Skip to main content
Log in

Atmospheric and adaptive optics

  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth’s turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amara A, Quanz SP (2012) PYNPOINT: an image processing package for finding explanets. Mon Not R Astron Soc 427:948–955

    Article  ADS  Google Scholar 

  • Andrews LC (2004) Field guide to atmospheric optics. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Book  Google Scholar 

  • Andrews LC, Phillips RL (2005) Laser beam propagation through random media. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Book  Google Scholar 

  • Angel R, Lloyd-Hart M (2000) Atmospheric tomography with Rayleigh laser beacons for correction of wide fields and 30 m class telescopes. Proc Soc Photo Opt Instr Eng 4007:270–276

    Google Scholar 

  • Arcidiacono C, Lombini M, Farinato J, Ragazzoni R (2007) Toward the first light of the layer oriented wavefront sensor for MAD. Mem S A It 78:708–711

    ADS  Google Scholar 

  • Babcock HW (1953) The possibility of compensating astronomical seeing. Publ Astron Soc Pac 65:229–236

    Article  ADS  Google Scholar 

  • Beckers JM (1988) Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. In: Ulrich M-H (ed) Proceedings of the ESO conference on very large telescopes and their instrumentation. European Southern Observatory, Garching, pp 693–703

    Google Scholar 

  • Beckers JM (1989) Detailed compensation of atmospheric seeing using multiconjugate adaptive optics. Proc Soc Photo Opt Instr Eng 1114:215–217

    Google Scholar 

  • Beckers JM (1993a) Adaptive optics for astronomy: principles, performance, and applications. Ann Rev Astron Astrophys 31:13–62

  • Beckers JM (1993b) On the relation between scintillation and seeing observations of extended objects. Sol Phys 145:399–402

  • Bendek EA, Hart M, Powell KB, Vaitheeswaran V, McCarthy D, Kulesa C (2011) Latest GLAO results and advancements in laser tomography implementation at the 6.5 m MMT telescope. Proc Soc Photo Opt Instr Eng 8149:814907–814907-11

    Google Scholar 

  • Berdja A (2010) On the DIMM interpretation of non-Kolmogorov turbulence in the atmospheric surface layer. Mon Not R Astron Soc 409:722–726

    Article  ADS  Google Scholar 

  • Bouy H, Kolb J, Marchetti E, Martn EL, Huélamo N, Barrado Y, Navascués D (2008) Multi-conjugate adaptive optics images of the Trapezium cluster. Astron Astrophys 477:681–690

    Article  ADS  Google Scholar 

  • Businger S, Cherubini T (2011) Seeing clearly: the impact of atmospheric turbulence on the propagation of extraterrestrial radiation. Virtualbookworm.com Publishing, College Station

    Google Scholar 

  • Chauvin G, Lagrange A-M, Dumas C, Zukerman B, Mouillet D, Song I, Beuzit J-L, Lowrance P (2005) Giant planet companion to 2MASSW J1207334-393254. Astron Astrophys 438:L25–L28

    Article  ADS  Google Scholar 

  • Clénet Y, Conan J-M, Fusco T, Rousset G (eds) (2010) 1st AO4ELT conference—adaptive optics for extremely large telescopes. EDP Sciences. http://ao4elt.edpsciences.org

  • Costa J (2005) Modulation effect of the atmosphere in a pyramid wave-front sensor. Appl Opt 44:60–66

    Article  ADS  Google Scholar 

  • Costa J, Ragazzoni R, Ghedina A, Carbillet M, Verinaud C, Feldt M, Esposito S, Puga E, Farinato J (2003) Is there need of any modulation in the pyramid wavefront sensor? Proc Soc Photo Opt Instr Eng 4839:288–298

    Google Scholar 

  • Davies R, Kasper M (2012) Adaptive optics for astronomy. Ann Rev Astron Astrophys 50:305–351

    Article  ADS  Google Scholar 

  • Davis D, Hickson P, Herriot G, She C-Y (2006) Temporal variability of the telluric sodium layer. Opt Lett 31:3369–3371

    Article  ADS  Google Scholar 

  • Dicke RH (1975) Phase-contrast detection of telescope seeing errors and their correction. Astrophys J 198:605–615

    Article  ADS  Google Scholar 

  • Diolaiti E, Conan J-M, Foppiani I et al (2010) Conceptual design and performance of the multiconjugate adaptive optics module for the European Extremely Large Telescope. Proc Soc Photo Opt Instr Eng 7736:77360R

    Google Scholar 

  • Dohlan K et al. (2006) SPHERE: a planet finder instrument for the VLT. Proc Soc Photo Opt Instr Eng 6269:62690Q–62690Q-12

  • Duffner RW (2009) The adaptive optics revolution: a history. University of New Mexico Press, Albuquerque

    Google Scholar 

  • Ellerbroek BL (1994) First-order performance evaluation of adaptive-optics systems for atmospheric turbulence compensation in extended field-of-view astronomical telescopes. J Opt Soc Am A 11:783–805

    Article  ADS  Google Scholar 

  • Ellerbroek BL (2005) Linear systems modelling of adaptive optics in the spatial-frequency domain. J Opt Soc Am A 22:310–322

    Article  ADS  MathSciNet  Google Scholar 

  • Ellerbroek B, Adkins S, Andersen D et al (2010) First light adaptive optics systems and components for the Thirty Meter Telescope. Proc Soc Photo Opt Instr Eng 7736:773604

    Google Scholar 

  • Esposito S, Riccardi A (2001) Pyramid wavefront sensor behavior in partial correction adaptive optic systems. Astron Astrophys 369:L9–L12

    Article  ADS  Google Scholar 

  • Esposito S, Fini L (eds) (2013) Third AO4ELT conference—adaptive optics for extremely large telescopes. http://ao4elt3.arcetri.astro.it

  • Fernández B, Kubby J (2010) High-aspect-ratio microelectromechanical systems deformable mirrors for adaptive optics. J Micro/Nanolitho MEMSMOEMS 9:041105

    Article  Google Scholar 

  • Foy R, Labeyrie A (1985) Astron Astrophys 152:L29–L31

    ADS  Google Scholar 

  • Fried DL (1966) Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J Opt Soc Am 10:1372–1379

    Article  ADS  Google Scholar 

  • Fusco T, Conan JM, Rousset G, Mugnier LM, Michau V (2001) Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. J Opt Soc Am A 18:2527–2538

    Article  ADS  Google Scholar 

  • Gavel D (2006) MEMS for the next generation of giant astronomical telescopes. Proc Soc Photo Opt Instr Eng 6113:43–47

    Google Scholar 

  • Ghez AM et al (2008) Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys J 689:1044–1062

    Article  ADS  Google Scholar 

  • Goodman JW (1985) Statistical optics. Wiley, New York

    Google Scholar 

  • Goodwin M, Jenkins C, Lambert A (2007) Improved detection of atmospheric turbulence with SLODAR. Opt Express 15:14844–14860

    Article  ADS  Google Scholar 

  • Greenwood DP (1977) Bandwidth specification for adaptive optics systems. J Opt Soc Am 67:390–393

    Article  ADS  Google Scholar 

  • Guyon O (2005) Limits of adaptive optics for high-contrast imaging. Astrophys J 629:592–614

    Article  ADS  Google Scholar 

  • Hagelin S, Masciadri E, Lascaux F (2011) Optical turbulence simulations at Mt Graham using the Meso-NH model. Mon Not R Astron Soc 412:2695–2706

    Article  ADS  Google Scholar 

  • Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, Oxford

    Google Scholar 

  • Hickson P, Lanzetta K (2004) Measuring atmospheric turbulence with a lunar scintillometer array. Publ Astron Soc Pac 116:1143–1152

    Article  ADS  Google Scholar 

  • Hart M, Rabien S, Busoni L et al (2011) Status report on the Large Binocular Telescopes ARGOS ground-layer AO system. Proc Soc Photo Opt Instr Eng 8149:81490J–81490J-11

  • Hickson P, Carlberg R, Gagne R, Pfrommer T, Racine R, Schoeck M, Steinbring E, Travouillon T (2010) Boundary-layer seeing measurements in the Canadian High Arctic. Proc Soc Photo Opt Instr Eng 7733:77331R–77331R-11

  • Hill R et al (2006) Site testing for the Advanced Technology Solar Telescope. Proc Soc Photo Opt Instr Eng 6267:62671T

    Google Scholar 

  • Hufnagel RE, Stanley NR (1964) Modulation transfer function associated. J Opt Soc Am 54:52–60

    Article  ADS  Google Scholar 

  • Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M (2012) Giant Magellan Telescope: overview. Proc Soc Photo Opt Instr Eng 8444:84441H

    Google Scholar 

  • Johnston DC, Welsh BM (1994) Analysis of multiconjugate adaptive optics. J Opt Soc Am A 11:394–408

    Article  ADS  Google Scholar 

  • Kibblewhite E, Wild W (2006) Adaptive optics. Wiley-Interscience, Hoboken

    Google Scholar 

  • King IR (1983) Accuracy of measurement of star images on a pixel array. Publ Astron Soc Pac 95:163–168

    Article  ADS  Google Scholar 

  • Kolmogorov AN (1941) On degeneration of isotropic turbulence in an incompressible viscous liquid. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 31:538–540 [Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser. Ap J 661:1208–1217]

  • Kornilov V, Tokovinin A, Voziakova O, Zaitsev A, Shatsky N, Potanin S, Sarazin M (2003) MASS: a monitor of the vertical turbulence distribution. Proc Soc Photo Opt Instr Eng 4839:837–845

    Google Scholar 

  • Kornilov V, Tokovinin A, Shatsky N, Voziakova O, Potatin S, Safonov B (2007) Combined MASS-DIMM instrument for atmospheric turbulence studies. Mon Not R Astron Soc 383:1268–1278

    Article  ADS  Google Scholar 

  • Lafreniére D, Doyon R, Nadeau D, Artigau E, Marois C, Beaulieu M (2007) Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser. Astrophys J 661:1208–1217

    Article  ADS  Google Scholar 

  • Lardière O, Conan R, Clare R, Bradley C, Hubin N (2010) Performance comparison of centroiding algorithms for laser guide star wavefront sensing with extremely large telescopes. Appl Opt 49:G78–G94

  • Lombardi G et al (2010) Surface layer characterization at Paranal Observatory. Proc Soc Photo Opt Instr Eng 7733:77334D–77334D-13

  • Lukin VP (1996) Atmospheric adaptive optics. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Google Scholar 

  • Macintosh B et al (2006) The Gemini Planet Imager. Proc Soc Photo Opt Instr Eng 6272:62720L

    Google Scholar 

  • Mandel L, Wolf E (1995) Optical coherence and quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marchetti E, Brast R, Delabre B et al (2007) On-sky testing of the multi-conjugate adaptive optics demonstrator. Messenger 129:8–13

    ADS  Google Scholar 

  • Maréchal A (1947) Étude des effets combinés de la diffraction et des aberrations géomtriques sur limage dun point lumineux. Rev Opt 26:257–277

    Google Scholar 

  • Marois C, Larfeniére D, Doyon R, Macintosh B, Nadeau D (2006) Angular differential imaging: a powerful high-contrast imaging technique. Astrophys J 641:556–564

    Article  ADS  Google Scholar 

  • Marois C et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348–1352

    Article  ADS  Google Scholar 

  • Martin F, Tokovinin A, Agabi A, Borgnino J, Ziad A (1994) G.S.M.: a Grating Scale Monitor for atmospheric turbulence measurements. I. The instrument and first results of angle of arrival measurements. Astron Astrophys Suppl 108:173–180

    ADS  Google Scholar 

  • Mawet D, Riaud P, Absil O, Surdej J (2005) Annular groove phase mask coronograph. Astrophys J 633:1191–1200

    Article  ADS  Google Scholar 

  • Meyer E, Ku̇rster M, Arcidiacono C, Ragazzoni R, Rix H-W (2011) Astrometry with the MCAO instrument MAD. An analysis of single-epoch data obtained in the layer-oriented mode. Astron Astrophys 532:A16

  • Neichel B et al. (2012) Science readiness of the Gemini MCAO System: GEMS. Proc Soc Photo Opt Instr Eng 8447:84474Q–84474Q-24

  • Noll RJ (1976) Zernike polynomials and atmospheric turbulence. J Opt Soc Am 66:207–211

    Article  ADS  Google Scholar 

  • Obukhov AM (1941a) On the distribution of energy in the spectrum of turbulent flow. Dokl Akad Nauk SSSR 32:22–24

  • Obukhov AM (1941b) Izv Akad Nauk SSSR Ser Geograf Geofiz 13:58

  • Perez JJ, Toussaint GJ, Schmidt JD (2009) Adaptive control of woofer–tweeter adaptive optics. Proc Soc Photo Opt Instr Eng 7466:74660B. doi:10.1117/12.824450

    Google Scholar 

  • Peter D, Feldt M, Henning T, Hippler S, Aceituno S, Montoya S, Costa J, Dorner B (2010) Exploring the on-sky performance of the worlds first near-infrared pyramid wavefront sensor. Publ Astron Scc Pac 122:63–70

    Article  ADS  Google Scholar 

  • Pfrommer T, Hickson P, She C-Y (2009) A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies. Geophys Res Lett 36:L15831

    Article  ADS  Google Scholar 

  • Pfrommer T, Hickson P (2010) High-resolution lidar observations of mesospheric sodium and implications for adaptive optics. J Opt Soc Am A 27:A97–A105

    Article  ADS  Google Scholar 

  • Plane JMC (2003) Atmospheric chemistry of meteoric metals. Chem Rev 103:4963–4984

    Article  Google Scholar 

  • Racine R, Walker GAH, Nadeau D, Doyon R, Marois C (1999) Speckle noise and the detection of faint companions. Publ Astron Soc Pac 111:587–594

    Article  ADS  Google Scholar 

  • Ragazzoni R (1996) Pupil plane wavefront sensing with an oscillating prism. J Mod Opt 43:289–293

    Article  ADS  Google Scholar 

  • Ragazzoni R (1999) Astron Astrophys Suppl 136:205–209

    Article  ADS  Google Scholar 

  • Ragazzoni R, Farinato J, Marchetti E (2000) Adaptive optics for 100-m-class telescopes: new challenges require new solutions. Proc Soc Photo Opt Instr Eng 4007:1076–1087

    Google Scholar 

  • Ragazzoni R, Diolaiti E, Farinato J, Fedrigo E, Marchetti E, Tordi M, Kirkman D (2002a) Multiple field of view layer-oriented adaptive optics. Astron Astrophys 396:731–744

  • Ragazzoni R, Diolaiti E, Vernet E (2002b) A pyramid wavefront sensor with no dynamic modulation. Opt Commun 208:51–60

  • Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rigaut F (2002) Ground-conjugate wide field adaptive optics for the ELTs. Proc ESO 58:1116

    Google Scholar 

  • Roddier F (1981) The effect of atmospheric turbulence in optical astronomy. Prog Opt XIX:281–376

  • Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Roddier F, Roddier C (1988) Curvature sensing and compensation: a new concept in adaptive optics. Appl Opt 27:1223–1225

    Article  ADS  Google Scholar 

  • Roggeman MC, Welsh B (1996) Imaging through turbulence. CRC Press, Boca Raton

    Google Scholar 

  • Sandler D, Cuellar L, Lefebvre M, Barrett T, Arnold R, Johnson P, Rego A, Smith G, Taylor G, Spivey B (1994) Shearing interferometry for laser-guide-star atmospheric correction at large \(D/r_0\). J Opt Soc Am A 11:858873

    Google Scholar 

  • Sasiela RJ (2007) Electromagnetic wave propagation in turbulence. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Book  Google Scholar 

  • Skidmore W, Els S, Travouillon T, Riddle R, Schoeck M, Bustos E, Seguel J, Walker (2009) Thirty meter telescope site testing V: seeing and isoplanatic angle. Publ Astron Soc Pac 121:1151–1166

  • Stetson P (1987) DAOPHOT—a computer program for crowded-field stellar photometry. Publ Astron Soc Pac 99:191–222

    Article  ADS  Google Scholar 

  • Soummer R, Pueyo L, Larkin J (2012) Detection and characterization of exoplanets and disks using projections on Karhunen–Loève eigenimages. Astrophys J Lett 755:L28

    Article  ADS  Google Scholar 

  • Talbot G et al (2006) GLAS: engineering a common-user Rayleigh laser guide star for adaptive optics on the William Herschel Telescope. Proc Soc Photo Opt Instr Eng 6272:62722H

    Google Scholar 

  • Tallon M, Foy R (1990) Adaptive telescope with laser probe—isoplanatism and cone effect. Astron Astrophys 235:549–557

    ADS  Google Scholar 

  • Tatarskii VI (1961) Wave propagation in a turbulent medium. McGraw-Hill, New York

    Google Scholar 

  • Taylor GI (1938) Proc R Soc A 164:476–490

    Article  ADS  Google Scholar 

  • Thomas S, Adkins S, Gavel D, Fusco T, Michau V (2008) Study of optimal wavefront sensing with elongated laser guide stars. Mon Not R Astron Soc 387:173–187

    Article  ADS  Google Scholar 

  • Thompson LA, Gardner CS (1987) Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy. Nature 328:229–231

    Article  ADS  Google Scholar 

  • Tokovinin AA (1988) A new method to measure atmospheric seeing. Pis’ma v AZh 24:768–771 (Astron Lett 662–664)

  • Tokovinin A (2002) From differential image motion to seeing. Pub Astron Soc Pac 114:1156–1166

    Article  ADS  Google Scholar 

  • Tokovinin A, Viard E (2001) Limiting precision of tomographic phase estimation. J Opt Soc Am A 18:873–882

    Article  ADS  Google Scholar 

  • Tokovinin A, Kornilov V (2007) Accurate seeing measurements with MASS and DIMM. Mon Not R Astron Soc 381:1179–1189

    Article  ADS  Google Scholar 

  • Tokovinin A, Bustos E, Berdja A (2010) Near-ground turbulence profiles from a lunar scintillometer. Mon Not R Astron Soc 404:1186–1196

    ADS  Google Scholar 

  • Tokovinin A, Kornilov V, Shatsky N, Voziakova O (2003) Restoration of turbulence profile from scintillation indices. Mon Not R Astron Soc 343:891–899

    Article  ADS  Google Scholar 

  • Tokovinin A, Kellerer A, Coudé Du, Foresto V (2008) FADE, an instrument to measure the atmospheric coherence time. Astron Astrophys 477:671–680

    Article  ADS  Google Scholar 

  • Tokovinin A, Travouillon T (2006) Model of optical turbulence profile at Cerro Pachón. Mon Not R Astron Soc 365:1235–1241

    Article  ADS  Google Scholar 

  • Trinquet H, Vernin J (2006) A model of forecast seeing and estimate \(C_N^2\) profiles from meteorological data. Pub Astron Soc Pac 118:756–764

    Article  ADS  Google Scholar 

  • Trippe S, Davies R, Eisenhauer F, Frster Schreiber NM, Fritz TK, Genzel R (2010) High-precision astrometry with MICADO at the European Extremely Large Telescope. Mon Not R Astron Soc 402:1126–1140

    Article  ADS  Google Scholar 

  • Tyson RK (2000) Introduction to adaptive optics. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Book  Google Scholar 

  • Tyson RK (2011) Principles of adaptive optics. CRC Press, Boca Raton

    Google Scholar 

  • Tyson RK, Frazier BW (2004) Field guide to adaptive optics. Society of Photo-Optical Instrumentation Engineers, Bellingham

    Book  Google Scholar 

  • Ulrich PB, (1988) Hufnagel-Valley profiles for specified values of the coherence length and isoplanatic patch angle. WJ Schafer Associates, WJSA/MA/TN-88-013, Arlington, Virginia

  • Véran J-P (1997) Estimation of the adaptive optics long-exposure point-spread function using control loop data. J Opt Soc Am A 14:3057–3069

    Article  ADS  Google Scholar 

  • Véran J-P, Fusco T, Clénet Y ed. (2012) Second international conference on adaptive optics for extremely large telescopes. http://ao4elt2.lesia.obspm.fr

  • Vernin J, Roddier F (1973) Experimental determination of two-dimensional spatiotemporal power spectra stellar light scintillation. Evidence for a multiplayer structure of the air turbulence in the upper troposphere. J Opt Soc Am 63:270–273

    Article  ADS  Google Scholar 

  • Vernet E, Ardiciacono C, Baruffolo A, Diolaiti E (2005) Layer-oriented wavefront sensor for a multiconjugate adaptive optics demonstrator. Opt Eng 44:096601

    Article  ADS  Google Scholar 

  • Wallace JK (2011) Common-path interferometric wavefront sensing for space telescopes. In: Aerospace conference, 2011 IEEE, pp 1–7

  • Wang L, Otarola A, Ellerbroek B (2010) Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems. J Opt Soc Am A 27:A19–A28

    Article  ADS  Google Scholar 

  • Welsh BM, Ellerbroeck BL, Roggemann MC, Penning TL (1995) Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor. Appl Opt 34:4186–4195

    Article  ADS  Google Scholar 

  • Wilson RW (2002) SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor. Mon Not R Astron Soc 337:103108

    Google Scholar 

  • Yaglom AM (1941) Dan SSSR 69:743–746

    MathSciNet  Google Scholar 

  • Ziad A, Conan R, Tokovinin A, Martin F, Borgnino J (2000) From the grating scale monitor to the generalized seeing monitor. Appl Opt 39:5415–5425

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am indebted to many colleagues who provided insights into different aspects of this subject, but particularly to Jacques Beckers, Brent Ellerbroek, Marc Sarazin and Andrei Tokovinin. I am grateful to Jean Surdej for his encouragement, and to Andreas Quirrenback whose comments improved the manuscript. Part of this work was completed during sabbatical visits to the European Southern Observatory and the Université de Liège. I thank both institutes for their hospitality. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hickson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickson, P. Atmospheric and adaptive optics. Astron Astrophys Rev 22, 76 (2014). https://doi.org/10.1007/s00159-014-0076-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-014-0076-9

Keywords

Navigation