Abstract
Comets have been studied from a long time and are believed to preserve pristine materials, so they are fundamental to understand the origin of the solar system and life. Starting in the early 1990s, ESA decided to have a more risky and fantastic mission to a comet. As Planetary Cornerstone mission of the ESA Horizon 2000 program, the Rosetta mission was selected with the aim of realizing two asteroid fly-bys, a rendezvous with a comet to deliver a surface science package and to hover around the comet from 4 AU inbound up to perihelion and outbound back to 3.7 AU. The mission was successfully launched on March 2, 2004 with Ariane V that started its 10-year journey toward comet 67P/Churyumov–Gerasimenko. After several planetary gravity assists, Rosetta flew by two asteroids—on September 5, 2008 (Steins) and on July 10, 2010 (Lutetia), respectively, and performed the comet orbit insertion maneuver on August 6, 2014. The onboard instruments characterized the nucleus orbiting the comet at altitudes down to few kilometers. On November 12, 2014, the lander Philae was delivered realizing the first landing ever on a comet surface. Although the exploration of the comet was planned up to the end of 2015, the mission duration was extended for nine more months than the nominal one, to follow the comet on its outbound orbit. To terminate the mission, following a series of very low orbits, a controlled impact of Rosetta spacecraft with the comet was realized on September 30, 2016. The scientific objectives of the mission have been largely achieved. The challenging mission provided the science community with an enormous quantity of data of extraordinary scientific value. In this paper, a detailed description of the mission and the highlights of the obtained scientific results on the exploration of an extraordinary world are presented. The paper also includes lessons learned and directions for the future.
Similar content being viewed by others
References
Agarwal J, A’Hearn MF, Vincent J-B et al (2016) Acceleration of individual decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. MNRAS 462:S578–S588
Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347:a0440
Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals amino acid and phosphorus in the coma of comet 67P/Churyumov–Gerasimenko. Sci Adv 2(5):e1600285
André M, Odelstad M, Graham DB et al (2017) Lower hybrid waves at comet 67P/Churyumov–Gerasimenko. MNRAS 469:S29–S38
Auger A-T, Groussin O, Jorda L et al (2015) Geomorphology of the Imhotep region on comet 67P/Churyumov–Gerasimenko from OSIRIS observations. A&A 583:A35
Auster H-U, Apathy I, Berghofer G et al (2007) ROMAP: Rosetta magnetometer and plasma monitor. Sp Sci Rev 128:221–240
Auster H-U, Apathy I, Berghofer G et al (2015) The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science 349:aaa5102
Balsiger H, Altwegg K, Bochsler P et al (2007) Rosina Rosetta orbiter spectrometer for ion and neutral analysis. Sp Sci Rev 128:745–801
Bar-Nun, A, Barucci, MA, Bussoletti, E et al (1993) ROSETTA Comet Rendez Vous Mission. ESA SCI(93)7, September 1993
Barucci MA, Fulchignoni M, Fornasier S et al (2005) Asteroid target selection for the new Rosetta mission baseline 21 Lutetia and 2867 Steins. A&A 430:313–317
Barucci MA, Belskaya IN, Fornasier S et al (2012) Overview of Lutetia’s surface composition. Planet Sp Sci 66:23–30
Barucci MA, Filacchoni G, Fornasier S et al (2016) Detection of exposed H\({_{2}}\)O ice on the nucleus of comet 67P/Churyumov- Gerasimenko. Astron Astrophys 595:A102
Besse S, Lamy P, Jorda P et al (2012) Identification and physical properties of craters on asteroid (2867) Steins. Icarus 221:1119–1129
Besse S, Kueers M, Barnouin OS et al (2014) Lutetia’s lineaments. Planet Sp Sci 101:186–195
Bibring J-P, Lamy P, Langevin Y et al (2007) Civa. Sp Sci Rev 128:397–412
Bibring J-P, Langevin Y, Carter J et al (2015) 67P/Churyumov–Gerasimenko surface properties as derived from CIVA panoramic images. Science 349:aaa0671
Biele J, Ulamec S, Maibaum M et al (2015) The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349:aaa9816
Bieler A, Altwegg K, Balsiger H et al (2015a) Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov–Gerasimenko. A&A 583:A7
Bieler A, Altwegg K, Balsiger H et al (2015b) Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526(7575):678–681
Biver N, Hofstadter M, Gulkis S et al (2015) Distribution of water around the nucleus of comet 67P/Churyumov–Gerasimenko at 34 AU from the Sun as seen by the MIRO instrument on Rosetta. A&A 583:A3
Bockelée-Morvan D, Debout V, Erard S et al (2015) First observations of \(\text{ H }_{2}\text{ O }\) and \(\text{ CO }_{2}\) vapor in comet 67P/Churyumov–Gerasimenko made by VIRTIS onboard Rosetta. A&A 583:A6
Bockelée-Morvan D, Crovisier J, Erard S et al (2016) Evolution of \(\text{ CO }_{2}\), \(\text{ CH }_{4}\), and OCS abundances relative to \(\text{ H }_{2}\text{ O }\) in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations. MNRAS 462:S170–S183
Boesswetter A, Auster U, Richter I et al (2009) Rosetta swing-by at Mars—an analysis of the RPMAP measurements in comparison with results af a 3-D mulyi-ion hybrid simulation and MEX/ASPERA_3 data. Ann Geophys 27:2383–2398
Broiles TW, Burch JL, Clark G et al (2015) Rosetta observations of solar wind interaction with the comet 67P/Churyumov–Gerasimenko. A&A 583(A21):7
Broiles TW, Burch JL, Chae K et al (2016) Statistical analysis of suprathermal electron drivers at 67P/Churyumov–Gerasimenko. MNRAS 462:S312–S322
Budnik F, Morley T (2007) Rosetta navigation at its Mars swing-by. In: Procceedings of 20th international symposium on space flight dynamics, Annapolis
Burch JL, Goldstein R, Cravens TE et al (2007) RPC-IES: the ion and electron sensor of the Rosetta plasma consortium. Sp Sci Rev 128:697–712
Capaccioni F, Coradini A, Filacchioni G et al (2015) The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science 337:a0628
Carr C, Cupido E, Lee CGY et al (2007) RPC: the Rosetta plasma consortium. Sp Sci Rev 128:629–647
Cawley SWH (1987) ICE observation of comet Giacobini–Zinner. Philos Trans R Soc Lond A323:405–420
Clark G, Broiles TW, Burch JL et al (2015) Suprathermal electron environment of comet 67P/Churyumov–Gerasimenko: observations from the Rosetta Ion and electron sensor. A&A 583:A24 6
Colangeli L, Lopez-Moreno JJ, Palumbo P et al (2007) The grain impact analyser and dust accumulator (GIADA) experiment for the Rosetta mission: design, performances and first results. Sp Sci Rev 128:803–821
Coradini A, Capaccioni F, Drossart P et al (2007) Virtis: an imaging spectrometer for the Rosetta mission. Sp Sci Rev 128:529–559
Coradini A, Grassi D, Capaccioni F et al (2010) Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft. JGR 115:E04004
Coradini A, Capaccioni F, Erard S (2011) The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334:492–494
Dalla Corte V, Rotundi A, Fulle M et al (2016) 67P/C-G inner coma dust properties from 22 au inbound to 20 au outbound to the Sun. MNRAS 462:S210–S219
Davidsson BJR, Sierks H, Güttler C et al (2016) The primordial nucleus of comet 67P/Churyumov–Gerasimenko. A&A 592:A63 30
Deshaprya P, Barucci MA, Fornasier S et al (2016) Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. MNRAS 462:274
De Sanctis MC, Capaccioni F, Ciarniello M et al (2015) The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature 525:500–503
El-Maarry MR, Thomas N, Giacomini L et al (2015) Regional surface morphology of comet 67P/Churyumov–Gerasimenko from Rosetta/OSIRIS images. A&A 583:A26
El-Maarry MR, Thomas N, Gracia-Berná A et al (2016) Regional surface morphology of comet 67P/Churyumov–Gerasimenko from Rosetta/OSIRIS images: the southern hemisphere. A&A 593:A110
El-Maarry MR, Groussin O, Thomas N et al (2017) Surface changes on comet 67P/Churyumov–Gerasimenko suggest a more active past. Science 355(6332):1392–1395
Ercoli-Finzi A, Bernelli Zazzera F, Dainese C (2007) SDT—how to sample a comet. Sp Sci Rev 128:281–299
Eriksson AI, Boström R, Gill R et al (2007) RPC-LAP: the Rosetta Langmuir probe instrument. Sp Sci Rev 128:729–744
Feldman PD, Steffl AJ, Parker JW et al (2011) Rosetta–Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214:394–399
Feldman PD, A’Hearn MF, Bertaux J-L et al (2015) Measurements of the near-nucleus coma of comet 67P/Churyumov–Gerasimenko with the Alice far-ultraviolet spectrograph on Rosetta. A&A 583:A8
Filacchione G, de Sanctis MC, Capaccioni F et al (2016a) Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature 529:368–372
Filacchione G, Raponi A, Capaccioni F et al (2016b) Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Science 354:1563–1566
Fink U, Doose L, Rinaldi G et al (2016) Investigation into the disparate origin of \(\text{ CO }_{2}\) and \(\text{ H }_{2}\text{ O }\) outgassing for Comet 67/P. Icarus 277:78–97
Fornasier S, Hasselmann PH, Barucci MA et al (2015) Spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. A&A 583:A30
Fornasier S, Mottola S, Keller HU et al (2016) Rosetta’s comet 67P sheds its dusty mantle to reveal its icy nature. Science 345:1566–1570
Fornasier S, Feller C, Lee J-C et al (2017) The highly active Anhur-Bes regions in the 67P Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. MNRAS 469:S93–S107
Fougere N, Altwegg K, Berthelier J-J et al (2016) Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov–Gerasimenko. MNRAS 462:S156–S163
Fray N, Bardyn A, Cottin H et al (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538:72–74
Fulle M, Della Corte V, Rotondi A et al (2015) Density and charge of pristine fluffy particles from comet 67P/Churyumov–Gerasimenko. Astrophys J Lett 802:L2 5
Fulle M, Altobelli A, Buratti B et al (2016a) Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view. MNRAS 462:S2–S8
Fulle M, Della Corte V, Rotondi A et al (2016b) Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. MNRAS 462:S132–S137
Fulle M, Blumm J (2017) Fractal dust constrains the collisional history of comets. MNRAS 469:S39–S44
Galand M, Héritier KL, Odelstad E et al (2016) Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun. MNRAS 462:S331–S351
Glassmeier K-H, Richter I, Diedrich A et al (2007) RPC-MAG: the fluxgate magnetometer in the ROSETTA plasma consortium. Sp Sci Rev 128:649–670
Goesmann F, Rosenbauer H, Roll R et al (2007) Cosac, The cometary sampling and composition experiment on Philae. Sp Sci Rev 128:257–280
Goesmann F, Rosenbauer H, Bredehöft JH et al (2015) Organic compounds on comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689
Goetz C, Koenders C, Hansen KC et al (2016) Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko. MNRAS 462:S459–S467
Groussin O, Sierks H, Barbieri C et al (2015) Temporal morphological changes in the Imhotep region of comet 67P/Churyumov–Gerasimenko. A&A 583:36
Gulkis S, Frerking M, Crovisier J et al (2007) MIRO: microwave instrument for Rosetta orbiter. Sp Sci Rev 128:561–597
Gulkis S, Allen M, von Allmen P et al (2015) Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko. Science 347:aaa0709
Grün E, Agarwal J, Altobelli N et al (2016) The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. MNRAS 462:S220–S234
Hansen KC, Altwegg K, Berthelier J-J et al (2016) Evolution of water production of 67P/Churyumov–Gerasimenko: an empirical model and a multi-instrument study. MNRAS 462:S491–S506
Hassig M, Altwegg K, Balsiger H et al (2015) Time variability and heterogeneity in the coma of 67P/Churyumov–Gerasimenko. Science 347:aaa0276
Heinisch P, Auster HU, Richter I et al (2017) Joint two-point observations of LF-waves at 67P/Churyumov–Gerasimenko. MNRAS 469:S68–S72
Hirabayashi M, Scheeres DJ, Chesley RS et al (2016) Fission and reconfiguration bilobate comets as revealed by 67P/Churyumov–Gerasimenko. Nature 534:352–355
Jorda L, Gaskell RW, Capanna C et al (2016) The global shape, density and rotation of comet 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus 277:257–278
Jutzi M, Michel P, Benz W (2010) A large crater as a probe of the internal structure of the E-type asteroid Steins. A&A 509:L2–L5
Jutzi M, Asphaug E (2015) The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348(6241):1355–1358
Keller HU, Barbieri C, Lamy P et al (2007) OSIRIS: the scientific camera system onboard Rosetta. Sp Sci Rev 128:433–506
Keller HU, Barbieri C, Koschny D et al (2010) E-type asteroid (2867) steins as imaged by OSIRIS on board Rosetta. Science 327:190
Kissel J, Altwegg K, Clark BC et al (2007) Cosima high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta. Sp Sci Rev 128:823–867
Klingelhöfer G, Brückner J, D’Uston C et al (2007) The Rosetta alpha particle X-ray spectrometer (APXS). Sp Sci Rev 128:383–396
Koenders C, Goetz C, Richter I et al (2016) Magnetic field pile-up and draping at intermediately active comets: results from comet 67P/Churyumov–Gerasimenko at 20 AU. MNRAS 462:S235–S241
Kofman W, Herique A, Goutail J-P et al (2007) The comet nucleus sounding experiment by radiowave transmission (CONSERT): a short description of the instrument and of the commissioning stages. Sp Sci Rev 128:413–432
Kofman W, Herique A, Barbin Y et al (2015) Properties of the 67P/Churyumov–Gerasimenko interior revealed by CONSERT radar. Science 349:aaa0639
Küers M, Moissl R, Vincent J-B et al (2012) Boulders on Lutetia. Planet Sp Sci 66:71–78
Lee S, von Allmen P, Allen M et al (2015) Spatial and diurnal variation of water outgassing on comet 67P/Churyumov–Gerasimenko observed from Rosetta/MIRO in August 2014. A&A 583:A5
Le Roy L, Altwegg K, Balsiger H et al (2015) Inventory of the volatiles on comet 67P/Churyumov–Gerasimenko from Rosetta/ROSINA. A&A 583:A1
Lethuillier A, Le Gall A, Hamelin M et al (2016) Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov–Gerasimenko as constrained by the permittivity probe SESAME-/Philae/Rosetta. A&A 591(idA32):17
Leyrat C, Fornasier S, Barucci MA et al (2010) Search for Steins’ surface inhomogeneities from OSIRIS Rosetta images. Planet Sp Sci 58:1097–1106
Luspay-Kuti A, Hässig M, Fuselier SA et al (2015) Composition-dependent outgassing of comet 67P/Churyumov–Gerasimenko from ROSINA/DFMS implications for nucleus heterogeneity? A&A 583:A4
Mall U, Altwegg K, Balsiger H et al (2016) High-time resolution in-situ investigation of major cometary volatiles around 67P/C-G at 31–23 AU measured with ROSINA-RTOF. Astrophys J 819:126 9
Mannel T, Bentley MS, Schmied R et al (2016) Fractal cometary dust—a window into early solar system. MNRAS 462:S304–S311
Marchi S, Massironi M, Vincent JB et al (2012) The cratering history of asteroid (21) Lutetia. Planet Sp Sci 66:87–95
Marchi S, Chapman CR, Barnouin OS et al (2015) Cratering on asteroids. In: Michel P et al (eds) Asteroid IV. Univ of Arizona Press, Arizona, pp 725–744
Massironi M, Simioni E, Marzari F et al (2015) Two independent and primitive envelopes of the bilobate nucleus of comet. 67P Nat 526:402–405
Morbidelli A, Rickman H (2015) Comets as collisional fragments of a primordial planetesimals disk. A&A 583:43 9
Morley T, Budnik F (2006) Rosetta Navigation at its first Earth Swing-by. In: Proocedings of the 19th international symposium on space flight dynamics, Kanazawa, Japan
Morley T, Budnik F (2009) Rosetta navigation for the fly-by of asteroid 2867 steins. In: Proceedings of the 21st international symposium on space flight dynamics, Toulouse
Morley T, Budnik F, Croon M et al (2012) Rosetta navigation for the fly-by of asteroid (21) Lutetia. In: Proceedings of the 25th international symposium on space flight dynamics, Pasadena
Mottola S, Arnold G, Grothues H-G (2007) The Rolis experiment on the Rosetta lander. Sp Sci Rev 128:241–255
Mottola S, Arnold G, Grothues H-G et al (2015) The structure of the regolith on 67P/Churyumov–Gerasimenko from ROLIS descent imaging. Science 349:aaa0232
Nakashima D, Ushikubo T, Kita NT et al (2015) Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al-Mg chronology of plagioclase. Earth Planet Sci Lett 410:54–61
Newburn, RL Jr (1986) Halley Armada report. In: Prooceedings of the nineteenth annual electronics and aerospace systems conference, Washington, DC, Sept 8–10, 1986 (A87-40351 17-12) New York, Institute of Electrical and Electronics Engineers, Inc, 1986, p 165–173
Nemeth Z, Burch J, Goetz C et al (2016) Charged particle signatures of the diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. MNRAS 462(Sul–1):S415–S421
Nilsson H, Lundin R, Lundin K et al (2007) RPC-ICA: the ion composition analyzer of the Rosetta plasma consortium. Sp Sci Rev 128:671–695
Nilsson H, Stenberg Wieser G, Behar E et al (2015) Evolution of the ion environment of comet 67P/Churyumov–Gerasimenko observations between 3.6 and 2.0 AU. A&A 583, A20, 8
Pajola M, Lazzarin M, Bertini D et al (2012a) Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implicaions for its collisional capture. MNRAS 427:3230–3243
Pajola M, Magrin S, Lazzarin M et al (2012b) Rosetta-Mars fly-by, February 25, 2007. Mem SAIt Suppl 20:105–113
Pajola M, Lazzarin M, Bertini I et al (2014) New hints on Phobos collisional capture origin from Rosetta-OSIRIS observation. Mem SAIt Suppl 26:75–80
Pajola M, Vincent J-B, Güttler C et al (2015) Size-frequency distribution of boulders \(\ge \)7 m on comet 67P/Churyumov–Gerasimenko. A&A 583:A37
Pajola M, Oklay N, La Forgia F et al (2016a) Aswan site on comet 67P/Churyumov–Gerasimenko: morphology, boulder evolution and spectrophotometry. A&A 592:A69 17
Pajola M, Lucchetti A, Vincent J-B et al (2016b) The southern hemisphere of 67P/ Churyumov–Gerasimenko: analysis of the preperihelion size/frequency distribution of boulders \(>\) 7m. A&A 592:L2 5
Pajola M, Hofner S, Vincent JB et al (2017) The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nat Astron 1:0092
Pätzold M, Häusler B, Aksnes K et al (2007) Rosetta radio science investigations (RSI). Sp Sci Rev 128:599–627
Pätzold M, Andert TP, Asmar SW et al (2011) Asteroid 21 Lutetia: low mass, high density. Science 334:491–492
Patzold M, Andert T, Hahn M et al (2016) A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature 530(7588):63–65
Perna D, Fulchignoni M, Barucci MA et al (2017) Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/ Churyumov–Gerasimenko. A&A 600:A115 9
Pommerol A, Thomas N, El-Maarry MR et al (2015) OSIRIS observations of meter-sized exposures of H20 ice at the surface of 67/Churyumov–Gerasimenko and interpretation using laboratory experiments. A&A 583:A25 16
Poulet F, Lucchetti A, Bibring J-P et al (2016) Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov–Gerasimenko. MNRAS 462(Supplement 1):S23–S32
Quirico E, Moroz LV, Schmitt B et al (2016) Refractory and semi-volatile organics at the surface of comet 67P/Churyumov–Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272:32–47
Rickman H, Marchi S, A’Hearn MF et al (2015) Comet 67P/Churyumov–Gerasimenko: constraints on its origin from Osiris observations. A&A 583:A44 8
Riedler W, Torkar K, Jeszenszky H et al (2007) MIDAS: the micro-imaging dust analysis system for the Rosetta mission. Sp Sci Rev 128:869–904
Rivkin AS, Clark BE, Ockert-Bell M et al (2011) Observations of 21 Lutetia in the 2–4 micron region with the NASA IRTF. Icarus 216:62–68
Rotundi A, Sierks H, Della Corte V et al (2015) Dust measurements in the coma of comet 67/P Churiumov–Gerasimenko inbound to the Sun. Science 347(6220):aaa3905 1–6
Rubin M, Altwegg K, Balsiger H et al (2015) Moleular nitrogen in comet 67P/Churyumov–Gerasimenko indicates a low formation temperature. Science 348:232–235
Schröder S, Mottola G, Arnold H-G et al (2017) Close-up images of the final Philae landing site on comet 67P/Churyumov–Gerasimenko acquired by the ROLIS camera. Icarus 285:263–274
Seidensticker KJ, Möhlmann D, Apathy I et al (2007) Sesame—an experiment of the Rosetta Lander Philae: objectives and general design. Sp Sci Rev 128:301–337
Sierks H, Lamy PL, Barbieri C (2011) Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334:487–490
Sierks H, Barbieri C, Lamy PL et al (2015) On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347:1044
Spohn T, Seiferlin K, Hagermann A et al (2007) Mupus a thermal and mechanical properties probe for the Rosetta Lander Philae. Sp Sci Rev 128:339–362
Spohn T, Knollenberg J, Ball AJ et al (2015) Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov–Gerasimenko. Science 349:aaa0464
Stern SA, Slater DC, Scherrer J et al (2007) Alice: the Rosetta ultraviolet imaging spectrograph. Sp Sci Rev 128:507–527
Stern SA, Parker JW, Feldman PD et al (2011) Ultraviolet discoveries at asteroid (21) Lutetia by Rosetta Alice ultraviolet spectrometer. Astron J 141:199–202
Thomas N, Barbieri C, Keller HU et al (2012) The geomorphology of (21) Lutetia: results from the OSIRIS imaging system on board ESA’s Rosetta spacecraft. Planet Sp Sci 66:96–124
Thomas N, Davidsson BJR, El-Maarry MR et al (2015a) Redistribution of particles across the nucleus of comet 67P/Churyumov–Gerasimenko. A&A 583:A17
Thomas N, Sierks H, Barbieri C et al (2015b) The morphological diversity of comet 67P/Churyumov–Gerasimenko. Science 347:a0440
Trotignon JG, Lagoutte D, Michau JL et al (2005) Thermal plasma measurements in the earth plasmasphere by the mutual impedance probe onboard the Rosetta spacecraft. AGU fall meeting 2006, abstract #SM11B-0307
Trotignon JG, Lagoutte D, Michau JL et al (2006) Plasma Density and Magnetic Strength Measured in the Earth Plasmasphere by the Mutual Impedance Probe Onboard the Rosetta. Spacecraft AGU fall meeting 2006, abstract #SM11B-0307
Trotignon JG, Michau JL, Lagoutte D et al (2007) RPC-MIP: the mutual impedance probe of the Rosetta plasma consortium. Sp Sci Rev 128:713–728
Veverka J, Belton M, Klaasen K et al (1994) Galileo’s encounter with 951 Gaspra: overview. Icarus 107:2–17
Vincent J-B, Bodewits D, Besse S et al (2015) Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523:63
Vincent J-B, A’Hearn MB, Lin Z-Y et al (2016a) Summer fireworks on comet 67P. MNRAS 462:S184–S194
Vincent J-B, Oklay N, Pajol M et al (2016b) Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov–Gerasimenko. A&A 587:A14 15
Wahlberg Jansson K, Johansen A (2014) Formation of pebble-pile planetesimals. A&A 570:A47 10
Weiss BP, Elkins-Tanton LT, Barucci MA et al (2012) Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planet Sp Sci 66:137–146
Wright IP, Pillinger CT (1998) Modulus-an experiment to measure precise stable isotope ratios on cometary materials. Adv Sp Res
Wright IP, Barber SJ, Morgan GH et al (2007) Ptolemy an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Sp Sci Rev 128:363–381
Wright IP, Sherida S, Barber SJ et al (2015) CHO-bearing organic compounds ar the surface of 67P/Churyumov–Gerasimenko revealed by Ptolemy. Science 349:aab0673
Wurz P, Rubin M, Altwegg K et al (2015) Solar wind sputtering of dust on the surface of 67P/Churyumov–Gerasimenko. A&A 583:A22 9
Yang L, Paulsson J, Simon Wedlund C et al (2016) Observations of high-plasma density region in the inner coma of 67P/Churyumov–Gerasimenko during early activity. MNRAS 462:S33–S44
Zsom A, Ormel CW, Güttler C et al (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II Introducing the bouncing barrier. A&A A57(22)
Acknowledgements
The authors acknowledge the funding of the French national space agency Centre National d’Etudes Spatiales. We are grateful to all the Rosetta instrument teams and ESA Operations teams. The ESA Technical Directorate is also gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barucci, M.A., Fulchignoni, M. Major achievements of the Rosetta mission in connection with the origin of the solar system. Astron Astrophys Rev 25, 3 (2017). https://doi.org/10.1007/s00159-017-0103-8
Received:
Published:
DOI: https://doi.org/10.1007/s00159-017-0103-8