 

  • Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20

    ADS  Google Scholar 

  • Hansen BMS (2009) Formation of the terrestrial planets from a narrow annulus. Astrophys J 703:1131–1140

    ADS  Google Scholar 

  • Harper CL, Jacobsen SB (1996) Noble gases and Earth’s accretion. Science 273:1814–1818

    ADS  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    ADS  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nature 3:838–848

    Google Scholar 

  • Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428:736–738

    ADS  Google Scholar 

  • Hébrard E, Marty B (2014) Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth Planet Sci Lett 385:40–48

    ADS  Google Scholar 

  • Hier-Majumder S, Hirschmann MM (2017) The origin of volatiles in the Earth’s mantle. Geochem Geophys Geosyst 18:3078–3092

    ADS  Google Scholar 

  • Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Phys Scr 130:014024

    Google Scholar 

  • Hin RC, Coath CD, Carter PJ, Nimmo F, Yi-Jen Lai, Pogge von Strandmann PAE, Willbold M, Leinhardt ZM, Walter MJ, Elliot T (2017) Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549:511–515

    ADS  Google Scholar 

  • Hirschmann MM (2009) Ironing out the oxidation of Earth’s mantle. Science 325:545–546

    ADS  Google Scholar 

  • Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter 179:60–71

    ADS  Google Scholar 

  • Höning D, Hansen-Goos H, Airo A, Spohn T (2014) Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet Space Sci 98:5–13

    ADS  Google Scholar 

  • Hoffmann JH, Oyama VI, Zahn UV (1980) Measurements of the lower atmospheric composition: a comparison of results. J Geophys Res 85:7871–7881

    ADS  Google Scholar 

  • Holland HD (1962) Petrologic studies. In: Buddington AF, Engel EJ, James HL, Leonard BF (eds) A volume to honor. Geological Society of America, New York, pp 447–477

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York, p 351

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Holm NG (1992) Marine hydrothermal systems and the origins of life. Orig Life Evol Biosph 22:181–242

    ADS  Google Scholar 

  • Honda M, McDougall I, Patterson DB, Doulgeris A, Clague DA (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151

    ADS  Google Scholar 

  • Holloway JM, Dahlgren RA (2002) Nitrogen in rock: occurences and biogeochemical implications. Glob Biochem Cycles 16:1–17

    Google Scholar 

  • Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from \(>4 \text{ Gyr }\) zircons suggests Hadean plate boundary interactions. Nature 456:493–96

    ADS  Google Scholar 

  • Howe AR, Burrows A, Verne W (2014) Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes. Astrophys J 787:173A

    ADS  Google Scholar 

  • Hutchins KS, Jakosky BM (1996) Evolution of Martian atmospheric argon: implications for sources of volatiles. J Geophys Res 101:14933–14950

    ADS  Google Scholar 

  • Iijima Y, Goto K, Minoura K, Komatsu G, Imamura F (2014) Hydrodynamics of impact-induced tsunami over the Martian ocean. Planet Space Sci 95:33–44

    ADS  Google Scholar 

  • Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys J 537:1013–1025

    ADS  Google Scholar 

  • Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. Astrophys J 648:696–706

    ADS  Google Scholar 

  • Ikoma M, Hori Y (2012) In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys J 753:66

    ADS  Google Scholar 

  • Jackson J (2002) Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today 12:4–9

    Google Scholar 

  • Jacob DJ (1999) Introduction to atmospheric chemistry, vol 266. Princeton University Press, Princeton

    Google Scholar 

  • Jacobson SA, Morbidelli A, Raymond SN, O’Brien DP, Walsh KJ, Rubie DC (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87

    ADS  Google Scholar 

  • Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Annu Rev Earth Planet Sci 33:531–570

    ADS  Google Scholar 

  • Jakosky BM, Pepin RO, Johnson RE, Fox JL (1994) Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111:271–288

    ADS  Google Scholar 

  • Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alseed N (2017) Science 355:1408–1410

  • Jellinek AM, Jackson MG (2015) Conenctions between the bulk composition, geodynamics and habitability of Earth. Nat Geosci 8:587–593

    ADS  Google Scholar 

  • Johansen A, Blum J, Tanaka H, Ormel C, Bizzarro M, Rickman H (2014) The multifaceted planetesimal formation process. In: Beuther H, Kessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 547–570

    Google Scholar 

  • Johnson B, Goldblatt C (2015) The nitrogen budget of Earth. Earth Sci Rev 148:150–173

    Google Scholar 

  • Johnson BW, Goldblatt C (2018) EarthN: a new Earth system nitrogen model. Geochem Geophys Geosys. arXiv:1805.00893v1

  • Johnstone CP, Güdel M, Stökl A, Lammer H, Tu L, Kislyakova KG, Lüftinger T, Odert P, Erkaev NV, Dorfi EA (2015a) The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys J Lett 815:A12

    ADS  Google Scholar 

  • Johnstone CP, Güdel M, Lüftinger T, Toth G, Brott I (2015b) Stellar winds on the main-sequence I. Wind model. Astron Astrophys 577:27

    ADS  Google Scholar 

  • Johnstone CP, Güdel M, Brott I, Lüftinger T (2015c) Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron Astrophys 577:28

    ADS  Google Scholar 

  • Kanzaki Y, Murakami T (2015) Estimates of atmospheric \(\text{ CO }_2\) in the Neoarchean-Paleoproterocoic from paleosols. Geochim Cosmochim Acta 159:190–219

    ADS  Google Scholar 

  • Karki BB, Stixrude LP (2010) Viscosity of \(\text{ MgSiO }_3\) liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328:740–742

    ADS  Google Scholar 

  • Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423

    ADS  Google Scholar 

  • Kasting JF, Donahue TM (1980) The evolution of atmospheric ozone. J Geophys Res 85:3255–3263

    ADS  Google Scholar 

  • Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res 87:3091–3098

    ADS  Google Scholar 

  • Kasting JF, Pollack JB (1983) Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53:479–508

    ADS  Google Scholar 

  • Kasting JF, Pollack JB, Crisp D (1984) Effects of high \(\text{ CO }_2\) levels on surface temperature and atmospheric oxidation state of the early Earth. J Atm Chem 1:403–428

    Google Scholar 

  • Kasting JF, Pollack JB, Ackerman TP (1984) Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57:335–355

    ADS  Google Scholar 

  • Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494

    ADS  Google Scholar 

  • Kasting JF (1991) CO\(_2\) condensation and the climate of early Mars. Icarus 94:1–13

    ADS  Google Scholar 

  • Kasting JF (1992) Paradox lost and paradox found. Nature 355:676–77

    ADS  Google Scholar 

  • Kasting JF, Brown LL, Acord JM, Pollack JB (1992) Was early Mars warmed by ammonia? In: Workshop on the Martian surface and atmosphere through time. Lunar and Planetary Inst, pp 84–85

  • Kasting JF (1993) Earth’s early atmosphere. Nature 259:920–926

    Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993a) Habitable zones around main sequence stars. Icarus 101:108–128

    ADS  Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993b) Mantle redox evolution and the case for a reduced Archean atmosphere. J Geol 101:245–257

    ADS  Google Scholar 

  • Kasting JF, Schultz PA (1996) Reservoir time-scales for anthropogenic \(\text{ CO }_2\) in the atmosphere: commentary. Tellus B 48(5):703

    ADS  Google Scholar 

  • Kasting JF (1998) Habitable zones around stars and the search for extraterrestrial life. In: American Astron Soc, 193rd AAS Meeting, Bull American Astron Soc, vol 30, p 1328

  • Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Lond B Biol Sci 361:917–29

    Google Scholar 

  • Kasting JF, Siefert JL (2011) Biogeochemistry. The nitrogen fix. Nature 412:26–27

    ADS  Google Scholar 

  • Kasting JF (2013) What caused the rise of atmospheric O\(_2\). Chem Geol 362:13–25

    ADS  Google Scholar 

  • Kelly KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    ADS  Google Scholar 

  • Kelley KA, Plank T, Newman S, Stolper EM, Grove TL, Parman S, Hauri EH (2010) Mantle melting as a function of water beneath the Mariana arc. J Petrol 51:1711–1738

    ADS  Google Scholar 

  • Kerber L, Forget F, Wordsworth R (2015) Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261:133–148

    ADS  Google Scholar 

  • Kharecha P, Kasting JF, Siefert J (2005) A coupled atmosphere ecosystem model of the early Archean Earth. Geobiology 3:53–76

    Google Scholar 

  • Kiehl JT, Dickinson RE (1987) A study of the radiative effects of enhanced atmospheric \(\text{ CO }_2\) and \(\text{ CH }_4\) on early Earth surface temperatures. J Geophys Res 92:2991–2998

    ADS  Google Scholar 

  • Kite ES, Williams J-P, Lucas A, Aharonson O (2014) Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat Geosci 7:335–339

    ADS  Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418:952–955

    ADS  Google Scholar 

  • Kleine T (2011) Earth’s patchy late veneer. Nature 477:168–169

    ADS  Google Scholar 

  • Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. Astrophys J 150:551

    ADS  Google Scholar 

  • Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143:15–27

    ADS  Google Scholar 

  • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. J Geol 107:515–54

    ADS  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102:11131–11136

    ADS  Google Scholar 

  • Korenaga J (2008) Plate tectonics, flood basalts, and the evolution of Earth’s oceans. Terra Nova 20:419–39

    ADS  Google Scholar 

  • Korenaga J (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Ann Rev Earth Planet Sci 41:117–151

    ADS  Google Scholar 

  • Kruijer TS, Kleine T, Borg LE, Gregory A, Irving AJ, Bischoff A, Agee CB (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth Planet Sci Lett 474:345–354

    ADS  Google Scholar 

  • Kuhn WR, Atreya SK (1979) Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus 37:207–213

    ADS  Google Scholar 

  • Kulikov YuN, Lammer H, Lichtenegger HIM, Terada N, Ribas I, Kolb C, Langmayr D, Lundin R, Guinan EF, Barabash S, Biernat HK (2006) Atmospheric and water loss from early Venus. Planet Space Sci 54:1425–1444

    ADS  Google Scholar 

  • Kulikov YuN, Lammer H, Lichtenegger HIM, Penz T, Breuer D, Spohn T, Lundin R, Biernat HK (2007) A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci Rev 129:207–243

    ADS  Google Scholar 

  • Kunze M, Godolt M, Langematz U, Grenfell JL, Hamann-Reinus A, Rauer H (2014) Investigating the early Earth faint young Sun problem with a general circulation model. Planet Space Sci 98:77–92

    ADS  Google Scholar 

  • Kurokawa H, Kurosawa K, Usui T (2017) A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299:443–459

    ADS  Google Scholar 

  • Lammer H, Kasting JF, Chassefiére E, Johnson RE, Kulikov YuN, Tian F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139:399–436

    ADS  Google Scholar 

  • Lammer H, Bredehöft JH, Coustenis A, Khodachenko ML, Kaltenegger L, Grasset O, Prieur D, Raulin F, Ehrenfreund P, Yamauchi M, Wahlund J-E, Grießmeier J-M, Stangl G, Cockell CS, Kulikov YuN, Grenfell JL, Rauer H (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–249

    ADS  Google Scholar 

  • Lammer H, Kislyakova KG, Odert P, Leitzinger M, Schwarz R, Pilat-Lohinger E, Kulikov YuN, Khodachenko ML, Güdel M, Hanslmeier A (2011) Pathways to Earth-like atmospheres extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig Life Evol Biosph 41:503–522

    ADS  Google Scholar 

  • Lammer H, Chassefiére E, Karatekin Ö, Morschhauser A, Niles PB, Mousis O, Odert P, Möstl UV, Breuer D, Dehant V, Grott M, Gröller H, Hauber E, Pham San, Binh Lê (2013) Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci Rev 174:113–154

    ADS  Google Scholar 

  • Lammer H, Stökl A, Erkaev NV, Dorfi EA, Odert P, Güdel M, Kulikov YuN, Kislyakova KG, Leitzinger M (2014) Origin and loss of nebula-captured hydrogen envelopes from ‘sup’- to ‘super-Earths’ in the habitable zone of Sun-like stars. MNRAS 439:3225–3238

    ADS  Google Scholar 

  • Lammer H, Erkaev NV, Fossati L, Juvan I, Odert P, Cubillos PE, Guenther E, Kislyakova KG, Johnstone CP, Lüftinger T, Güdel M (2016) Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. MNRAS 461:L62–L66

    ADS  Google Scholar 

  • LaTourrette T, Wasserburg GJ (1998) Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet Sci Lett 158:91–108

    ADS  Google Scholar 

  • Lebrun T, Massol H, Chassefiére E, Davaille A, Marcq E, Sarda P, Leblanc F, Brandeis G (2013) Thermal evolution of an early magma ocean in interaction with the atmosphere. J Geophys Res (Planets) 118:1155–1176

    ADS  Google Scholar 

  • Levison HF, Morbidelli A, Tsiganis K, Nesvorny D, Gomes R (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron J 142:152

    ADS  Google Scholar 

  • Li Y, Wiedenbeck M, Shcheka S, Keppler H (2013) Nitrogen solubility in upper mantle minerals. Earth Planet Sci Lett 377:311–323

    ADS  Google Scholar 

  • Li Y, Keppler H (2014) Nitrogen speciation in mantle and crustal fluids. Geochim Cosmochim Acta 129:13–32

    ADS  Google Scholar 

  • Li Z-XA, Lee C-TA (2004) The constancy of upper mantle \(\text{ fO }_2\) through time inferred from V/Sc ratios in basalts. Earth Planet Sci Lett 228:483–493

    ADS  Google Scholar 

  • Lichtenegger HIM, Lammer H, Grießmeier J-M, Kulikov YuN, von Paris P, Hausleitner W, Krauss S, Rauer H, Kulikov YuN, von Paris P, Hausleitner W, Krauss S, Rauer H (2010) Aeronomical evidence for higher \(\text{ CO }_2\) levels during Earth’s Hadean epoch. Icarus 210:1–7

    ADS  Google Scholar 

  • Lichtenegger HIM, Kislyakova KG, Odert P, Erkaev NV, Lammer H, Gröller H, Johnstone CP, Elkins-Tanton L, Tu L, Güdel M, Holmström M (2016) Solar XUV and ENA-driven water loss from early Venus’ steam atmosphere. J Geophys Res 121:4718–4732

    Google Scholar 

  • Lillis RJ, Frey HV, Manga M (2008) Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys Res Lett 35:L14203

    ADS  Google Scholar 

  • Lillis RJ, Robbins S, Manga M, Halekas JS (2013) Time history of the Martian dynamo from crater magnetic field analysis. J Geophys Res 118:1–24

    Google Scholar 

  • Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys J 309:846–857

    ADS  Google Scholar 

  • Lu W, Cang X, Howard AD (2017) New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nature Commun 8:15766

    ADS  Google Scholar 

  • Luger R, Barnes R, Lopez E, Fortney J, Jackson B, Meadows V (2015) Habitable evaporated cores: Transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15:57–88

    ADS  Google Scholar 

  • Lumair GW, Shukolyukov A (1998) Early solar system timescales according to \(^{53}\text{ Mn }\text{- }^{53}\text{ Cr }\) systematics. Geochim Csmochim Acta 62:2863–2886

    ADS  Google Scholar 

  • Lunine JI, O’Brien SP, Raymond SN, Morbidelli A, Quinn T, Graps AL (2011) Dynamic models of terrestrial planet formation. Adv Sci Lett 4:325–338

    Google Scholar 

  • Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 2:1–9

    Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    ADS  Google Scholar 

  • Maggio A, Sciortino S, Vaiana GS, Majer P, Bookbinder JA, Golub L, Jr Harnden F R, Rosner R (1987) Einstein Observatory survey of X-ray emission from solar-type stars: the late F and G dwarf stars. Astrophys J 315:687–699

    ADS  Google Scholar 

  • Maindl TI, Dvorak R, Lammer H, Güdel M, Schäfer C, Speith R, Odert P, Erkaev NV, Kislyakova KG, Pilat-Lohinger E (2015) Impact induced surface heating by planetesimals on early Mars. Astron Astrophys 574:A22

    ADS  Google Scholar 

  • Mahaffy PR, Webster ChR, Atreya SK, Franz H, Wong M, the MSL Science Team (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341:263–266

  • Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614

    ADS  Google Scholar 

  • Mamyrin BA, Tolstikhin IN, Anufriev GS, Kamensky IL (1969) Anomalous isotopic composition of helium in volcanic gases. Dokl Akad Nauk SSSR 184:1197–1199

    Google Scholar 

  • Manning CV, Zahnle KJ, McKay CP (2009) Impact processes of nitrogen on early Mars. Icarus 199:273–285

    ADS  Google Scholar 

  • Marcq E (2012) A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J Geophys Res (Planets) 117:E01001

    ADS  Google Scholar 

  • Marty B, Allé P (1994) Neon and Argon isotope constrains on Earth-atmosphere evolution. In: Matsuda J-I (ed) Noble Gas Geochemisty and Cosmochemistry. Terra Scientific Publishing Company, Tokyo, pp 191–204

  • Marty B (1995) Nitrogen content of the mantle inferred from \(\text{ N }_2\)-Ar correlation in oceanic basalts. Nature 377:326–329

    ADS  Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66

    ADS  Google Scholar 

  • Marty B, Dauphas N (2003) The nitrogen record of crust-mantle interaction and mantle convection from Archean to present. Earth Planet Sci Lett 206:397–410

    ADS  Google Scholar 

  • Marty B, Yokochi R (2006) Water in the Earth. Rev Mineral Geochem 62:421–450

    Google Scholar 

  • Marty B, Meibom A (2007) Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. EEarth 2:43–49

    ADS  Google Scholar 

  • Marty B, Zimmermann L, Pujol M, Burgess R, Philippot P (2013) Nitrogen isotopic composition and density of the Archean atmosphere. Science 342:101–104

    ADS  Google Scholar 

  • Maurice M, Tosi N, Samuel H, Plesa A-C, Hüttig C, Breuer D (2017) Onset of solid-state mantle convection and mixing during magma ocean solidification. J Geophys Res Planets 122:577–598

    ADS  Google Scholar 

  • Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS 320:L55–L59

    ADS  Google Scholar 

  • Masset FS, Papaloizou JCB (2003) Runaway migration and the formation of hot Jupiters. Astrophys J 588:494–508

    ADS  Google Scholar 

  • Massol H, Hamano K, Tian F, Ikoma M, Abe Y, Chassefiére E, Davaille A, Genda H, Güdel M, Hori Y, Leblanc F, Marcq E, Sarda P, Shematovich VI, Stökl A, Lammer H (2016) Formation and evolution of protoatmospheres. Space Sci Rev 205:153–211

    ADS  Google Scholar 

  • Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:52–47

    Google Scholar 

  • Mikhail S, Sverjensky DA (2014) Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat Geosci 7:816–819

    ADS  Google Scholar 

  • Mikhail S, Barry PH, Sverjensky DA (2017) The relationship between mantle pH and the deep nitrogen cycle. Geochim Cosmochim Acta 209:149–160

    ADS  Google Scholar 

  • Mizuno H, Nakazawa K, Hayashi C (1980) Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet Sci Lett 50:202–210

    ADS  Google Scholar 

  • Mizuno H, Wetherill GW (1984) Grain abundance in the primordial atmosphere of the Earth. Icarus 59:74–86

    ADS  Google Scholar 

  • Monteux J, Andrault D, Samuel H (2016) On the cooling of a deep terrestrial magma ocean. Earth Planet Sci Lett 448:140–149

    ADS  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409:178–181

    ADS  Google Scholar 

  • Montesi LGJ, Zuber MT (2003) Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. J Geophys Res Planets 108:1–22

    Google Scholar 

  • Montmerle T, Augereau J-C, Chaussidon M, Gounelle M, Marty B, Morbidelli A (2006) 3. Solar System formation and early evolution: the first 100 million years. Earth Moon Planets 98:39–95

    ADS  Google Scholar 

  • Moreira M, Breddam K, Curtice J, Kurz MD (2001) Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23

    ADS  Google Scholar 

  • Morbidelli A, Chambers J, Lunine JI, Petit J-M, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and timescales for the delivery of water to the earth. Meteorit Planet Sci 35:1309–1320

    ADS  Google Scholar 

  • Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171

    ADS  Google Scholar 

  • Morbidelli A, Tsiganis K, Crida A, Levison H, Gomes R (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astrophys J 134:1790–1798

    ADS  Google Scholar 

  • Morbidelli A, Brasser R, Gomes R, Levison HF, Tsiganis K (2010) Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron J 140:1391–1401

    ADS  Google Scholar 

  • Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh K (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275

    ADS  Google Scholar 

  • Moynier F, Yin Q-Z, Irisawa K, Boyet M, Jacobsen B, Rosing MT (2010) Coupled \(^{182}\text{ W }\text{- }^{142}\text{ Nd }\) constraint for early Earth differentiation. PNAS 107:10810–10814

    ADS  Google Scholar 

  • Mullally F, Coughlin JL, Thompson SE, Rowe J, Burke C, the Kepler Team (2015) Planetary candidates observed by Kepler. VI. planet sample from Q1–Q16 (47 months). Astrophys J Supp 217:31

  • Murthy VR, van Westrenen W, Fei Y (2003) Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423:163–165

    ADS  Google Scholar 

  • Navarro-González R, McKay CP, Mvondo DN (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61–64

    ADS  Google Scholar 

  • Neumann W, Breuer D, Spohn T (2014) Differentiation of vesta: implications for a shallow magma ocean. Earth Planet Sci Lett 395:267–280

    ADS  Google Scholar 

  • Nicklas RW, Puchtel IS, Ash RD (2016) High-precision determination of the oxidation state of komatiite lavas using vanadium liquid-mineral partitioning. Chem Geol 433:36–45

    ADS  Google Scholar 

  • Nicklas RW, Puchtel IS, Ash RD (2018) Redox state of the Archean mantle: evidence from V partitioning in 3.5-2.4 Ga komatiites. Geochim Cosmochim Acta 222:447–466

    ADS  Google Scholar 

  • Noack L, Breuer D, Spohn T (2012) Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217(2):484–498

    ADS  Google Scholar 

  • Noack L, Breuer D (2014) Plate tectonics on rocky exoplanets: influence of initial conditions and rheology. Planet Space Sci 98:41–49

    ADS  Google Scholar 

  • Nutman AP, Friend CRL, Bennett VC (2002) Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archean tectonics. Tectonics 21:1005

    ADS  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3.700-million-year-old microbial structures. Nature 537:535–538

    ADS  Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001) Ages and geologic histories of Martian meteorites. Space Sci Rev 96:105–164

    ADS  Google Scholar 

  • O’Brien DP, Morbidelli A, Levison HF (2006) Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58

    ADS  Google Scholar 

  • O’Brien DP, Walsh KJ, Morbidelli A, Raymond SN (2014) Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239:74–84

    ADS  Google Scholar 

  • O’Neill CO, Jellinek AM, Lenardic A (2007) Conditions for the inset of plate tectonics on terrestrial planets and moons. Earth Planet Sci Lett 261:20–32

    ADS  Google Scholar 

  • O’Neill HSC, Palme H (2017) Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil Trans R Soc A 366:4205–4238

  • Odert P, Lammer H, Erkaev NV, Nikolaou A, Lichtenegger HIM, Johnstone CP, Kislyakova KG, Leitzinger M, Tosi N (2018) Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307:327–346

    ADS  Google Scholar 

  • Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75

    ADS  Google Scholar 

  • Olson SL, Reinhard CT, Lyons TW (2016) Limited role for methane in the mid-Proterozoic greenhouse. PNAS 113:11447–11452

    ADS  Google Scholar 

  • Owen T, Mahaffy PR, Niemann HB, Atreya S, Wong (2001) Protosolar nitrogen. Astrophys J 553:L77–L79

    ADS  Google Scholar 

  • Owen JE, Mohanty S (2016) Habitability of terrestrial-mass planets in the HZ of M Dwarfs - I. H/He-dominated atmospheres. MNRAS 459:4088–4108

    ADS  Google Scholar 

  • Owen JE, Wu Y (2016) Atmospheres of low-mass planets: the ‘boil-off’. Astrophys J 817:107

    ADS  Google Scholar 

  • Oyama VI, Carle GC, Woeller F, Pollack JB, Reynolds RT (1980) Pioneer Venus gas chromatography of the lower atmosphere of Venus. J Geophys Res 85:7891–7902

    ADS  Google Scholar 

  • Pallavicini R, Golub L, Rosner R, Vaiana GS, Ayres T, Linsky JL (1981) Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys J 248:279–290

    ADS  Google Scholar 

  • Palumbo AM, Head JW III, Wordsworth RD (2018) Late Noachian icy highlands climate model: exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures. Icarus 2018:261–286

    ADS  Google Scholar 

  • Parai R, Mukhopadhyay S (2012) How large is the subducted water flux? New constraints on mantle regassing rates. EPSL 317–318:396–406

    ADS  Google Scholar 

  • Pierens A, Nelson RP (2008) Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron Astrophys 482:333–340

    ADS  MATH  Google Scholar 

  • Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron Astrophys 397:147–157

    ADS  Google Scholar 

  • Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchinson MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

    ADS  Google Scholar 

  • Pepin RO (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92:2–79

    ADS  Google Scholar 

  • Pepin RO (1994) Evolution of the Martian atmosphere. Icarus 111:289–304

    ADS  Google Scholar 

  • Pepin RO (1997) Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126:148–156

    ADS  Google Scholar 

  • Pepin RO (2000) On the isotopic composition of primordial xenon in terrestrial planet atmospheres. Space Sci Rev 92:371–395

    ADS  Google Scholar 

  • Pepin RO, Porcelli D (2002) Origin of noble gases in the terrestrial planets. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem, vol 47. Mineralogical Society of America, Washington DC, pp 191–246

  • Pham LBS, Karatekin Ö, Dehant V (2011) Effects of impacts on the atmospheric evolution: comparison between Mars, Earth and Venus. Planet Space Sci 59:1087–1092

    ADS  Google Scholar 

  • Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734:L13

    ADS  Google Scholar 

  • Plesa A-C, Tosi N, Breuer D (2014) Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of mars? Earth Planet Sci Lett 403:225–235

    ADS  Google Scholar 

  • Plümper O, John T, Podladchikov YuY, Vrijmoed JC, Scambelluri M (2017) Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nat Geosci 10:150–156

    ADS  Google Scholar 

  • Pollacco DL, Skillen I, Collier Cameron A, Christian DJ, Hellier C, Irwin J, Lister TA, Street RA, West RG, Anderson DR, Clarkson WI, Deeg H, Enoch B, Evans A, Fitzsimmons A, Haswell CA, Hodgkin S, Horne K, Kane SR, Keenan FP, Maxted PFL, Norton AJ, Osborne J, Parley NR, Ryans RSI, Smalley B, Wheatley PJ, Wilson DM (2006) The WASP project and the superWASP cameras. Publ Astron Soc Pac 118:1407–1418

    ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    ADS  Google Scholar 

  • Porcelli D, Pepin RO (2000) Rare gas constraints on early Earth history. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 435–458

    Google Scholar 

  • Porcelli D, Pepin RO (2003) The origin of noble gases and major volatiles in the terrestrial planets. In: Holland HD, Turekian KK (eds) The atmosphere. Treatise on geochemistry, vol 4, pp 319–347

  • Porcelli D, Cassen P, Woolum D, Wasserburg GJ (1998) Acquisition and early losses of rare gases from the deep Earth. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. Lunar and Planetary Inst, vol 597, pp 55–36

  • Porcelli D, Cassen P, Woolum D (2001) Deep Earth rare gases: initial inventories, capture from the solar nebula and losses during Moon formation. Earth Planet Sci Lett 193:237–251

    ADS  Google Scholar 

  • Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7:107–12

    Google Scholar 

  • Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite. Geochim Cosmochim Acta Suppl 73:A1059

    ADS  Google Scholar 

  • Pujol M, Marty B, Burgess (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci 308:298–306

  • Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF (2014) Warming early Mars with \(\text{ CO }_2\) and \(\text{ H }_2\). Nat Geosci 7:59–63

    ADS  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–73

    ADS  Google Scholar 

  • Rasool SI, de Bergh C (1970) The runaway greenhouse effect and the accumulation of \(\text{ CO }_2\) in the atmosphere of Venus. Nature 226:1037–1039

    ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17

    ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2005) Terrestrial planet formation in disks with varying surface density profiles. Astrophys J 632:670–676

    ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2006) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183:265–282

    ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2007) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84

    ADS  Google Scholar 

  • Raymond SN, O’Brien DP, Morbidelli A, Kaib NA (2009) Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203:644–662

    ADS  Google Scholar 

  • Raymond SN, Morbidelli A (2014) The grand tack model: a critical review, complex planetary systems. In: Proc Int Astron Union, IAU Symposium, vol 310, pp 194–203

  • Raymond SN, Kokubo E, Morbidelli A, Morishima R, Walsh KJ (2014) Terrestrial planet formation at home and abroad. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University Arizona Press, Tucson, pp 595–618

    Google Scholar 

  • Reese CC, Solomatov VS (2006) Fluid dynamics of local Martian magma oceans. Icarus 184:102–120

    ADS  Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: criticality by addition of water? Science 294:578–581

    ADS  Google Scholar 

  • Reinhard CT, Planavsky NJ (2011) Mineralogical constraints on Precambrian \(\text{ p }\text{ CO }_2\). Nature 474:E4–5

    Google Scholar 

  • Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres: I. High-energy irradiances (1–1700 Å). Astrophys J 622:680

    ADS  Google Scholar 

  • Robbins SJ, Hynek BM, Lillis RJ, Bottke WF (2013) Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225:173–184

    ADS  Google Scholar 

  • Roberson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9:313–20

    Google Scholar 

  • Rodriguez JAP, Fairén AG, Tanaka KL, Zarroca M, Linares R, Platz T, Komatsu G, Miyamoto H, Kargel JS, Yan J, Gulick V, Higuchi K, Baker VR, Glines N (2015) Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Nat Sci Rep 6:25106

    ADS  Google Scholar 

  • Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. Astrophys J 801:41

    ADS  Google Scholar 

  • Ronov AB, Yaroshevskiy AA (1967) Chemical structure of the Earth’s crust. Geochemistry 11:1041–1066

    Google Scholar 

  • Rosenbauer EN, Head JW III (2015) Late Noachian fluvial erosionon Mars: cumulative water volumes required to carve the valley networks and grain size of bed-sediment. Planet Space Sci 117:429–435

    ADS  Google Scholar 

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland–indications of \(> 3700 \text{ Ma }\) oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244

    ADS  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010a) No climate paradox under the faint young Sun. Nature 464:744–747

    ADS  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010b) Rosing, bird, sleep & bjerrum reply. Nature 474:E1

    Google Scholar 

  • Rubie DC, Nimmo F, Melosh HJ (2015) Formation of the Earth’s core. In: Schubert G (ed ) Treatise on geophysics, vol 9, pp 43–79

  • Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature 378:603–605

    ADS  Google Scholar 

  • Sackmann IJ, Boothroyd AI (2003) Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophys J 583:1024–1039

    ADS  Google Scholar 

  • Salvador A, Massol H, Davaille A, Marcq E, Sarda P, Chassefiére E (2017) The relative influence of \(\text{ H }_2\text{ O }\) and \(\text{ CO }_2\) on the primitive surface conditions and evolution of rocky planets. J Geophys Res Planets 122:1458–1486

    ADS  Google Scholar 

  • Sasaki S, Nakazawa K (1988) Origin of isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial \(\text{ H }_2\) and He atmosphere. Earth Planet Sci Lett 89:323–334

    ADS  Google Scholar 

  • Sasaki S, Nakazawa K (1989) did a primary solar-type atmosphere exist around the proto-Earth? Icarus 85:21–42

    ADS  Google Scholar 

  • Safronov VS (1969) Evolution of the protoplanetary cloud and formation of the Earth and the planets. Akad Nauk SSSR Moscow, English translation, NASA TTF-667, 1972

  • Safronov VS (1972) Evolution of the protoplanetary cloud and formation of the Earth and planets. In: Safronov VS (eds). Translated from Russian. Israel Program for Scientific Translations, Keter Publishing House, Jerusalem

  • Schaefer L, Fegley B (2010) Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208:438–448

    ADS  Google Scholar 

  • Sheldon (2006) Precambrian paleosols and atmospheric \(\text{ CO }_2\) levels. Precambrian Res 147:148–155

  • Scherf M, Khodachenko ML, Blokhina M, Johnstone C, Alexeev I, Belenkaya E, Tarduno JA, Kulikov Yu N, Tu L, Lichtenegger HIM, Güdel M, Lammer H (2018) On the Earth’s paleo-magnetosphere the late Hadean eon and possible implications for the ancient terrestrial atmosphere. Earth Planet Sci Lett (submitted)

  • Schlesinger WH (1997) Biogeochemical cycles. Biogeochemistry. Academy Press, Tokyo

    Google Scholar 

  • Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG (2014) Dehydration melting at the top of the lower mantle. Science 344:165–1268

    Google Scholar 

  • Segura TL, Toon OB, Colaprete A, Zahnle K (2002) Environment effects of large impacts on Mars. Science 298:1977–1980

    ADS  Google Scholar 

  • Segura TL, Toon OB, Colaprete A (2008) Modeling the environmental effects of moderate-sized impacts on Mars

  • Segura TL, Mc Kay CP, Toon OB (2012) An impact-induced, stable climate on Mars. Icarus 220:144–148

    ADS  Google Scholar 

  • Sekiya M, Nakazawa K, Hayashi C (1980a) Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet Sci Lett 50:197–201

    ADS  Google Scholar 

  • Sekiya M, Nakazawa K, Hayashi C (1980b) dissipation of the primordial terrestrial atmosphere due to irradiation of the solar EUV. Prog Theoret Phys 64:1968–1985

    ADS  Google Scholar 

  • Shirey SB, Kamber BS, Whitehouse MJ, Mueller PA, Basu AR (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonic subduction. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth?. Geological Society of America, Boulder, pp 1–29

    Google Scholar 

  • Skumanich A (1972) Time scales for CA ii emission decay, rotational braking, and lithium depletion. Astrophys J 171:565

    ADS  Google Scholar 

  • Sleep NH (2010) The Hadean-Archean environment. Cold Spring Harb Perspect Biol 2(6):a002527

    Google Scholar 

  • Sleep NH, Zahnle K (1991) Carbon dioxide cycling and implecations for climate on ancient Earth. J Geophys Res 106:1373–1399

    ADS  Google Scholar 

  • Sleep NH, Zahnle K (2001) Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106:1373–1400

    ADS  Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early earth. Nature 342:139–142

    ADS  Google Scholar 

  • Sleep NF, Zahnle KJ, Lupu RE (2014) Terrestrial aftermath of the Moon-forming impact. Phil Trans R Soc A 372:20130172

    ADS  Google Scholar 

  • Soderblom DR, Stauffer JR, MacGregor KB, Jones BF (1993) The evolution of angular momentum among zero-age main-sequence solar-type stars. Astrophs J 409:624–634

    ADS  Google Scholar 

  • Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University Arizona Press, Tucson, pp 323–338

    Google Scholar 

  • Solomatov VS (2004) Initiation of subduction by small-scale convection. J Geophys Res 109:B01412

    ADS  Google Scholar 

  • Som SM, Buick R, Hagadorn JW, Blake TS, Perreault JM, Harnmeijer JP, Catling DC (2016) Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat Geosci 484:359–362

    Google Scholar 

  • Srinivasan B (2016) Barites—anomalous xenon from spallation and neutron-induced reactions. Nat Geosci 31:129–141

    Google Scholar 

  • Stanley BD, Hirschmann MM, Withers AC (2011) \(\text{ CO }_2\) solubility in Martian basalts and Martian atmospheric evolution. Geochim Cosmochim Acta 75:5987–6003

    ADS  Google Scholar 

  • Stauffer JR, Caillault J-P, Gagné M, Prosser CF, Hartmann LW (1994) A deep imaging survey of the Pleiades with ROSAT. Astrophys J Suppl 91:625–657

    ADS  Google Scholar 

  • Stern RJ (2005) Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33:557–60

    ADS  Google Scholar 

  • Stevenson DJ (1983a) Anomalous bulk viscosity of two-phase fluids and implications for planetary interiors. J Geophys Res 88:2445–2455

    ADS  Google Scholar 

  • Stevenson DJ (1983b) The nature of the Earth prior to the oldest known rock record: the Hadean Earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin, and evolution. Princeton University Press, Princeton, pp 32–40

    Google Scholar 

  • Stevenson DJ (1990) Fluid dynamics of core formation. In: Stevenson, D.J. Fluid dynamics of core formation. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, pp 231–249

  • Stökl A, Dorfi E, Lammer H (2015) Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron Astrophys 576:87

    ADS  Google Scholar 

  • Stökl A, Dorfi EA, Johnstone CP, Lammer H (2016) Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and \(5\, M_{\oplus }\) in the habitable zone. Astrophys J 825:86

    ADS  Google Scholar 

  • Strom RG, Schaber GG, Dawson DD (1994) The global resurfacing of Venus. J Geophys Res 99:10899–10926

    ADS  Google Scholar 

  • Stüeken EE, Buick R, Schauer AJ (2015) Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet Sci Lett 411:1–10

    ADS  Google Scholar 

  • Stüeken EE, Kipp MA, Koehler MC, Schwieterman EW, Johnson B, Buick R (2016a) Modeling \(\text{ p }\text{ N }_2\) through geological time: Implications for planetary climates and atmospheric biosignatures. Astrobiology 16:949–963

    ADS  Google Scholar 

  • Stüeken EE, Kipp MA, Koehler MC, Buick R (2016b) The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci Rev 160:220–39

    Google Scholar 

  • Tang M, Chen K, Rudnick RL (2016) Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science 372:375

    Google Scholar 

  • Tashiro T (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518

    ADS  Google Scholar 

  • Tarduno JA, Blackman EG, Mamajek EE (2014) Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys Earth Planet Int 233:68–87

    ADS  Google Scholar 

  • Tarduno JA, Cottrell RT, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349:521–524

    ADS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson prize lecture. Microbiology 144:2377–2406

    Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017

    ADS  Google Scholar 

  • Tian F, Kasting JF, Liu H-L, Roble RG (2008a) Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J Geophys Res 113:E05008

    ADS  Google Scholar 

  • Tian F, Solomon SC, Qian L, Lei J, Roble RG (2008b) Hydrodynamic planetary thermosphere model: 2. Coupling og an electron transport/energy deposition model. J Geophys Res 113:E07005

    ADS  Google Scholar 

  • Tian F, Kasting JF, Solomon SC (2009) Thermal escape of carbon from the early Martian atmosphere. Geophys Res Lett 36:L02205

    ADS  Google Scholar 

  • Tian F, Kasting JF, Zahnle K (2011) Revisiting HCN formation in Earth’s early atmosphere. Earth Planet Sci Lett 308:417–23

    ADS  Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Rev 98:5319–5333

    ADS  Google Scholar 

  • Tosi N, Plesa A-C, Breuer D (2013) Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J Geophys Res Planets 118:1512–1528

    ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levision HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461

    ADS  Google Scholar 

  • Tu L, Johnstone CP, Güdel M, Lammer H (2015) The extreme ultraviolet and x-ray Sun in time: High-energy evolutionary tracks of a solar-like star. Astron Astrophys 577:L3

    ADS  Google Scholar 

  • Tucker JM, Mukhopadhyay S (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. EPSL 393:254–265

    ADS  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Turner G, Burgess R, Bannon M (1990) Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature 344:653–655

    ADS  Google Scholar 

  • Turner S, Rushmer T, Reagan M, Moyen J-F (2014) Heading down early on? Start of subduction on early Earth. Geology 42:139–42

    ADS  Google Scholar 

  • Tyburczy JA, Frisch B, Ahrens TJ (1986) Shock-induced volatile loss from a carbonaceous chondrite: Implications for planetary accretion. Earth Planet Sci Lett 80:201–207

    ADS  Google Scholar 

  • Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the Earth, the Moon, and Mars. PNAS 41:127–44

    ADS  Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–355

    ADS  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion D (2007) Review: secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    ADS  Google Scholar 

  • Van Kranendonk MJ (2010) Two types of Archean continental crust: plume and plate tectonics on early Earth. Am J Sci 310:1187–1209

    ADS  Google Scholar 

  • Van Kranendonk MJ (2011) Onset of plate tectonics. Science 333:413–414

    ADS  Google Scholar 

  • Von Paris P, Rauer H, Lee Grenfell J, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth \(\text{ CO }_2\) reconsidered. Planet Space Sci 56:1244–1259

    ADS  Google Scholar 

  • Wahl SM, Hubbard WW, Militzer B, Guillot T, Miguel Y, Movshovitz N, Kaspi Y, Helled R, Reese D, Galanti E, Levin S, Connerney JE, Bolton SJ (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659

    ADS  Google Scholar 

  • Walker D, Longhi J, Hays J F (1975) Differentiation of a very thick magma body and implications for the source region of mare basalts. In: Lunar Planet Inst, Proc Lunar Sci Conf, 6th Houston Texas March, pp 17–21, 1103–1120

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life 16:117–127

    ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    ADS  Google Scholar 

  • Walter FM (1981) On the coronae of rapidly rotating stars. II—A period-activity relation in G stars. Astrophys J 245:677–681

    ADS  Google Scholar 

  • Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331

    ADS  Google Scholar 

  • Watenphul A, Wunder B, Wirth R, Heinrich W (2010) Ammonium-bearing clinopyroxene: a potential nitrogen reservoir in the Earth’s mantle. Chem Geol 270:240–248

    ADS  Google Scholar 

  • Watson AJ, Donahue TM, Walker JCG (1981) The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48:150–166

    ADS  Google Scholar 

  • Weber EJ, Davis L Jr (1967) The angular momentum of the solar wind. Astrophys J 148:217–227

    ADS  Google Scholar 

  • Wieler R (2016) Do lunar and meteoritic archives record temporal variations in the composition of solar wind noble gases and nitrogen? A reassessment in the light of Genesis data. Chemie der Erde 76:463–480

    ADS  Google Scholar 

  • Wieler R, Heber VS (2003) Noble gas isotopes on the Moon. Space Sci Rev 106:197–211

    ADS  Google Scholar 

  • Way MJ, Del Genio AD, Kiang NY, Sohl LE, Grinspoon DH, Aleinov I, Kelley M, Clune T (2016) Was Venus the first habitable world of our solar system? Geophys Res Lett 43:8376–8383

    ADS  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):16116

    Google Scholar 

  • Wetherill GW (1980) Formation of the terrestrial planets. Annu Rev Astron Astrophys 18:77–113

    ADS  Google Scholar 

  • Wetherill GW (1991) Occurrence of earth-like bodies in planetary systems. Science 253:535–538

    ADS  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    ADS  Google Scholar 

  • Wolf ET, Toon OB (2013) Hospitable Archean climates simulated by a general circulation model. Astrobiology 13:656–673

    ADS  Google Scholar 

  • Wood BJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    ADS  Google Scholar 

  • Wordsworth RD, Pierrehumbert RT (2013) Water loss from terrestrial planets with \(\text{ CO }_2\)-rich atmospheres. Astrophys J 778:154

    ADS  Google Scholar 

  • Wordsworth RD, Pierrehumbert RT (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785(2):L20

    ADS  Google Scholar 

  • Wordsworth RD (2016a) Atmospheric nitrogen evolution on Earth and Venus. Earth Planet Sci Lett 447:103–111

    ADS  Google Scholar 

  • Wordsworth RD (2016b) The climate of early mars. Annual Rev Earth Planet Sci 44:1–31

    Google Scholar 

  • Wright NJ, Drake JJ, Mamajek EE, Henry GW (2011) The stellar-activity-rotation relationship and the evolution of stellar dynamos. Astrophys J 743:48

    ADS  Google Scholar 

  • Yin A (2012) Structural analysis of the Valles Marineris fault zone: possible evidence for large-scale strike-slip faulting on Mars. Lithosphere 4:286–330

    ADS  Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K, Blichert-Toft J, Télouk P, Albaréde F (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418(6901):949–952

    ADS  Google Scholar 

  • Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88

    ADS  Google Scholar 

  • Yu G, Jacobsen SB (2011) Fast accretion of the Earth with a late Moon-forming giant impact. PNAS 108:17604–17609

    ADS  Google Scholar 

  • Zahnle KJ, Walker JCG (1982) The evolution of solar ultraviolet luminosity. Rev Geophys 20:280–292

    ADS  Google Scholar 

  • Zahnle K, Kasting JF, Pollack JB (1986) Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84:502–527

    ADS  Google Scholar 

  • Zahnle KJ (1986) Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J Geophys Res 91:2819–2834

    ADS  Google Scholar 

  • Zahnle K, Pollack JB, Kasting JF (1990) Xenon fractionation in porous planetesimals. Geochim Cosmochim Acta 54:2577–2586

    ADS  Google Scholar 

  • Zahnle KJ, Claire MW, Catling DC (2006) The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–283

    Google Scholar 

  • Zahnle K, Haberle RM, Catling DC, Kasting JF (2008) Photochemical instability of the ancient Martian atmosphere. J Geophys Res 113:E11004

    ADS  Google Scholar 

  • Zahnle K, Freedman R, Catling D (2010) Is there methane on Mars? In: 41st Lunar Planet Sci Conf, March 1–5, 2010. The Woodlands, Texas, vol 1533, pp 2456

  • Zahnle K J (2015) Xenon fractionation and Archean hydrogen escape. Lunar Planet Sci XLVI:1549 (abstract)

  • Zerkle AL, Junium CK, Canfield DE, House CH (2008) Production of \(^{15}\text{ N }\)-depleted biomass during cyanobacterial \(\text{ N }_2\)-fixation at high Fe concentrations. J Geophys Res 113:G03014

    Google Scholar 

  • Zerkle AL, Mikhail S (2017) The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15:343–352

    Google Scholar 

  • Zerkle AL, Poulton SW, Newton RJ, Mettam C, Clair MW, Bekker A, Junium CK (2017) Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542:465–467

    ADS  Google Scholar 

Download references

Acknowledgements

H. Lammer, M. Güdel, E. Pilat-Lohinger and M. Scherf acknowledge support by the Austrian Science Fund (FWF) NFN project S11601-N16, “Pathways to Habitability: From Disks to Active Stars, Planets and Life” and the related FWF NFN subprojects, S11604-N16 “Radiation & Wind Evolution from the T Tauri Phase to ZAMS & Beyond”, S11606-N16 “Magnetospheres”, S11607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies under Extreme Stellar Conditions”, S11608-N16 “Binary Stars”. S. Gebauer acknowledges support by the DFG project GZ: GR 2004/2-1 of the SPP 1833 “Building a Habitable Earth”. M. Godolt acknowledges financial support from the German Research Foundation (DFG) Project GO 2610/1-1. N. Tosi and N. Nikolaou acknowledge support from the Helmholtz Association (project VH-NG-1017). L. Grenfell, M. Güdel and L. Noack acknowledge the collaboration within the COST Action TD 1308. H. Lammer also acknowledge stimulating discussions with B. Marty from the CRPG-CNRS, University of Nancy regarding isotope data analysis of carbonaceous chondrites and planetary atmospheres, E. Marcq from LATMOS/IPSL, UVSQ, Université Paris-Saclay on magma ocean-related steam atmospheres, and L. Fossati from the Space Research Institute (IWF) of the Austrian Academy of Sciences (ÖAW). Furthermore, H. Lammer thanks L. Sproß from the University of Graz for the illustration shown in Fig. 16. The authors also thank the International Space Science Institute (ISSI) in Bern, the ISSI-Beijing team “Astrobiology” and the ISSI team“The Early Evolution of the Atmospheres of Earth, Venus, and Mars”, and P. Odert for discussions on the losses of volatiles from planetary embryos and protoplanets. Finally the authors thank J. F. Kasting from the Department of Geosciences at the Penn State University and an anonymous referee for their suggestions and recommendations which helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Lammer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lammer, H., Zerkle, A.L., Gebauer, S. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron Astrophys Rev 26, 2 (2018). https://doi.org/10.1007/s00159-018-0108-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-018-0108-y

Keywords

  • Primordial atmospheres
  • Secondary atmospheres
  • Atmospheric evolution
  • Early Earth, Venus, Mars
  • Habitability