Skip to main content
Log in

Spontaneous magnetic reconnection

Collisionless reconnection and its potential astrophysical relevance

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) “diffusion region”, where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as \({<}10^{-5}\) per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape \(W_b\propto k^{-\alpha }\) in wavenumber k with power becoming as low as \(\alpha \approx 2\). Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, “current carpets”. By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching \(F(\gamma )\propto \gamma ^{-1}\), with \(\gamma \) the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Behera B, Beilicke M, Benbow W, Berge D, Bernlöhr K et al (2007) An exceptional very high energy Gamma-Ray flare of PKS 2155–304. Astrophys J Lett 664:71. doi:10.1086/520635

  • Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell J, Schwartz SJ, Robert P (2009) Univeersality of solar-wind turbulent spectrum from MHD to electron scales. Phys Rev Lett 103:165003. doi:10.1103/PhysRevLett.103.165003

    Article  ADS  Google Scholar 

  • Alexandrova O, Chen CHK, Sorriso-Valvo L, Horbury T, Bale SD (2013) Solar wind turbulence and the role of ion instabilities. Space Sci Rev 178:101–139. doi:10.1007/s11214-013-0004-8

    Article  ADS  Google Scholar 

  • Aunai N, Hesse M, Kuznetsova M (2013a) Electron nongyrotropy in the context of collisionless magnetic reconnection. Phys Plasmas 20:092903. doi:10.1063/1.4820953

  • Aunai N, Hesse M, Black C, Evans R, Kuznetsova M (2013b) Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers. Phys Plasmas 20:042901. doi:10.1063/1.4795727

  • Baumjohann W, Treumann RA (1996) Basic space plasma physics. Imperial College Press, London

    Book  Google Scholar 

  • Beskin VS, Balogh A, Falanga M, Lyutikov M, Mereghetti S, Piran S, Treumann RA (eds) (2015) The strongest magnetic fields in the universe, ISSI Space Sci Series SSSI-54. Springer, New York

    Google Scholar 

  • Bessho N, Bhattacharjee A (2005) Collisionless reconnection in an electron-positron plasma. Phys Rev Lett 95:245001. doi:10.1103/PhysRevLett.95.245001

    Article  ADS  Google Scholar 

  • Bessho N, Chen L-J, Shuster JR, Wang S (2014) Electron distribution functions in the electron diffusion region of magnetic reconnection: physics behind the fine structures. Geophys Res Lett 41:8688–8695. doi:10.1002/2014GL062034

    Article  ADS  Google Scholar 

  • Biskamp D (2003) Magnetohydrodynamic turbulence. Cambridge UP, Cambridge

    Book  MATH  Google Scholar 

  • Biskamp D (2005) Magnetic reconnection in plasmas. Cambridge UP, Cambridge

    Google Scholar 

  • Bohm D (1949) The characteristics of electrical discharges in magnetic fields. In: Guthrie A, Wakerling RK (eds) Vacuum equipment and techniques. McGraw-Hill, New York

  • Browning P, Lazarian A (2013) Notes on magnetohydrodynamics of magnetic reconnection in turbulent media. Space Sci Rev 178:325–355. doi:10.1007/s11214-013-0022-6

    Article  ADS  Google Scholar 

  • Büchner J (2007) Astrophysical reconnection and collisionless dissipation. Plasma Phys Controll Fusion 49:325. doi:10.1088/0741-3335/49/12B/S30

    Article  ADS  Google Scholar 

  • Büchner J, Elkina N (2005) Vlasov code simulation of anomalous resistivity. Space Sci Rev 121:237. doi:10.1007/s11214-006-6542-6

    Article  ADS  Google Scholar 

  • Buneman O (1958) Instability, turbulence, and conductivity in current-carrying plasma. Phys Rev Lett 1:8–9. doi:10.1103/PhysRevLett.1.8

    Article  ADS  Google Scholar 

  • Buneman O (1959) Dissipation of currents in ionized media. Phys Rev 115:503–517. doi:10.1103/PhysRev.115.503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bykov AM, Treumann RA (2011) Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks. Astron Astrophys Rev 19:42. doi:10.1007/s00159-011-0042-8

    Article  ADS  Google Scholar 

  • Cattell CA, Crumley J, Dombeck J, Wygant JR, Mozer FS (2002) Polar observations of solitary waves at Earht’s magnetopause. Geophys Res Lett 29:1065. doi:10.1029/2001GL014046

    Article  ADS  Google Scholar 

  • Cassak PA, Shay MA (2012) Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset. Space Sci Rev 172:283–302. doi:10.1007/s11214-011-9755-2

    Article  ADS  Google Scholar 

  • Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014a) Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys Plasmas 21:056501. doi:10.1063/1.4872024

    Article  ADS  Google Scholar 

  • Cerutti B, Werner GR, Uzdensky DA, Begelman MC (2014b) Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys J 782:104. doi:10.1088/0004-637X/782/2/104

    Article  ADS  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Che H, Drake JF, Swisdak M (2011) A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474:184–187. doi:10.1038/nature10091

    Article  ADS  Google Scholar 

  • Che H, Drake JF, Swisdak M, Goldstein ML (2013) The adiabatic phase mixing and heating of electrons in Buneman turbulence. Phys Plasmas 20:061205. doi:10.1063/1.4811137

    Article  ADS  Google Scholar 

  • Chen X, Chatterjee R, Fossati G, Pohl M (2014) Connection between magnetic field amplification and blazar flares. Int J Mod Phys Conf Series 28:1460180. doi:10.1142/S201019451460180X

    Article  Google Scholar 

  • Consolini G, Grandioso S, Yordanova E, Marcucci MF, Pallocchia G (2015) Statistical and scaling features of fluctuations in the dissipation range during a reconnection event. Astrophys J 804:19. doi:10.1088/0004-637X/804/1/19

    Article  ADS  Google Scholar 

  • Dahlin JT, Drake JF, Swisdak M (2014) The mechanism of electron heating and acceleration during magnetic reconnection. Phys Plasmas 21:092304. doi:10.1063/1.4894484

    Article  ADS  Google Scholar 

  • Dai Y, Ding MD, Guo Y (2013) Production of the extreme-ultraviolet late phase of an X class flare in a three-stage magnetic reconnection process. Astrophys J Lett 773:L21. doi:10.1088/2041-8205/773/2/L21

    Article  ADS  Google Scholar 

  • Daughton W, Roytershteyn V (2012) Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes. Space Sci Rev 172:271–282. doi:10.1007/s11214-011-9766-z

    Article  ADS  Google Scholar 

  • Daughton W, Roytershteyn V, Karimabadi H, Yin L, Albright BJ, Bergen B, Bowers KJ (2011) Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys 7:539–542. doi:10.1038/NPHYS1965

    Article  ADS  Google Scholar 

  • Daughton W, Nakamura TKM, Karimabadi H, Roytershteyn V, Loring B (2014) Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys Plasmas 21:052307. doi:10.1063/1.4875730

    Article  ADS  Google Scholar 

  • DeVore CR, Antiochos SK, Black CE, Harding AK, Kalapotharakos C, Kazanas D, Timokhin AN (2015) A model for the electrically charged current sheet of a pulsar. Astrophys J 801:109. doi:10.1088/0004-637X/801/2/109

    Article  ADS  Google Scholar 

  • Dieckmann ME, Ahmed H, Doria D, Sarri G, Walder R, Folini D, Bret A, Ynnerman A, Borghesi M (2015) A thin-shell instability in collisionless plasma. Phys Rev E (in press)

  • Ding J, Yuan F, Liang E (2010) Electron heating and acceleration by magnetic reconnection in hot accretion flows. Astrophys J 708:1545–1550. doi:10.1088/0004-637X/708/2/1545

    Article  ADS  Google Scholar 

  • Divin A, Lapenta G, Markidis S, Semenov VS, Erkaev NV, Korovinskiy DB, Biernat HK (2012) Scaling of the inner electron diffusion region in collisionless magnetic reconnection. J Geophys Res 117:A06217. doi:10.1029/2011JA017464

    ADS  Google Scholar 

  • Drake JF, Swisdak M, Cattell M, Shay MA, Rogers BN, Zeiler A (2003) Formation of electron holes and particle energization during magnetic reconnection. Science 299:873–877. doi:10.1126/science.1080333

    Article  ADS  Google Scholar 

  • Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94:095001. doi:10.1103/PhysRevLett.94.095001

    Article  ADS  Google Scholar 

  • Drake JF, Swisdak M, Che H, Shay MA (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443:553–556. doi:10.1038/nature05116

    Article  ADS  Google Scholar 

  • Drake JF, Swisdak M, Fermo R (2013) The power law spectra of energetic particles during multi-island magnetic reconnection. Astrophys J Lett 763:L5. doi:10.1088/2041-8205/763/1/L5

    Article  ADS  Google Scholar 

  • Eastwood JP, Phan TD, Bale SD, Tjulin A (2009) Observations of turbulence generated by magnetic reconnection. Phys Rev Lett 102:035001. doi:10.1103/PhysRevLett.102.035001

    Article  ADS  Google Scholar 

  • Egedal J, Øieroset M, Fox W, Lin RP (2005) In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the earth’s magnetotail. Phys Rev Lett 94:025006. doi:10.1103/PhysRevLett.94.025006

    Article  ADS  Google Scholar 

  • Egedal J, Daughton W, Drake JF, Katz N, Lê A (2009) Formation of a localized acceleration potential during magnetic reconnection with a guide field. Phys Plasmas 16:050701. doi:10.1063/1.3130732

    Article  ADS  Google Scholar 

  • Egedal J, Daughton W, Le A (2012) Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nature Phys 8:321–324. doi:10.1038/NPHYS2249

    Article  ADS  Google Scholar 

  • Egedal J, Daughton W, Le A, Borg AL (2015) Double layer electric fields aiding the production of energetic flat-top distributions and superthermal electrons within exhausts from magnetic reconnection. arXiv:1504.08045v1 [physics.plasm-ph]

  • Frey HU (2007) Localizes aurora beyond the auroral oval. Rev Geophys 45:RG1003. doi:10.1029/2005RG000174

    Article  ADS  Google Scholar 

  • Frey HU, Mende SB, Immel TJ, Fuselier SA, Claflin ES, Gérard J-C, Østgaard N (2002) Proton aurora in the cusp. J Geophys Res 107:1091. doi:10.1029/2001JA900161

    Article  Google Scholar 

  • Frey HU, Phan TD, Fuselier SA, Mende SB (2003) Continuous magnetic reconnection at earth’s magnetopause. Nature 426:533–537. doi:10.1038/nature02084

    Article  ADS  Google Scholar 

  • Giannios D (2013) Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. Mon Notic R Astron Soc 431:355–363. doi:10.1111/j.1745-3933.2010.00925.x

    Article  ADS  Google Scholar 

  • Giovanelli RG (1946) A theory of chromospheric flares. Nature 158:81–82. doi:10.1038/15081a0

    Article  ADS  Google Scholar 

  • Goldman MV, Newman DL, Lapenta G (2015) What can we learn about magnetotail reconnection from 2D PIC Harris-sheet simulations? Space Sci Rev. doi:10.1007/s11214-015-0154-y

  • Goldstein ML, Roberts DA, Matthaeus WH (1995) Magnetohydrodynamic turbulence in the solar wind. Ann Rev Astron Astrophys 33:283–326. doi:10.1146/annarev.aa.33.090195.001435

    Article  ADS  Google Scholar 

  • Gosling JT, Phan TD (2013) Magnetic reconnection in the solar wind at current sheets associated with extremely small field shear angles. Astrophys J Lett 763:L39. doi:10.1088/2041-8205/763/2/L39

    Article  ADS  Google Scholar 

  • Guo F, Li H, Daughton W, Liu Y-H (2014a) Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys Rev Lett 113:155005. doi:10.1103/PhysRevLett.113.155005

  • Guo F, Liu Y-H, Daughton W, Li H (2014b) Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys J 806:167. doi:10.1088/0004-637X/806/2/167

  • Hawley JF, Fendt C, Hardcastle M, Nokhrina E, Tchekhovskoy A (2015) Disks and jets. In: Beskin VS et al (eds) The strongest magnetic fields in the universe, Chapter 13. ISSI Space Sci Series SSSI-54. Springer, New York. doi:10.1007/s11214-015-0174-7

  • Hesse M, Schindler K, Birn J, Kuznetsova M (1999) The diffusion region in collisionless magnetic reconnection. Phys Plasmas 6:1781–1795. doi:10.1063/1.873436

    Article  ADS  MathSciNet  Google Scholar 

  • Hesse M, Kuznetsova M, Hoshino M (2002) The structure of the dissipation region for component reconnection: particle simulations. Geophys Res Lett 29:1563–1566. doi:10.1029/2001GL014714

    Article  ADS  Google Scholar 

  • Hesse M, Zenitani S, Klimas A (2008) The structure of the electron outflow jet in collisionless magnetic reconnection. Phys Plasmas 15:112102. doi:10.1063/1.3006341

    Article  ADS  Google Scholar 

  • Hesse M, Aunai N, Zenitani S, Kuznetsova M, Birn J (2013) Aspects of collisionless magnetic reconnection in asymmetric systems. Phys Plasmas 20:0612107. doi:10.1063/1.4811467

    Article  Google Scholar 

  • Hesse M, Aunai N, Sibeck D, Birn J (2014) On the electron diffusion region in planar, asymmetric systems. Geophys Res Lett 41:8673–8680. doi:10.1002/2014GL061586

    Article  ADS  Google Scholar 

  • Higashimori K, Yokoi N, Hoshino M (2013) Explosive turbulent magnetic reconnection. Phys Rev Lett 110:255001. doi:10.1103/PhysRevLett.110.255001

    Article  ADS  Google Scholar 

  • Hoh FC (1966) Stability of sheet pinch. Phys Fluids 9:277–284. doi:10.1063/1.1761670

    Article  ADS  Google Scholar 

  • Hoshino M, Lyubarsky Y (2015) Relativistic reconnection and particle acceleration. Space Sci Rev 173:521–533. doi:10.1007/s11214-012-9931-z

    Article  ADS  Google Scholar 

  • Hoshino M, Higashimori K (2015) Generation of Alfvénic waves and turbulence in reconnection jets. J Geophys Res 120:3715–3727. doi:10.1002/2014JA020520

    Article  Google Scholar 

  • Huang C, Lu Q, Wang S (2010) The mechanism of electron acceleration in antiparallel and guide field magnetic reconnection. Phys Plasmas 17:07306. doi:10.1063/1.3457930

    Google Scholar 

  • Huang C-Y, Wang D-X, Wang J-Z, Wang Z-Y (2013) A magnetic reconnection model for quasi-periodic oscillations in black hole systems. Res Astron Astrophys 13:705–718. doi:10.1088/1674-4527/13/6/010

    Article  ADS  Google Scholar 

  • Jara-Almonte J, Daughton W, Ji H (2014) Debye scale turbulence within the electron diffusion layer during magnetic reconnection. Phys Plasmas 21:032114. doi:10.1063/1.4867868

    Article  ADS  Google Scholar 

  • Jaroschek CH, Treumann RA, Lesch H, Scholer M (2004a) Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys Plasmas 11:1151. doi:10.1063/1.1644814

    Article  ADS  Google Scholar 

  • Jaroschek CH, Hoshino M (2009) Radiation-dominated relativistic current sheets. Phys Rev Lett 103:075002. doi:10.1103/PhysRevLett.103.075002

    Article  ADS  Google Scholar 

  • Jaroschek CH, Lesch H, Treumann RA (2004b) Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys J Lett 605:L9–L12. doi:10.1086/420767

    Article  ADS  Google Scholar 

  • Jaroschek CH, Hoshino M, Lesch H, Treumann RA (2008) Stochastic particle acceleration by the forced interaction of relativistic current sheets. Adv Space Res 41:481–490. doi:10.1016/j.asr.2007.07.001

    Article  ADS  Google Scholar 

  • Kagan D, Miloslavljević Spitkovsky A (2013) A flux rope network and particle accelertion in three-dimensional relativistic magnetic reconnection. Astrophys J 774:41. doi:10.1088/0004-637X/774/1/41

    Article  ADS  Google Scholar 

  • Kagan D, Sironi L, Cerutti B, Giannios D (2015) Relativistic magnetic reconnection in pair plasmas and its astrophysical application. Space Sci Rev. doi:10.1007/s11214-014-0132-9

  • Karimabadi H, Lazarian A (2013) Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys Plasmas 20:112102. doi:10.1063/1.4828395

    Article  ADS  Google Scholar 

  • Karimabadi H, Dorelli J, Roytershteyn V, Daughton W, Chacón L (2011) Flux pileup in collisionless magnetic reconnection: bursty interaction of large flux ropes. Phys Rev Lett 107:025002. doi:10.1103/PhysRevLett.107.025002

    Article  ADS  Google Scholar 

  • Karimabadi H, Roytershteyn V, Daughton W, Liu Y-H (2013a) Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci Rev 178:307–323. doi:10.1007/s11214-013-0021-7

    Article  ADS  Google Scholar 

  • Karimabadi H, Roytershteyn V, Wan M, Mathaeus WH, Daughton W, Wu P, Shay M, Loring B, Borovsky J, Leonardis E, Chapman SC, Nakamura TKM (2013b) Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys Plasmas 20:012303. doi:10.1063/1.4773205

    Article  ADS  Google Scholar 

  • Karimabadi H, Roytershteyn V, Vu HX, Omelchenko YA, Scudder J, Daughton W, Dimmock A, Nykyri K, Wan M, Sibeck D, Tatineni T, Majumdas A, Loring B, Geveci B (2014) The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys Plasmas 21:062308. doi:10.1063/1.4882875

    Article  ADS  Google Scholar 

  • Karlicky M (2014) Solar flares: radio and S-ray signatures of magnetic reconnection processes. Rev Astron Astrophys 14:753–772. doi:10.1088/1674-4527/14/7/002

    ADS  Google Scholar 

  • Khotyaintsev YV, Vaivads A, André M, Fujimoto M, Retinó A, Owen CJ (2010) Observations of slow electron holes at a magnetic reconnection site. Phys Rev Lett 105:165002. doi:10.1103/PhysRevLett.105.165002

    Article  ADS  Google Scholar 

  • Klimas A (2015) New expression for collisionless magnetic reconnection rate. Phys Plasmas 22:042901. doi:10.1063/1.4917068

    Article  ADS  Google Scholar 

  • Königl A, Romanova MM, Lovelace RVE (2011) Are the outflows in FU Orionis systems driven by the stellar magnetic field? Mon Notic R Astron Soc 416:757–766. doi:10.1111/j.1365-2966.2011.19098.x

    ADS  Google Scholar 

  • Krucker S, Hudson HS, Glesener L, White SM, Masuda S, Wuelser J-P, Lin RP (2010) Measurements of the coronal acceleration region of a solar flare. Astrophys J 714:1108. doi:10.1088/0004-637X/714/2/1108

    Article  ADS  Google Scholar 

  • Kusenko A (2013) Cosmic connections: from cosmic rays to gamma rays, cosmic backgrounds and magnetic fields. Mod Phys Lett A 28:1340001. doi:10.1142/S0217732313400014

    Article  ADS  MathSciNet  Google Scholar 

  • Lazarian A (2014) Reconnection diffusion in turbulent fluids and its implications for star formation. Space Sci Rev 181:1–59. doi:10.1007/s11214-013-0031-5

    Article  ADS  Google Scholar 

  • Lazarian A, Eyink GL, Vishniac ET (2012) Relation of astrophysical turbulence and magnetic reconnection. Phys Plasmas 19:012105. doi:10.1063/1.3672516

    Article  ADS  Google Scholar 

  • Lazarian A, Eyink GL, Vishniac ET, Kowal G (2014) Reconnection in turbulent astrophysical fluids. In: Pogorelov N, Audit E, Zank GP (eds) ASTRONUM2013, ASP Conf Ser Vol 488:23 San Francisco: AstronSoc Pacific. arXiv:1408.3134v1 [astro-ph.SR]

  • Le A, Egedal J, Daughton W, Fox W, Katz N (2009) Equations of state for collisionless guide-field reconnection. Phys Rev Lett 102:085001. doi:10.1103/PhysRevLett.102.085001

    Article  ADS  Google Scholar 

  • Le A, Egedal J, Ohia O, Daughton W, Karimabadi H, Lukin VS (2013) Regimes of the electron diffusion region in magnetic reconnection. Phys Rev Lett 110:135004. doi:10.1103/PhysRevLett.110.135004

    Article  ADS  Google Scholar 

  • Le A, Egedal J, Ng J, Karimabadi H, Scudder J, Roytershteyn V, Daughton W (2014) Current sheets and pressure anisotropy in the reconnection exhaust. Phys Plasmas 21:012103. doi:10.1063/1.4861871

    Article  ADS  Google Scholar 

  • Le A, Egedal J, Daughton W (2015) Theoretical model for electron heating resulting from magnetic reconnection. Phys Rev Lett (submitted)

  • Leonardis E, Chapman SC, Daughton W, Roytershteyn V, Karimabadi H (2013) Identification of intermittent multi-fractal turbulence in fully kinetic simulations of magnetic reconnection. Phys Rev Lett 110:205002. doi:10.1103/PhysRevLett.110.205002

    Article  ADS  Google Scholar 

  • Lii P, Romanova M, Lovelace R (2012a) Magnetic launching and collimation of jets from the disc-magnetosphere boundary: 2.5D MHD simulations. Monthly Notic Royal Astron Soc 420:2020–2033. doi:10.1111/j.1365-2966.2011.20133.x

  • Lii PS, Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2012b) Propeller-driven outflows from an MRI disc. Mon Notic R Astron Soc 441:86–100. doi:10.1093/mnras/stu495

  • Liu Y-H, Daughton W, Karimabadi H, Li H, Roytershteyn V (2013) Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys Rev Lett 110:265004. doi:10.1103/PhysRevLett.110.265004

    Article  ADS  Google Scholar 

  • Lu Q, Lu S, Huang C, Wu M, Wang S (2013) Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection. Plasma Phys Contr Fusion 55:085019. doi:10.1088/0741-3335/55/8/085019

    Article  ADS  Google Scholar 

  • Malakit K, Shay MA, Cassak PA, Bard C (2010) Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J Geophys Res 115:A10223. doi:10.1029/2010JA015452

    Article  ADS  Google Scholar 

  • Malakit K, Shay MA, Cassak PA, Ruffolo D (2013) New electric field in asymmetric magnetic reconnection. Phys Rev Lett 111:135001. doi:10.1103/PhysRevLett.111.135001

    Article  ADS  Google Scholar 

  • Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y (1994) A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371:495–497. doi:10.1038/371495a0

    Article  ADS  Google Scholar 

  • Melzani M, Walder R, Folini D, Winisdoerffer C, Favre JM (2014a) Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations. Astron Astrophys 570:A111. doi:10.1051/0004-6361/201424083

    Article  ADS  Google Scholar 

  • Melzani M, Walder R, Folini D, Winisdoerffer C, Favre JM (2014b) The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron Astrophys 570:A112. doi:10.1051/0004-6361/201424193

    Article  ADS  Google Scholar 

  • Miesch M, Matthaeus W, Brandenburg A, Petrosyan A, Pouquet A, Cambon C, Jenko F, Uzdensky D, Stone J, Tobias S, Toomre J, Velli M, Iess S (2015) Large-eddy simulations of magnetohydrodynamic turbulence in heliophysics and astrophysics. Space Sci Rev. doi:10.1007/s11214-015-0190-7

  • Miura A (1982) Nonlinear evolution of the magnetohydrodynamic Kelvin–Helmholtz instability. Phys Rev Lett 49:779–782. doi:10.1103/PhysRevLett.49.779

    Article  ADS  Google Scholar 

  • Mozer FS, Bale SD, Phan TD (2002) Evidence of diffusion regions at a subsolar magnetopause crossing. Phys Rev Lett 89:015002. doi:10.1103/PhysRevLett.89.015002

    Article  ADS  Google Scholar 

  • Muñoz PA, Kilian P, Büchner J. (2014) Instabilities of collisionless current sheets revisited: The role of anisotropic heating. Phys Plasmas 21, 112106. arXiv:1501.06022 [physics.plasm-ph] doi:10.1063/1.4901033

  • Nagai T, Shinohara I, Zenitani S, Nakamura R, Nakamura TKM, Fujimoto M, Saito Y, Mukai T (2013) Three-dimensional structure of magnetic reconnection in the magnetotail from Geotail observations. J Geophys Res 118:1667–1678. doi:10.1002/jgra.50247

    Article  Google Scholar 

  • Nalewajko K, Giannios D, Begelman MC, Uzdensky DA, Sikora M (2011) Radiative properties of reconnection-powered minijets in blazars. Mon Notic R Astron Soc 413:333–346. doi:10.1111/j.1365-2966.2010.18140.x

    Article  ADS  Google Scholar 

  • Narita Y, Glassmeier K-H, Sahraoui F, Goldstein ML (2010) Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys Rev Lett 104:171101. doi:10.1103/PhysRevLett.104.171101

    Article  ADS  Google Scholar 

  • Newman DL, Goldman MV, Ergun RE, Mangeney A (2001) Formation of double layers and electron holes in a current-driven space plasma. Phys Rev Lett 87:255001. doi:10.1103/PhysRevLett.87.255001

    Article  ADS  Google Scholar 

  • Ng J, Egedal J, Le A, Daughton W (2012) Phase space structure of the electron diffusion region in reconnection with weak guide field. Phys Plasmas 19:112108. doi:10.1063/1.4766895

    Article  ADS  Google Scholar 

  • Parker EN (1957) Sweet’s mechanism for merging magnetic fields in conducting fluids. J Geophys Res 62:509–520. doi:10.1029/JZ062i004p00509

    Article  ADS  Google Scholar 

  • Paschmann G, Øieroset M, Phan TD (2013) In-situ observations of reconnection in space. Space Sci Rev 178:385–417. doi:10.1007/s11214-012-9957-2

    Article  ADS  Google Scholar 

  • Perri S, Carbone V, Veltri P (2010a) Observations of thin current sheets in the solar wind and their role in magnetic energy dissipation. Am Geophys Union, Fall Meeting Abstract # SH51B-2099

  • Perri S, Goldstein ML, Dorelli J, Sahraoui F, Gurgiolo CA, Karimabadi H, Mozer F, Wendel DE, TenBarge J, Roytershteyn V (2010b) Where does fluid-like turbulence break down in the solar wind? Astrophys J 725:L52–L55. doi:10.1088/2041-8205/725/1/52

  • Petschek HE (1964) Magnetic field annihilation. In: Hess WN (ed) The physics of solar flares. Proceedings AAS-NASA symposium. NASA, Greenbelt, pp 425–439

    Google Scholar 

  • Phan TD, Drake JF, Shay MA, Gosling JT, Paschmann G, Eastwood JP, Øieroset M, Fujimoto M, Angelopoulos V (2014) Ion bulk heating in magnetic reconnection exhausts at earth’s magnetopause: dependence on the inflow Alfvén speed and magnetic shear angle. Geophys Res Lett 41:7002–7010. doi:10.1002/2014GL061547

    Article  ADS  Google Scholar 

  • Pritchett PL (2001) Geospace environment modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J Geophys Res 106:3783–3798. doi:10.1029/1999JA001006

    Article  ADS  Google Scholar 

  • Pritchett PL (2005) Onset and saturation of guide-field magnetic reconnection. Phys Plasmas 12:062301. doi:10.1063/1.1914309

    Article  ADS  Google Scholar 

  • Pritchett PL (2008) Collisionless magnetic reconnection in an asymmetric current sheet. J Geophys Res 113:A06210. doi:10.1029/2007JA012930

    ADS  Google Scholar 

  • Pritchett PL (2013a) The onset of reconnection in three dimensions. Phys Plasmas 20:080703. doi:10.1063/1.4817961

    Article  ADS  Google Scholar 

  • Pritchett PL (2013b) The influence of intense electric fields on three-dimensional asymmetric reconnection. Phys Plasmas 20:061204. doi:10.1063/1.4811123

    Article  ADS  Google Scholar 

  • Pritchett PL, Coroniti FV (2004) Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J Geophys Res 109:A01220. doi:10.1029/2003JA009999

    ADS  Google Scholar 

  • Retinò A, Sundkvist D, Vaivads A, Mozer F, André M, Owen CJ (2007) In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys 3:236–238. doi:10.1038/nphys574

    Article  ADS  Google Scholar 

  • Romanova MM, Owocki SP (2015) Accretion, outflows, and winds of magnetized stars. In: Beskin VS et al (eds) The strongest magnetic fields in the universe, Chapter 11. ISSI Space Sci Series SSSI–54. Springer, New York (2015)

  • Roussev II, Galsgaard K, Downs C, Lugaz N, Sokolov IV, Moise E, Lin J (2012) Explaning fast ejections of plasma and exotic X-ray emission from the solar corona. Nature Phys 8:845–849. doi:10.1038/NPHYS2427

    Article  ADS  Google Scholar 

  • Runov A, Nakamura R, Baumjohann W, Zhang TL, Volwerk M, Eichelberger H-U, Balogh A (2003a) Cluster observation of a bifurcated current sheet. Geophys Res Lett 30:1036. doi:10.1029/2002GL016136

    Article  ADS  Google Scholar 

  • Runov A, Nakamura R, Baumjohann W, Treumann RA, Zhang TL, Volwerk M, Vörös Z, Balogh A, Glassmeier K-H, Klecker B, Rème H, Kistler L (2003b) Current sheet structure near magnetic S-line observed by Cluster. Geophys Res Lett 30:1579. doi:10.1029/2002GL016730

    Article  ADS  Google Scholar 

  • Sahraoui F, Goldstein ML, Khotyaintsev YV (2009) Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys Rev Lett 102:231102. doi:10.1103/PhysRevLett.102.231102

    Article  ADS  Google Scholar 

  • Sahraoui F, Huang SY, Belmont G, Goldstein ML, RetinøA Robert P, De Patoul J (2013) Scaling of the electron dissipation range of solar wind turbulence. Astrophys J 777:15. doi:10.1088/0004-637X/777/1/15

    Article  ADS  Google Scholar 

  • Schlickeiser R (2002) Cosmic Ray Astrophysics. Astron Astrophys Library. Springer, Berlin. doi:10.1007/978-3-662-04814-6

    Book  Google Scholar 

  • Schlickeiser R, Yoon PH (2014) On the marginal instability threshold condition of the aperiodic ordinary mode. Phys Plasmas 21:072119. doi:10.1063/1.4890463

    Article  ADS  Google Scholar 

  • Schoeffler KM, Drake JF, Swisdak M, Knizhnik K (2013) The role of pressure anisotropy on particle acceleration during magnetic reconnection. Astrophys J 764:126. doi:10.1088/0004-637X/764/2/126

    Article  ADS  Google Scholar 

  • Scudder JD, Karimabadi H, DaughtonW, Roytershteyn V (2015) Frozen flux violation, electron demagnetization and magnetic reconnection. Phys Plasmas 22:101204. doi:10.1063/1.4932332

  • Shirakawa K, Hoshino M (2014) Asymmetric evolution of magnetic reconnection in collisionless accretion disk. Phys Plasmas 21:052903. doi:10.1063/1.4875739

    Article  ADS  Google Scholar 

  • Sironi L, Spitkovsky A (2014a) Relativistic reconnection: an efficient source of non-thermal particles. Astrophys J Lett 783:L21. doi:10.1088/2041-8205/783/L21

  • Sironi L, Spitkovsky A (2014b) Relativistic reconnection: an efficient source of non-thermal particles. Astrophys J Lett 450:183–191. doi:10.1093/mnras/stv641

  • Sironi L, Petropoulou M, Giannios D (2015a) Relativistic jets shine through shocks or magnetic reconnection? Mon Notic R Astron Soc 450:183–191. doi:10.1093/mnras/stv641

  • Sironi L, Keshet U, Lemoine M (2015b) Relativistic shocks: particle acceleration and magnetization. Space Sci Rev. arXiv:1506.02034; doi:10.1007/s11214-015-0181-8

  • Sitnov MI, Merkin VG, Swisdak M, Motoba T, Buzulukova B, Moore TE, Mauk BH, Ohtani S (2014) Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions. J Geophys Res 119:7151–7168. doi:10.1002/2014JA020205

    Article  Google Scholar 

  • Speiser TW (1965) Particle trajectories in model current sheets 1. Analytical solutions. J Geophys Res 70:4219–4226. doi:10.1029/JZ070i017p04219

    Article  ADS  Google Scholar 

  • Sundkvist D, Retinò A, Vaivads A, Bale SD (2007) Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys Rev Lett 99:025004. doi:10.1103/PhysRevLett.99.025004

    Article  ADS  Google Scholar 

  • Sweet PA (1958) The neutral point theory of solar flares. In: Lehnert B (ed) Electromagnetic phenomena in cosmical physics. IAU symposium 6. Kluwer, Dordrecht, Holland, pp 123–134

    Google Scholar 

  • Tavani M, Bulgarelli A, Vittorini V, Pellizzoni A, Striani E, Caraveo P, Weisskopf MC, Tennant A et al (2011) Discovery of powerful Gamma-Ray flares from the Crab Nebula. Science 331:736. doi:10.1126/science.1200083

    Article  ADS  Google Scholar 

  • Treumann RA (2001) Origin of resistivity in reconnection. Earth Planets Space 53:453–462. doi:10.1186/BF03353256

    Article  ADS  Google Scholar 

  • Treumann RA, Nakamura R, Baumjohann W (2011) Relativistic transformation of phase-space distributions. Ann Geophys 29:1259–1265. doi:10.5194/angeo-29-1259-2011

    Article  ADS  Google Scholar 

  • Treumann RA, Baumjohann W (2012) A note on the Weibel instabiity and thermal fluctuations. Ann Geophys 30:427–413. doi:10.5194/angeo-30-427-2012

    Article  ADS  Google Scholar 

  • Treumann RA, Baumjohann W (2013) Collisionless magnetic reconnection in space plasmas. Front Phys 1:00031. doi:10.3389/fphy.2013.00031

    Article  Google Scholar 

  • Treumann RA, Baumjohann W (2014a) Plasma wave mediated attractive potentials: a prerequisite for electron compound formation. Ann Geophys 32:975–989. doi:10.5194/angeo-32-975-2014

  • Treumann RA, Baumjohann W (2014b) Superdiffusion revisited in view of collisionless reconnection. Ann Geophys 32:643–650. doi:10.5194/angeo-32-643-2014

  • Treumann RA, Baumjohann W, Balogh A (2014) The strongest magnetic fields in the universe: how strong can they become? Front Phys 2:00049. doi:10.3389/fphy.2014.00049

    Google Scholar 

  • Treumann RA, Baumjohann W, Narita Y (2015) Ideal mhd turbulence: the inertial range spectrum with collisionless dissipation. Front Phys 3:00034. doi:10.3389/fphys.2015.00034

    Google Scholar 

  • Uzdensky DA, Spitkovsky A (2014) Physical conditions in the reconnection layer in pulsar magnetospheres. Astrophys J 780:3. doi:10.1088/0004-637X/780/1/3

    Article  ADS  Google Scholar 

  • Uzdensky DA, Loureiro NF, Schekochihin AA (2010) Fast magnetic reconnection in the plasmoid-dominated regime. Phys Rev Lett 105:235002. doi:10.1103/PhysRevLett.105.235002

    Article  ADS  Google Scholar 

  • Uzdensky DA, Cerutti B, Begelman MC (2011) Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula. Astrophys J Lett 737:40. doi:10.1088/2041-8205/737/2/L40

    Article  ADS  Google Scholar 

  • Weibel ES (1959) Spontaneously growing transverse waves ikn a plasma due to an anisotropic velocity distribution. Phys Rev Lett 2:83–84. doi:10.1103/PhysRevLett.2.83

    Article  ADS  Google Scholar 

  • Wendel DE, Olson DK, Hesse M, Aunai N, Kuznetsova M, Karimabadi H, Daughton W, Adrian ML (2013) The relation between reconnected flux, the parallel electric field, and the reconnection rate in a three-dimensional kinetic simulation of magnetic reconnection. Phys Plasmas 20:122105. doi:10.1063/1.4833675

    Article  ADS  Google Scholar 

  • Yamada M, Kulsrud R, Ji H (2010) Magnetic reconnection. Rev Mod Phys 82:603–664. doi:10.1103/RevModPhys.82.603

    Article  ADS  Google Scholar 

  • Yang S, Zhang J, Xiang Y (2015) Magnetic reconnection between small-scale loops observed with the new vacuum solar telescope. Astrophys J Lett 798:L11.arXiv:1412.1314v1 [astro-ph.SR]

  • Yokoi N, Higashimori K, Hoshino M (2013) Transport enhancement and suppression in turbulent magnetic reconnection: a self-consistent turbulence model. Phys Plasmas 20:122310. doi:10.1063/1.4851976

    Article  ADS  Google Scholar 

  • Yoon PH, Schlickeiser R, Kolberg U (2014) Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: the rigorous relativistic kinetic theory. Phys Plasmas 21:032109. doi:10.1063/1.4868232

    Article  ADS  Google Scholar 

  • Zenitani S, Hoshino M (2008) The role of the guide field in relativistic pair plasma reconnection. Astrophys J 677:530–544. doi:10.1086/528708

    Article  ADS  Google Scholar 

  • Zenitani S, Hesse M (2008) Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection. Astrophys J 684:1477–1485. doi:10.1086/590425

    Article  ADS  Google Scholar 

  • Zhong X, Wang J (2013) A magnetic reconnection origin for the soft X-ray excess in AGN. Astrophys J 773:23. doi:10.1086/0004-637X/773/1/23

    Article  ADS  Google Scholar 

  • Zhou X, Büchner J, Bárta M, Gan W, Liu S (2015) Electron acceleration by cascading reconnection in the solar corona. I. Magnetic gradient and curvature drift effects, Astrophys J (in press). arXiv:1504.06486 [astro-ph.SR]

  • Zhuravleva I, Churazov E, Schekochihin AA, Allen SW, Arévalo P, Fabian AC, Forman WR, Sanders JS et al (2014) Turbulent heating in galaxy clusters brightest in X-rays. Nature 515(7525):85–87. doi:10.1038/nature13830

  • Zweibel E, Yamada M (2009) Magnetic reconnection in astrophysical and laboratory plasmas. Ann Rev Astron Astrophys 47:291–332. doi:10.1146/annurec-astro-082708-101726

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are indebted to the editors of The Astronomy and Astrophysics Review for the invitation to this recollection. RT thanks Martin Huber for many valuable discussions and, in particular, for his continuous encouragement in the writing. Andrea Fischer and Irmela Schweizer, ISSI librarians, helped accessing the literature. We thank Saliba F. Saliba, ISSI-technical administrator, for technical support. The interest of the ISSI directorate in this research is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Treumann.

Additional information

R. A. Treumann: Visiting the International Space Science Institute Bern, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treumann, R.A., Baumjohann, W. Spontaneous magnetic reconnection. Astron Astrophys Rev 23, 4 (2015). https://doi.org/10.1007/s00159-015-0087-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-015-0087-1

Keywords

Navigation