Skip to main content
Log in

On the chronology of lunar origin and evolution

Implications for Earth, Mars and the Solar System as a whole

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth–Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle.

According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A “Magma Ocean” of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation.

Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga.

A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the terrestrial planets, including Mars and possibly early Earth.

The Moon holds a historic record of Galactic cosmic-ray intensity, solar wind composition and fluxes and composition of solids of any size in the region of the terrestrial planets. Some of this record has been deciphered. Secular mixing of the Sun was constrained by determining 3He/4He of solar wind helium stored in lunar fines and ancient breccias. For checking the presumed constancy of the impact rate over the past ≈3.1 Ga, samples of the youngest mare basalts would be needed for determining their radiometric ages.

Radiometric dating and stratigraphy has revealed that many of the large basins on the near side of the Moon were created by impacts about 4.1 to 3.8 Ga ago. The apparent clustering of ages called “Late Heavy Bombardment (LHB)” is thought to result from migration of planets several 100 million years after their accretion.

The bombardment, unexpectedly late in solar system history, must have had a devastating effect on the atmosphere, hydrosphere and habitability on Earth during and following this epoch, but direct traces of this bombardment have been eradicated on our planet by plate tectonics. Indirect evidence about the course of bombardment during this epoch on Earth must therefore come from the lunar record, especially from additional data on the terminal phase of the LHB. For this purpose, documented samples are required for measuring precise radiometric ages of the Orientale Basin and the Nectaris and/or Fecunditatis Basins in order to compare these ages with the time of the earliest traces of life on Earth.

A crater count chronology is presently being built up for planet Mars and its surface features. The chronology is based on the established lunar chronology whereby differences between the impact rates for Moon and Mars are derived from local fluxes and impact energies of projectiles. Direct calibration of the Martian chronology will have to come from radiometric ages and cosmic-ray exposure ages measured in samples returned from the planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459(7245):419–422

    ADS  Google Scholar 

  • Adler I, Trombka JI (1977) Orbital chemistry—lunar surface analysis from the x-ray and gamma-ray remote sensing experiments. Phys Chem Earth 10:17–43

    ADS  Google Scholar 

  • Alexander EC, Bates A, Coscio MR, Dragon JC, Muthy VR, Pepin RO, Venkatesan TR (1976) K/Ar dating of lunar soils II. In: Proc 7th lunar sci conf, vol 7, pp 625–648

    Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441(7094):714–718

    ADS  Google Scholar 

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of early Archean stromatolites. Proc Natl Acad Sci USA 106(24):9548–9555. doi:10.1073/pnas.0903323106

    ADS  Google Scholar 

  • Altwegg K, Bockelée-Morvan D (2003) Isotopic abundances in comets. Space Sci Rev 106:139–154

    ADS  Google Scholar 

  • Anders E (1977) Chemical compositions of the Moon, Earth, and Eucrite parent body. Philos Trans R Soc Lond Ser A, Math Phys Sci 285(1327):23–40

    ADS  Google Scholar 

  • Anders E, Ebihara M (1982) Solar system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    ADS  Google Scholar 

  • Anders E, Ganapathy R, Krähenbühl U, Morgan JW (1973) Meteoritic material on the Moon. Moon 8:3–24

    ADS  Google Scholar 

  • Arnold JR (1975) Monte Carlo simulation of turnover processes in the lunar regolith. In: Proc 6th lunar sci conf, pp 2375–2396

    Google Scholar 

  • Arnold JR (1979) Ice in the lunar polar regions. J Geophys Res 84(B10):5659–5668

    ADS  Google Scholar 

  • Arnold JR, Honda M, Lal D (1961) Record of cosmic-ray intensity in the meteorites. J Geophys Res 66(10):3519–3531

    ADS  Google Scholar 

  • Arpigny C, Jehin E, Manfroid J, Hutsemékers D, Schulz R, Stüwe JA, Zucconi J-M, Ilyin I (2003) Anomalous nitrogen isotope ratio in comets. Science 301:1522–1524

    ADS  Google Scholar 

  • Baker JA, Schiller M, Bizzarro M (2012) 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? Geochim Cosmochim Acta 77:415–431

    ADS  Google Scholar 

  • Balsiger H, Altwegg K, Geiss J (1995) D/H and 18O/16O-ratio in the hydronium ion and in neutral water from in situ ion measurements in comet Halley. J Geophys Res 100:5827–5834

    ADS  Google Scholar 

  • Balsiger H et al. (2007) ROSINA—Rosetta orbiter spectrometer for ion and neutral analysis. Space Sci Rev 128:745–801

    ADS  Google Scholar 

  • Beaty DW, Albee AL (1980) The geology and petrology of the Apollo 11 landing site. In: Proc lunar planet sci conf, vol 11, pp 23–35

    Google Scholar 

  • Becker RH, Pepin RO (1984) The case for a martian origin of the shergottites: nitrogen and noble gases in EET 79001. Earth Planet Sci Lett 69:225–242

    ADS  Google Scholar 

  • Begemann F, Geiss J, Hess DC (1957) The radiation age of a meteorite from cosmic ray produces He3 and H3. Phys Rev 107:540–542

    ADS  Google Scholar 

  • Begemann F, Ludwig KR, Lugmair GW, Min K, Nyquist LE, Patchett PJ, Renne PR, Shih C-Y, Villa IM, Walker RJ (2001) Call for an improved set of decay constants for geochronological use. Geochim Cosmochim Acta 65(1):111–121

    ADS  Google Scholar 

  • Benz W, Cameron AGW, Slattery WL (1986) The origin of the Moon and the single impact hypothesis I. Icarus 66:30–45

    Google Scholar 

  • Benz W, Cameron GW, Slattery WL (1987) Collisional stripping of Mercury’s mantle. Icarus 74(3):516–528

    ADS  Google Scholar 

  • Benz W, Cameron AGW, Melosh HJ (1989) The origin of the Moon and the single-impact hypothesis III. Icarus 81(1):113–131

    ADS  Google Scholar 

  • Birck JL, Loubet M, Manhes G, Provost A, Tatsumoto M, Allegre CJ (1972) Age and origin of lunar soils. In: Abstracts of the lunar and planetary science conference, vol 3. Lunar and Planetary Science Institute, Houston, p 80

    Google Scholar 

  • Bizzarro M, Baker J, Haack H, Lundgaard K (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophys J 632:L42–L44

    ADS  Google Scholar 

  • Boato G (1954) The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim Cosmochim Acta 6(5–6):209–220

    ADS  Google Scholar 

  • Bochsler P, Geiss J (1973) Solar abundances of light nuclei and mixing of the Sun. Sol Phys 32(1):3–11

    ADS  Google Scholar 

  • Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite. Science 21:651–654

    ADS  Google Scholar 

  • Bogard DD, Shih C-Y, Nyquist LE (1994) 39Ar–40Ar dating of two lunar granites: the age of Copernicus. Geochim Cosmochim Acta 58:3093–3100

    ADS  Google Scholar 

  • Borg LE, Conelly JN, Boyet M, Carlson RW (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477:70–72

    ADS  Google Scholar 

  • Bottke WF, Levison HF, Nesvorn D, Dones L (2007) Can planetesimals left over from terrestrial planet formation produce the lunar late heavy bombardment? Icarus 190(1):203–223

    ADS  Google Scholar 

  • Bottke WF, Vokrouhlicky D, Minton D, Nesvorny D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81

    ADS  Google Scholar 

  • Bourke MC, Edgett KS, Cantor BA (2008) Recent aeolian dune change on Mars. Geomorphology 94(1–2):247–255

    ADS  Google Scholar 

  • Breuer D, Spohn T (2003) Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J Geophys Res 108(E7):5072. doi:10.1029/2002JE001999

    Google Scholar 

  • Bussey B, Spudis PD (2004) The Clementine atlas of the Moon. Cambridge University Press, Cambridge

    Google Scholar 

  • Cameron AGW (2000) Higher resolution simulations of the giant impact. In: Origin of the Earth and Moon. Univ Arizona Press, Tucson, pp 133–144

    Google Scholar 

  • Cameron AGW, Ward WR (1976) The origin of the Moon. Paper presented at lunar and planetary institute conference abstracts, 1 March 1976

  • Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42(1):441–475

    ADS  Google Scholar 

  • Canup RM (2012) Forming a Moon with an Earth like composition via Giant Impacts. Science 338:1052–1055

    ADS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412:708–712

    ADS  Google Scholar 

  • Canup RM, Righter KU (eds) (2000) Origin of the Earth and Moon. Univ Arizona Press, Tucson

    Google Scholar 

  • Carlson RW, Lugmair GW (1988) The age of ferroan-anorthosite 60025, oldest crust on a young Moon? Earth Planet Sci Lett 90:119–130

    ADS  Google Scholar 

  • Carr MH, Head JW III (2010) Geologic history of Mars. Earth Planet Sci Lett 294(3–4):185–203. doi:10.1016/j.epsl.2009.06.042

    ADS  Google Scholar 

  • Chin Y-N, Henkel C, Langer N, Mauersberger R (1999) The detection of extragalactic 15N: consequences for nitrogen nucleosynthesis and chemical evolution. Astrophys J Lett 512(2):L143

    ADS  Google Scholar 

  • Clayton RN (2003) Oxygen isotopes in the Solar System. In: von Steiger R, Gloeckler G, Mason G (eds) Composition of matter, SSSI, vol 16, pp 19–32. Space Sci Rev 130:19–32

    Google Scholar 

  • Clayton RN, Mayeda TK (1996) Oxygen isotope studies of achondrites. Geochim Cosmochim Acta 60:1999–2017

    ADS  Google Scholar 

  • Cochran AL, Jehin E, Manfroid J, Hutsemékers D, Arpigny C, Zucconi J-M, Schulz R (2008) Nitrogen isotopes in comets. In: Precision spectroscopy in astrophysics, ESO astrophysics symposia, pp 263–265

    Google Scholar 

  • Cohen BA, Swindle DT, Kring DA (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290(5497):1754–1756

    ADS  Google Scholar 

  • Colaprete A, Schultz P, Heldmann J, Wooden D, Shirley M, Ennico K, Hermalyn B, Marshall W, Ricco A, Elphic RC, Goldstein D, Summy D, Bart GD, Asphaug E, Korycansky D, Landis D, Sollitt L (2010) Detection of water in the LCROSS ejecta plume. Science 330(6003):463–468

    ADS  Google Scholar 

  • Connerney JEP, Acuña MH, Ness NF, Spohn T, Schubert G (2004) Mars crustal magnetism. In: Winterhalter ED, Acuña M, Zakharov A (eds) Mars magnetism and its interaction with the solar wind. SSSI, vol 18, pp 1–32. Space Sci Rev 111:1–32

    Google Scholar 

  • Cuk M, Stewart ST (2012) Making the Moon from a fastspinning Earth: Giant Impacts followed by resonant despinning. Science 338:147–152

    Google Scholar 

  • Culler TS, Becker TA, Muller RA, Renne PR (2000) Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287:1785–1788

    ADS  Google Scholar 

  • De Sanctis MC, Ammannito E, Capria MT, Tosi F, Capaccioni F, Zambon F, Carraro F et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336(6082):697–700. doi:10.1126/science.1219270

    ADS  Google Scholar 

  • Decker RB, Krimigis SM, Roelof EC, Hill ME, Armstrong TP, Gloeckler G, Hamilton DC, Lanzerotti LJ (2005) Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309(5743):2020–2024

    ADS  Google Scholar 

  • Duke MB (2003) Sample return from the lunar South Pole-Aitken Basin. Adv Space Res 31(11):2347–2352

    MathSciNet  ADS  Google Scholar 

  • Eberhardt P (1964) Rare gas measurements in meteorites and possible applications to the lunar surface. NASA CR-62101

  • Eberhardt P, Geiss J, Lutz H (1963) Neutrons in meteorites. In: Geiss J, Goldberg ED (eds) Earth science and meteoritics. North Holland, Amsterdam, pp 143–168

    Google Scholar 

  • Eberhardt P, Eugster O, Marti K (1965) A redetermination of the isotopic composition of atmospheric neon. Z Naturforsch Teil A, Phys Phys Chem Kosmophys 20:623

    ADS  Google Scholar 

  • Eberhardt P, Geiss J, Graf H, Grögler N, Mendia MD, Mörgeli M, Schwaller H, Stettler A, von Gunten HR (1972) Trapped solar wind noble gases in Apollo 12 lunar fines 12002 and Apollo 11 breccia 10046. Geochim Cosmochim Acta, Suppl 3:1821–1856

    Google Scholar 

  • Eberhardt P, Geiss J, Grögler N, Stettler A (1973) How old is the crater Copernicus? Moon 8:104–114

    ADS  Google Scholar 

  • Eberhardt P, Reber M, Krankowsky D, Hodges MM (1995) The D/H and 18O/16O ratios in water from comet P/Halley. Astron Astrophys 302(1):301

    ADS  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner Solar System. Annu Rev Earth Planet Sci 40(1):113–139. doi:10.1146/annurev-earth-042711-105503

    ADS  Google Scholar 

  • Elphic RC, Lawrence DJ, Feldman WC, Barraclough BL, Maurice S, Binder AB, Lucey PG (1998) Lunar Fe and Ti abundances: comparison of lunar prospector and Clementine data. Science 281(5382):1493–1496

    ADS  Google Scholar 

  • Epstein S, Taylor HP (1971) O18/O16, Si30/Si28, D/H, and C13/C12 ratios in lunar samples. In: Proc 2nd lunar sci conf, pp 1421–1441

    Google Scholar 

  • Eugster O, Eberhardt P, Geiss J (1967) 81Kr in meteorites and 81Kr radiation ages. Earth Planet Sci Lett 2:77–82

    ADS  Google Scholar 

  • Eugster O, Eberhardt P, Geiss J, Grögler N (1983) Neutron-induced fission of uranium: a dating method for lunar surface material. Science 219(4581):170–172

    ADS  Google Scholar 

  • Eugster O, Eberhardt P, Geiss J, Grögler N, Schwaller H (1984) Cosmic ray exposure histories and 235U-136Xe dating of Apollo 11, Apollo 12 and Apollo 17 mare basalts. In: Proc 15th lunar planet sci conf part 1. J Geophys Res 89:C171–C181

    Google Scholar 

  • Eugster O, Weigel A, Polnau E (1997) Ejection times of Martian meteorites. Geochim Cosmochim Acta 61:2749–2757

    ADS  Google Scholar 

  • Feldman WC, Maurice S, Binder AB, Baraclough BL, Elphic RC, Lawrence DJ (1998) Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles. Science 281(5382):1496–1500

    ADS  Google Scholar 

  • Fischer-Gödde M, Becker H (2011) What is the age of the Nectaris Basin? New Re-Os constraints for a Pre-4.0 Ga bombardment history of the Moon. In: 42nd lunar and planetary sci conf, p 1414

    Google Scholar 

  • Fish RA, Goles GG, Anders E (1960) The record in meteorites III on the development of meteorites in asteroidal bodies. Astrophys J 132:243–258

    ADS  Google Scholar 

  • Fisk LA, Gloeckler G (2009) The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv Space Res 43(10):1471–1478

    ADS  Google Scholar 

  • Frey HV (2006) Impact constraints on, and a chronology for, major events in early Mars history. J Geophys Res 111(E8):E08S91. doi:10.1029/2005JE002449

    Google Scholar 

  • Geiss J (1987) Composition measurements and the history of cometary matter. Astron Astrophys 187:859–866

    ADS  Google Scholar 

  • Geiss J (1988) Composition in Halley’s comet: clues to origin and history of cometary matter. Rev Mod Astron 1:1–27

    ADS  Google Scholar 

  • Geiss J (1989) Lunar regolith and solar history. Lunar and planetary science XX. Lunar and Planet Inst, Houston, pp SS1–SS3

    Google Scholar 

  • Geiss J, Gloeckler G (2007) Linking primordial to solar and galactic composition. In: von Steiger R, Gloeckler G, Mason G (eds) Composition of matter. ISSI, vol 27. Space Sci Rev 130:5–26

    Google Scholar 

  • Geiss J, Hess DC (1958) Argon-potassium ages and the isotopic composition of argon from meteorites. Astrophys J 127:224

    ADS  Google Scholar 

  • Geiss J, Huber MCE (1994) Results and experiences from Apollo and other lunar missions. In: Balsiger H, Huber MCE, Léna P, Battrick B (eds) International lunar workshop: towards a world strategy for the exploration of our natural satellite. ESA, vol SP-1170, pp 15–27

    Google Scholar 

  • Geiss J, Oeschger H (1960) Intensity of cosmic radiation in space at present and in the past and the origin of chondrites from isotopic data from meteorites. In: Kallman-Bijl HK (ed) Space research, proc 1st internat space science symp, Nice, January 1960. North-Holland, Amsterdam, pp 1071–1079

    Google Scholar 

  • Geiss J, Reeves H (1972) Cosmic and Solar System abundances of deuterium and helium-3. Astron Astrophys 18:126–132

    ADS  Google Scholar 

  • Geiss J, Reeves H (1981) Deuterium in the Solar System. Astron Astrophys 93:189–199

    ADS  Google Scholar 

  • Geiss J, Oeschger H, Schwarz U (1962) The history of cosmic radiation as revealed by isotopic changes in the meteorites and on the earth. Space Sci Rev 1:197–223

    ADS  Google Scholar 

  • Geiss J, Eberhardt P, Bühler F, Meister J, Signer P (1970) Apollo 11 and 12 solar wind composition experiments: fluxes of He and Ne isotopes. J Geophys Res 75(31):5972–5979

    ADS  Google Scholar 

  • Geiss J, Eberhardt P, Groegler N, Guggisberg S, Maurer P, Stettler A (1977) Absolute time scale of lunar mare formation and filling. Philos Trans R Soc Lond Ser A, Math Phys Sci 285(1327):151–158

    ADS  Google Scholar 

  • Geiss J, Bühler F, Cerutti H, Eberhardt P, Filleux Ch, Meister J, Signer P (2004) The Apollo SWC experiment: results, conclusions, consequences. Space Sci Rev 110(3):307–335

    ADS  Google Scholar 

  • Gentner W, Lippolt HJ, Schaeffer AO (1963) Argonbestimmungen an Kaliummineralien-XI Die Kalium-Agon-Alter der Gläser des Nördlinger Rieses und der böhmisch-mährischen Tektite. Geochim Cosmochim Acta 27:191–200

    ADS  Google Scholar 

  • Ghosh A, Weidenschilling SJ, McSween HY Jr., Rubin A (2006) Asteroidal heating and thermal stratification of the asteroid belt. In: Meteorites and the early solar II. University of Arizona Press, Tucson, pp 555–565

    Google Scholar 

  • Gloeckler G, Geiss J, Schwadron NA, Fisk LA, Zurbuchen TH, Ipavich FM, von Steiger R, Balsiger H, Wilken B (2000) Interception of Hyakutake’s ion tail at a distance 500 million kilometres. Nature 404:576–578

    ADS  Google Scholar 

  • Gloeckler G, Fisk LA, Geiss J, Hill ME, Hamilton DC, Decker RB, Krimigis S et al. (2009) Composition of interstellar neutrals and the origin of anomalous cosmic rays. Space Sci Rev 143:163–175

    ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    ADS  Google Scholar 

  • Goodrich CA, Hutcheon ID, Kita NT, Huss GR, Cohen BA, Keil K (2010) 53Mn–53Cr and 26Al–26Mg ages of afeldspathic lithology in polymict ureilites. Earth Planet Sci Lett 295:531–540

    ADS  Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A, Buchanan P (2005) Widespread magma oceans on asteroidal bodies in the early solar system. Nature 435:916–918

    ADS  Google Scholar 

  • Grieve RAF, Shoemaker EM (1994) The record of past impacts on earth. In: Gehrels T (ed) Hazards due to comets and asteroids. Univ. Arizona Press, Tucson, pp 417–462

    Google Scholar 

  • Halliday AN (2000) Terrestrial accretion rates and the origin of the Moon. Earth Planet Sci Lett 176:17–30

    ADS  Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc Lond 366:4163–4181

    ADS  Google Scholar 

  • Halliday AN, Wänke H, Birck J-L, Clayton RN (2001) The accretion, composition and early differentiation of Mars. In: Kallenbach R, Geiss J, Hartmann WK (eds) Chronology and evolution of Mars. Space Sci Rev 96:197–230

    Google Scholar 

  • Hartmann WK (1965) Terrestrial and lunar flux of large meteorites in the last two billion years. Icarus 4:157–165

    ADS  Google Scholar 

  • Hartmann WK (1970) Lunar cratering chronology. Icarus 13:299–301

    ADS  Google Scholar 

  • Hartmann WK (1999) Martian cratering VI: crater count isochrons and evidence for recent volcanism from Mars global surveyor. Meteorit Planet Sci 34:167–177

    ADS  Google Scholar 

  • Hartmann WK (2005) Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174(2):294–320

    ADS  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24(4):504–515

    ADS  Google Scholar 

  • Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. In: SSSI 12. Space Sci Rev 96:165–194

    Google Scholar 

  • Hartmann WK, Phillips RJ, Taylor GJ (eds) (1986) Origin of the Moon. Lunar and Planetary Institute, Houston. ISBN 0-942862-03-1

    Google Scholar 

  • Hartmann WK, Ryder G, Dones L, Grinspoon D (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In: Origin of the Earth and Moon, vol 1, pp 493–512

    Google Scholar 

  • Hartmann WK, Winterhalter D, Geiss J (2005) Chronology and physical evolution of planet Mars. In: Geiss J, Hultqvist B (eds) The Solar System and beyond—ten years of ISSI. ISSI Bern SR-003, pp 211–228, ISBN:1608-280X

    Google Scholar 

  • Hartmann WK, Quantin C, Mangold N (2007) Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history. Icarus 186(1):11–23

    ADS  Google Scholar 

  • Hartmann WK, Quantin C, Werner StC, Popova O (2010) Do young martian ray craters have ages consistent with the crater count system? Icarus 208:621–635

    ADS  Google Scholar 

  • Hauber E, Brož P, Jagert F, Jodłowski P, Platz T (2011) Very recent and wide-spread basaltic volcanism on Mars. Geophys Res Lett 38(10):L10201. doi:10.1029/2011GL047310

    ADS  Google Scholar 

  • Head JW (2001) The Moon and terrestrial planets: geology and geophysics. In: Bleeker J, Geiss J, Huber M (eds) The century of space science. Kluwer Academic, Dordrecht, pp 1295–1323

    Google Scholar 

  • Heiken GH, Vaniman DT, French BM (eds) (1991) Lunar source book. Cambridge University Press, Cambridge

    Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G, Head JW (2000) Ages of mare basalts on the lunar nearside. J Geophys Res 105:29239–29276

    ADS  Google Scholar 

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2003) Ages and stratigraphy of mare basalts in oceanus procellarum, mare nubium, mare cognitum, and mare insularum. J Geophys Res 108:5065

    Google Scholar 

  • Hiesinger H, Head JW, Jaumann R, Neukum G (2006) New ages for basalts in mare fecunditatis based on crater size-frequency measurements. In: Lunar and planetary science abstracts, #1151

    Google Scholar 

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2010a) Ages and stratigraphy of lunar mare basalts in mare frigoris and other nearside maria based on crater size-frequency distribution measurements. J Geophys Res 115(E3):E03003

    ADS  Google Scholar 

  • Hiesinger H, van der Bogert CH, Paschert JH, Klemm K, Reiss D (the LROC Team) (2010b) New crater size-frequency distribution measurements for Copernicus crater based on lunar reconnaissance orbiter camera. In: Images lunar and planetary science conference abstracts, #2304

    Google Scholar 

  • Hiesinger H, Van der Bogert CH, Pasckert JH, Funcke L, Giacomini L, Ostrach LR, Robinson MS (2012) How old are young lunar craters? J Geophys Res. doi:10.1029/2011JE003935

    Google Scholar 

  • Hildebrand AR, Pilkington M, Connors M, Ortiz-Aleman C, Chavez RE (1995) Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 376(6539):415–417

    ADS  Google Scholar 

  • Hohenberg CM, Podosek FA, Reynolds JH (1967) Xenon-iodine dating: sharp isochronism in chondrites. Science 156:233–235

    ADS  Google Scholar 

  • Hood LL (1986) Geophysical constraints on the lunar interior. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon, pp 361–410

    Google Scholar 

  • Hood LL, Richmond NC, Harrison KP, Lillis RJ (2007) East-West trending magnetic anomalies in the southern hemisphere of Mars: modeling analysis and interpretation. Icarus 191(1):113–131

    ADS  Google Scholar 

  • Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken GH, Vaniman DT, French BM (eds) Lunar source book. Cambridge University Press, Cambridge, New York, Melbourne, pp 61–120

    Google Scholar 

  • Hubbard NJ, Gast PW, Meyer C, Nyquist LE, Shih C-Y, Weismann H (1971) Chemical composition of lunar anorthosites and their parent liquids. Earth Planet Sci Lett 13:71–75

    ADS  Google Scholar 

  • Ida S, Canup RM, Steward G (1997) Formation of the Moon from an impact-generated disk. Nature 389:353–357

    ADS  Google Scholar 

  • Ivanov BA (2001) Mars/Moon cratering rate ratio estimates. In: SSSI 12. Space Sci Rev 96:87–104

    Google Scholar 

  • Ivanov BA, Neukum G, Wagner R (2000) Size-frequency distributions of planetary impact craters and asteroids. In: Kallenbach R, Geiss J, Hartmann WK (eds) Collisional processes in the Solar System, ASSL. Kluwer Academic, Dordrecht

    Google Scholar 

  • Jagert F, Hauber E (2012) Age determination of martian low shield volcanoes by crater size-frequency measurements. Photogramm Fernerkund Geoinf 2012(2):177–185(9). www.schweizerbart.de

    Google Scholar 

  • Jaumann R, Williams DA, Buczkowski DL, Yingst RA, Preusker F, Hiesinger H, Schmedemann N et al. (2012) Vesta’s shape and morphology. Science 336(6082):687–690. doi:10.1126/science.1219122

    ADS  Google Scholar 

  • Jessberger EK, Kissel J (1991) In: Newburn R, Neugebauer R, Rahe J (eds) ‘Title’, comets in the post-Halley era, vol 2. Kluwer Academic, Dordrecht, pp 1075–1092

    Google Scholar 

  • Jessberger EK, Huneke JC, Podosek FA, Wasserburg GJ (1974) High resolution argon analysis of neutron-irradiated Apollo 16 rocks and separated minerals. In: Proc 5th lunar sci conf, pp 1419–1449

    Google Scholar 

  • Jolliff BL, Papanastassiou DA, Cohen BA (2007) Testing the terminal cataclysm hypothesis with samples from the South Pole-Aitken basin. In: LEAG workshop on enabling exploration, p 345

    Google Scholar 

  • Jutzi M, Asphaug E (2011) Forming the lunar far side highlands by accretion of a companion moon. Nature 476:69–71

    ADS  Google Scholar 

  • Kaula WM (1979) Thermal evolution of Earth and Moon growing by planetesimal impacts. J Geophys Res 84(B3):999–1008

    ADS  Google Scholar 

  • Kerridge JF (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim Cosmochim Acta 49(8):1707–1714

    ADS  Google Scholar 

  • Kirsten T, Horn P, Kiko J (1973) 39Ar-40Ar dating and rare gas analysis of neutron-irradiated Apollo 16 rocks and soils. In: Proc 4th lunar sci conf, pp 1757–1784

    Google Scholar 

  • Kleine T, Mezger K, Palme H, Scherer E, Münker C (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim Cosmochim Acta 69:5805–5818

    ADS  Google Scholar 

  • Koeberl C (2006a) The record of impact processes on the early Earth: a review of the first 2.5 billion years. Spec Pap, Geol Soc Am 405:1

    Google Scholar 

  • Koeberl C (2006b) Impact processes on the early Earth. Elements 2(4):211–216. doi:10.2113/gselements.2.4.211

    Google Scholar 

  • Koeberl C, Reimold W, McDonald I, Rosing M (2000) Search for petrographic and geochemical evidence for the late heavy bombardment on Earth in early Archean rocks from Isua. In: Greenland, impacts and the early Earth, pp 73–97

    Google Scholar 

  • Kolodny Y, Kerridge JF, Kaplan IR (1980) Deuterium in carbonaceous chondrites. Earth Planet Sci Lett 46(2):149–158

    ADS  Google Scholar 

  • Konrad WT, Spohn T (1997) Thermal history of the Moon: implications for an early core dynamo and post-accertional magmatism. Adv Space Res 19:1511–1521

    ADS  Google Scholar 

  • Korenaga J (2012) Initiation and evolution of plate tectonics on Earth: theories and observations. Annu Rev Earth Planet Sci. doi:10.1146/annurev-earth-050212-124208

    Google Scholar 

  • Kring DA (1995) The dimensions of the Chicxulub impact crater and impact melt sheet. J Geophys Res 100:16979–16986

    ADS  Google Scholar 

  • Langevin Y, Arnold JR (1977) The evolution of the lunar regolith. Annu Rev Earth Planet Sci 5:449–489

    ADS  Google Scholar 

  • Larimer JW (1971) Composition of the earth: chondritic or achondritic? Geochim Cosmochim Acta 35(8):769–786

    ADS  Google Scholar 

  • Laskar J, Joutel F, Robutel P (1993) Stabilization of the Earth’s obliquity by the Moon. Nature 361:615–617

    ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Baraclough BL, Binder AB, Elphic RC, Maurice S, Thomsen DR (1998) Global elemental maps of the Moon: the lunar prospector gamma-ray spectrometer. Science 281(5382):1484–1489

    ADS  Google Scholar 

  • Lee T, Papanastassiou DA, Wasserburg GJ (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys Res Lett 3:109–112

    ADS  Google Scholar 

  • Lee D-C, Halliday AN, Snyder GA, Taylor LA (1997) Age and origin of the Moon. Science 278:1098–1103

    ADS  Google Scholar 

  • Lee D-C, Halliday AN, Singletary SJ, Grove TL (2009) 182Hf–182W chronometry and early differentiation of the ureilite parent body. Earth Planet Sci Lett 288:611–618

    ADS  Google Scholar 

  • Lepland A, van Zuilen MA, Arrhenius G, Whitehouse MJ, Fedo CM (2005) Questioning the evidence for Earth’s earliest life—Akilia revisited. Geology 33:77–79. doi:10.1130/G20890.1

    ADS  Google Scholar 

  • Leske RA, Mewaldt RA, Cummings AC, Cummings JR, Stone EC, von Rosenvinge TT (1996) The isotopic composition of anomalous cosmic rays from sampex. Space Sci Rev 78:149–154

    ADS  Google Scholar 

  • Leya I, Wieler R, Hallliday AN (2000) Cosmic-ray production of tungsten isotopes in meteorites and lunar samples and its influence on the Hf-W system. Earth Planet Sci Lett 175:1–12

    ADS  Google Scholar 

  • Linsky JL (1998) Deuterium abundance in the local ISM and possible spatial variations. Space Sci Rev 84(1):285–296

    ADS  Google Scholar 

  • Lodders K, Fegley B (1998) The planetary scientists’ companion. Oxford University Press, New York, Oxford

    Google Scholar 

  • Lucchitta BK (1978) Geologic map of the North side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Lugmair GW, Marti K, Kurtz JP (1976) History and genesis of lunar troctolite 76535: or how old is old? In: Proc 7th lunar sci conf, pp 2009–2033

    Google Scholar 

  • MacPherson GJ, Bullock ES, Janney PE, Kita NT, Ushikubo T, Davis AM, Wadhwa M, Krot AN (2010) Early solar nebula condensates with canonical, not supracononical, initial 26Al/27Al ratios. Astrophys J Lett 711:L117–L121

    ADS  Google Scholar 

  • Marinova MM, Aharonson O, Asphaug E (2008) Mega-impact formation of the Mars hemispheric dichotomy. Nature 453(7199):1216–1219

    ADS  Google Scholar 

  • Markowski A, Quitté G, Kleine T, Halliday AN, Bizzarro M, Irving AJ (2007) Hafnium–tungsten chronometry ofangrites and the earliest evolution of planetary objects. Earth Planet Sci Lett 262:214–229

    ADS  Google Scholar 

  • Marti K (1967) Mass-spectrometric detection of cosmic-ray produces Kr-81 in meteorites and the possibility of Kr-Kr dating. Phys Rev Lett 18:264–266

    MathSciNet  ADS  Google Scholar 

  • Marti K, Kerridge J (2010) Nitrogen in the Solar System. Science 328:1112–1113

    Google Scholar 

  • Marty B, Meibom A (2007) Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. EEarth 2:43–49

    ADS  Google Scholar 

  • Marty B, Chaussidon M, Wiens RC, Jurewicz AJG, Burnett DS (2011) A 15N-poor isotopic composition for the Solar System as shown by genesis solar wind samples. Science 332:1533–1536

    ADS  Google Scholar 

  • Maurer P, Eberhardt P, Geiss J, Grögler N, Stettler A, Brown GM, Peckett A, Krähenbühl U (1978) Pre-Imbrian craters and basins: ages, compositions and excavation depths of Apollo 16 breccias. Geochim Cosmochim Acta 42:1687–1720

    ADS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar type star. Nature 378:355–359

    ADS  Google Scholar 

  • McCord TB, Adams JB, Johnson TV (1970) Asteroid Vesta: spectral reflectivity and compositional implications. Science 168(3938):1445–1447

    ADS  Google Scholar 

  • McEwen AS, Robinson MS (1997) Mapping of the Moon by Clementine. Adv Space Res 19(10):1523–1533. doi:10.1016/S0273-1177(97)00365-7

    ADS  Google Scholar 

  • McEwen AS et al. (2005) The rayed crater Zunil and interpretations of impact craters on Mars. Icarus 176:351–381

    ADS  Google Scholar 

  • McEwen AS, Eliason EM, Bergstrom JW, Bridges NT, Hansen CJ, Delamere WA, Grant JA, Gulick VC, Herkenhoff KE, Keszthelyi L, Kirk RL, Mellon MT, Squyres SW, Thomas N, Weitz CM (2007) Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J Geophys Res. doi:10.1029/2005JE002605

    Google Scholar 

  • McKay DS, Heiken G, Basu A, Blanford G, Simon St, Reedy R, French BM, Papike J (1991) The lunar regolith. In: Heiken GH, Vaniman DT, French BM (eds) Lunar source book. Cambridge University Press, New York, pp 285–356

    Google Scholar 

  • McKeegan KD et al. (2009) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332(6037):1528–1532

    ADS  Google Scholar 

  • McLennan SM, Sephton MA, Allen C, Allwood AC, Barbieri R, Beaty DW, Boston P, Carr M, Grady M, Grant J, Heber VS, Herd CDK, Hofmann B, King P, Mangold N, Ori GG, Rossi AP, Raulin F, Ruff SW, Sherwood Lollar B, Symes S, Wilson MG (2012) Planning for Mars returned sample science: final report of the MSR end-to-end international science analysis group (E2E-iSAG). Astrobiology 12:175–230. doi:10.1089/ast.2011.0805

    Google Scholar 

  • McSween H Jr., Mittlefehldt D, Beck A, Mayne R, McCoy T (2011) HED meteorites and their relationship to the geology of Vesta and the dawn mission. Space Sci Rev 163:141–174

    ADS  Google Scholar 

  • Melosh HJ (1984) Impact ejection, spallation, and the origin of meteorites. Icarus 59:234–260

    ADS  Google Scholar 

  • Melosh HJ (1989) Impact cratering. Oxford University Press, New York

    Google Scholar 

  • Meyer C, Brett R, Hubbard NJ, Morrison DA, McKay DS, Aitken FK, Takeda H, Schonfeld E (1971) Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. In: Proc 2nd lunar sci conf, pp 393–411

    Google Scholar 

  • Morbidelli AA, Petit JM, Gladman B, Chambers J (2001) A plausible cause of the late heavy bombardment. Meteorit Planet Sci 36(3):371–380

    ADS  Google Scholar 

  • Morbidelli A, Levison HF, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s trojan asteroids in the early Solar System. Nature 435(7041):462–465

    ADS  Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355–356:144–151

    Google Scholar 

  • Morgan JV, Warner MR (Chicxulub Working Group) (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476

    ADS  Google Scholar 

  • Neal CR (2009) The Moon 35 years after Apollo: what’s left to learn? Chem Erde Geochem 69(1):3–43

    ADS  Google Scholar 

  • Neukum G (1983) Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Thesis, University of Munich, 186 pp

  • Neukum G, Ivanov BA (1994) Crater size distribution and impact probabilities on Earth from lunar, terrestrial-planet and asteroid cratering data. In: Gehrels T (ed) Hazards due to comets and asteroids. Univ. Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Neukum G, König B (1976) Dating of individual lunar craters. In: Proc 7th lunar science conf, pp 2867–2881

    Google Scholar 

  • Neukum G, Ivanov BA, Hartmann WK (2001) Cratering records in the inner Solar System in relation to the lunar reference system. In: SSSI 12. Space Sci Rev 96:55–86

    Google Scholar 

  • Neukum G, Basilevsky AT, Kneissl T, Chapman MG, Van Gasselt S, Michael G, Jaumann R et al. (2010) The geologic evolution of Mars: episodicity of resurfacing events and ages from cratering analysis of image data and correlation with radiometric ages of martian meteorites. Earth Planet Sci Lett 294(3–4):204–222

    ADS  Google Scholar 

  • Nimmo F, Tanaka K (2005) Early crustal evolution of Mars. Annu Rev Earth Planet Sci 33(1):133–161. doi:10.1146/annurev.earth.33.092203.122637

    ADS  Google Scholar 

  • Norman MD, Duncan RA, Huard JJ (2010) Imbrium provenance for the Apollo 16 descartes terrain: argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim Cosmochim Acta 74(2):763–783. doi:10.1016/j.gca.2009.10.024

    ADS  Google Scholar 

  • Nyquist LE (1977) Lunar Rb-Sr chronology. Phys Chem Earth 10:103–142

    ADS  Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y (2001a) Radiometric chronology of the Moon and Mars. In: Bleeker A, Geiss J, Huber M (eds) The century of space science, vol I, p 1325. ISBN 978-0-7923-7196-0

    Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001b) Ages and geological histories of martian meteorites. In: SSSI 12. Space Sci Rev 96:105–164

    Google Scholar 

  • Nyquist L, Reese Y, Wiesmann H, Shih C-Y, Takeda H (2003) Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on asteroid 4 Vesta. Earth Planet Sci Lett 214:11–25

    ADS  Google Scholar 

  • Ott U (1988) Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny? Geochim Cosmochim Acta 52:1937–1948

    ADS  Google Scholar 

  • Ott U, Begemann F (1985) Are all the ‘Martian’ meteorites from Mars? Nature 317:509–512

    ADS  Google Scholar 

  • Owen T, Biermann K, Rushneck DR, Biller JE, Howarth DW, Lafleur AL (1977) The composition of the atmosphere at the surface of Mars. J Geophys Res 82:6435–6439

    ADS  Google Scholar 

  • Owen T, Mahaffy PR, Niemann HB, Atreya S, Wong M (2001) Protosolar nitrogen. Astrophys J Lett 553(1):L77

    ADS  Google Scholar 

  • Pahlevan K, Stevenson DJ (2007) Equilibration in the aftermath of lunar-forming giant impact. Earth Planet Sci Lett 262:438–449

    ADS  Google Scholar 

  • Paniello RC, Day JMD, Moynier F (2012) Zinc isotopic evidence for the origin of the Moon. Nature 490:375–378

    ADS  Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1971) Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation. Earth Planet Sci Lett 12:36–48

    ADS  Google Scholar 

  • Patterson C (1956) Age of meteorites and the Earth. Geochim Cosmochim Acta 10:230–237

    ADS  Google Scholar 

  • Patterson C, Brown H, Tilton G, Inghram M (1953) Concentration of uranium and lead and the isotopic composition of lead in meteoritic material. Phys Rev 92:1234–1235

    ADS  Google Scholar 

  • Pepin RO (1985) Evidence of martian origins. Nature 317:473–475

    ADS  Google Scholar 

  • Petitat M, Kleine T, Touboul M, Bourdon B, Wieler R (2008) Hf–W chronometry of aubrites and the evolution of planetary bodies. In: 39th lunar planet sci conf, p 2164. (abstr)

    Google Scholar 

  • Pierazzo E, Melosh HJ (2012) Environmental effects of impact events. In: Osinski G, Pierazzo E (eds) Impact cratering: processes and products. Blackwell, Oxford, pp 146–156

    Google Scholar 

  • Pieters CM, Binzel RP, Bogard D, Hiroi T, Mittlefehldt DW, Nyquist L, Rivkin A, Takeda H (2005) Asteroid-meteorite links: the Vesta conundrum(s). Proc IAU Symp 229:273–288

    ADS  Google Scholar 

  • Prantzos N, Aubert O, Audouze J (1996) Evolution of the carbon and oxygen isotopes in the Galaxy. Astron Astrophys 309:760–774

    ADS  Google Scholar 

  • Prettyman TH, Feldman WC, Lawrence DJ, McKinney GW, Binder AB (2002) Library least squares analysis of lunar prospector gamma-ray spectra. In: Lunar planet sci conf XXXIII

    Google Scholar 

  • Prialnik D, Podolak M (1995) Radioactive heating of porous comet nuclei. Icarus 117:420–430

    ADS  Google Scholar 

  • Prialnik D, Podolak M (1999) Changes in the structure of comet nuclei due to radioactive heating. Space Sci Rev 90:169–178

    ADS  Google Scholar 

  • Pritchard ME, Stevenson DJ (2000) Thermal implications of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. Univ. Arizona Press, Tucson, pp 179–196

    Google Scholar 

  • Quantin C, Mangold N, Hartmann WK, Allemand P (2007) Possible long-term decline in impact rates: 1. Martian geological data. Icarus 186(1):1–10

    ADS  Google Scholar 

  • Reufer A, Meier MMM, Benz W, Wieler R (2012) A hit-and-run giant impact scenario. Icarus 221:296–299

    ADS  Google Scholar 

  • Reynolds JH (1960) Isotopic composition of primordial xenon. Phys Rev Lett 4:351–354

    ADS  Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer, New York

    Google Scholar 

  • Ringwood AE (1986) Terrestrial origin of the Moon. Nature 322:323–324

    ADS  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in >3700-ma sea-floor sedimentary rocks from West Greenland. Science 283(5402):674–676

    ADS  Google Scholar 

  • Rossi AP, van Gasselt S (2010) Geology of Mars after the first 40 years of exploration. Res Astron Astrophys 10:621–652, invited review

    ADS  Google Scholar 

  • Runcorn SK (1978) The ancient lunar core dynamo. Science 199:771–773

    ADS  Google Scholar 

  • Ryder G, Bogard D, Garrison D (1991) Probable age of autolycus and calibration of lunar stratigraphy. Geology 19:143–146

    ADS  Google Scholar 

  • Schaeffer OA (1977) Lunar chronology as determined from the radiometric ages of returned lunar samples. Philos Trans R Soc Lond Ser A, Math Phys Sci 285:137–143

    ADS  Google Scholar 

  • Schatzman E, Maeder A (1981) Stellar evolution with turbulent diffusion mixing. III—the solar model and the neutrino problem. Astron Astrophys 96:1–16

    ADS  Google Scholar 

  • Schiller M, Baker JA, Bizzarro M (2010) 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochim Cosmochim Acta 74:4844–4864

    ADS  Google Scholar 

  • Schmitt HH (2006) Return to the Moon: exploration, enterprise, and energy in the human settlement of space. In: Copernicus books

    Google Scholar 

  • Schoenberg R, Kamber BS, Collerson KD, Moorbath S (2002) Tungsten isotope evidence from 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the Earth. Nature 418(6896):403–405

    ADS  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ et al. (2010) The Chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science 327(5970):1214–1218. doi:10.1126/science.1177265

    ADS  Google Scholar 

  • Scott DH, McCauley JF (1977) Geologic map of the West side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Shearer CK et al. (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518

    Google Scholar 

  • Shimazu H, Terasawa T (1995) Electromagnetic induction heating of meteorite parent bodies by the primordial solar wind. J Geophys Res 100:16923–16930

    ADS  Google Scholar 

  • Shoemaker EM, Hakman RJ (1962) Stratigraphic basis for a lunar time scale. In: IAU symp, p 14. Moon, 289–300

    Google Scholar 

  • Shoemaker EM, Hait MH, Swann GA, Schleicher DL, Schaber GG, Sutton RL, Waters AC (1970) Origin of the lunar regolith at tranquillity base. Geochim Cosmochim Acta Suppl 1:2399

    ADS  Google Scholar 

  • Shoemaker EM, Robinson MS, Eliason EM (1994) The South pole region of the Moon as seen by Clementine. Science 266(5192):1851–1854

    ADS  Google Scholar 

  • Shukolyukov A, Lugmair GW (1993) Live iron-60 in the early solar system. Science 259:1138–1142. 60Fe is important make text

    ADS  Google Scholar 

  • Silver LT (1971) U-Th-Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact. Eos 52:534

    Google Scholar 

  • Silvestro S, Vaz DA, Ewing RC, Rossi AP, Fenton LK, Michaels TI, Flahaut J, Geissler PE (2013) Pervasive aeolian activity along rover Curiosity’s traverse in Gale Crater. Mars Geol. doi:10.1130/G34162.1. G34162.1

    MATH  Google Scholar 

  • Slattery WL, Benz W, Cameron AGW (1992) Giant impacts on a primitive Uranus. Icarus 99(1):167–174

    ADS  Google Scholar 

  • Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harbor Perspect Biol. doi:10.1101/cshperspect.a002527

    Google Scholar 

  • Solomon SC, Töksoz MN (1973) Internal constitution and evolution of the Moon. Phys Earth Planet Inter 7:15–38

    ADS  Google Scholar 

  • Sonett CP, Colburn DS (1968) The principle of solar wind induced planetary dynamos. Phys Earth Planet Inter 1:326–346

    ADS  Google Scholar 

  • Spagnuolo M, Rossi AP, Hauber E, Van Gasselt S (2011) Recent tectonics and subsidence on Mars: hints from Aureum chaos. Earth Planet Sci Lett 312:13–21

    ADS  Google Scholar 

  • Spohn T (ed) (2010) Planets and Moons, treatease of geophysics, vol 10. Elsevier BV, Amsterdam

    Google Scholar 

  • Spohn T, Konrad W, Breuer D, Ziethe R (2001) The longevity of lunar volcanism: implications of thermal evolution calculations with 2D and 3D mantle convection models. Icarus 149:54–65

    ADS  Google Scholar 

  • Spudis PD, Gillis JJ, Reisse RA (1994) Ancient multiring basins on the Moon revealed by Clementine laser altimetry. Science 266:1848–1851

    ADS  Google Scholar 

  • Staid MI, Pieters CM, Head JW III (1996) Mare tranquillitatis: basalt emplacement history and relation to lunar samples. J Geophys Res 101:23213–23228

    ADS  Google Scholar 

  • Stauffer H (1962) On the production rates of rare gas isotopes in stone meteorites. Geophys Res 67:2023–2028

    ADS  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    ADS  Google Scholar 

  • Stettler A, Eberhardt P, Geiss J, Grögler N, Maurer P (1973) Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. In: Proc lunar sci conf geochim cosmochim acta, vol 4, pp 1865–1888

    Google Scholar 

  • Stöffler D, Ryder G (2001) Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. In: SSSI 12. Space Sci Rev 96:9–54

    Google Scholar 

  • Stöffler D, Knoell HD, Maerz U (1997) Terrestrial and lunar impact breccias and the classification of lunar highland rocks. In: Proceedings lunar and planetary science conf, vol 1, pp 639–675

    Google Scholar 

  • Stone EC, Cummings AC, Mc Donald FB, Heikkila BC, Lal N, Webber WR (2005) Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309:2017–2020

    ADS  Google Scholar 

  • Stuart-Alexander D.E (1978) Geologic map of the central far side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Swindle TD, Caffee MW, Hoheberg CM (1986) Xenon and other Noble gases in shergottites. Geochim Cosmochim Acta 50:1001–1015

    ADS  Google Scholar 

  • Tanaka KL (1986) The stratigraphy of Mars. In: Proc 17th lunar sci conf. J Geophys Res 91(Suppl):139–158

    Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclyism. Earth Planet Sci Lett 22:1–21

    ADS  Google Scholar 

  • Thompson C, Stevenson DJ (1988) Gravitational instability of two-phase disks and the origin of the Moon. Astrophys J 333:452–481

    ADS  Google Scholar 

  • Toksöz MN, Dainty AM, Solomon SC, Anderson KR (1974) Structure of the Moon. Rev Geophys 12(4):539–567

    ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435(7041):459–461

    ADS  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge, p 137

    Google Scholar 

  • Turner G (1970) Argon-40/Argon-39 dating of lunar rock samples. Science 167:466–468

    ADS  Google Scholar 

  • Turner G, Cadogan PH, Yonge CJ (1973) Argon selenochronology. In: Proc 4th lunar sci conf, pp 1889–1914

    Google Scholar 

  • Udry S, Benz W, von Steiger R (eds) (2006) Planetary systems and planets in systems. ISSI scientific report SR-06. International Space Science Institute, Bern. ISBN 978-92-9221-935-2

    Google Scholar 

  • Urey HC (1952) The planets, their origin and development. Yale Univ. Press, New Haven

    Google Scholar 

  • Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balance of the Earth, the Moon, and Mars. Proc Natl Acad Sci USA 41:127–144

    ADS  Google Scholar 

  • Vaniman D, Reedy R, Heiken G, Olhoeft G, Mendell W (1993) The lunar environment. In: Heiken G, Vaniman DT, French BM (eds) Lunar source book: a user’s guide to the Moon, Cambridge University Press, Lunar and Planetary Institute, New York, Houston, pp 27–60

    Google Scholar 

  • Voshage H (1967) Bestrahlungsalter und Herkunft der Eisenmeteorite. Z Naturforsch 22a:477–506

    ADS  Google Scholar 

  • Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of western Australia. Nat Geosci 4(10):698–702

    ADS  Google Scholar 

  • Wallis MK (1980) Radiogenic heating of primordial comet interiors. Nature 284:431–433

    ADS  Google Scholar 

  • Walsh KJ, Morbidelli A (2011) The effect of an early planetesimal-driven migration of the Giant Planets on terrestrial planet formation. Astron Astrophys 526:A126

    ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    ADS  Google Scholar 

  • Wänke H, Gold T (1981) Constitution of terrestrial planets. Philos Trans R Soc Lond, Ser A, Math Phys Sci 303(1477):287–302

    Google Scholar 

  • Wänke H, Wlotzka F, Jagoutz E, Begemann F (1970) Composition and structure of metallic iron particles in lunar fines. In: Proc Apollo 11 lunar sci conf, pp 1719–1727

    Google Scholar 

  • Wänke H, Palme H, Baddenhausen H, Kruse H, Spettel B (1977) Philos Trans R Soc Lond A 285:41–48

    ADS  Google Scholar 

  • Wänke H, Dreibus G, Jagoutz E (1984) Mantle chemistry and accretion history of the Earth. Arch Geochem 1:24

    Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:210–240

    ADS  Google Scholar 

  • Wasserburg GJ, Hayden RJ (1955) Age of meteories by a40-K40 method. Phys Rev 97:86–87

    ADS  Google Scholar 

  • Wasserburg GJ, Papanastassiou DA (1971) Age of Apollo 15 mare basalt: lunar crust and mantle evolution. Earth Planet Sci Lett 13:97–104

    ADS  Google Scholar 

  • Wasserburg GJ, Papanastasiou DA, Tera F, Huneke JC (1977) Outline of a lunar chronology. Philos Trans R Soc Lond, Ser A, Math Phys Sci 285(1327):7–22

    ADS  Google Scholar 

  • Weber RC, Lin P-Y, Garnero EJ, Williams Q, Lognonné P (2011) Seismic detection of the lunar core. Science 331:309–312

    ADS  Google Scholar 

  • Werner SC (2006) Major aspects of the chronography and geologic evolutionary history of Mars. Cuvillier, Göttingen, ISBN 3-86537-774-2

    Google Scholar 

  • Wetherill G (1975) Late heavy bombardment of the Moon and terrestrial planets. Lunar Planet Sci Proc 2:1539–1561

    ADS  Google Scholar 

  • Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D (2001) Oxygen isotopes and the Moon-forming Giant Impact. Science 294:345–348

    ADS  Google Scholar 

  • Wiechert U, Halliday A, Palme H, Rumble D (2004) Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet Sci Lett 221:373

    ADS  Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP terrane”: implications for mare volcanism and lunar evolution. J Geophys Res 105:20417–20420

    ADS  Google Scholar 

  • Wieler R, Heber VS (2003) Noble gas isotopes on the Moon. Space Sci Rev 106(1):197–210

    ADS  Google Scholar 

  • Wilhelms DE (1979) Geologic map of the South side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Wilhelms DE (1984) The Moon. In: Carr M et al. (eds) The geology of the terrestrial planets, pp 107–205, NASA SP-469

    Google Scholar 

  • Wilhelms DE (1987) The geologic history of the Moon. In: US geol survey prof pap, vol 1348, p 302

    Google Scholar 

  • Wilhelms DE, El-Baz F (1977) Geologic map of the East side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Wilhelms DE, McCauley JF (1971) Geologic map of the near side of the Moon. U.S. Geological Survey, Reston

    Google Scholar 

  • Wilhelms DE, Squyres SW (1984) The martian hemispheric dichotomy may be due to a giant impact. Nature 309(5964):138–140

    ADS  Google Scholar 

  • Wood JA, Pellas P (1991) What heated the parent meteoriteplanets? In: Sonnett CP, Giampapa MS (eds) The Sun in time. Univ. of Arizona, Tucson, pp 740–760

    Google Scholar 

  • Wood JA, Dickey JS, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the Moon. In: Proc Apollo 11 lunar sci conf, pp 965–988

    Google Scholar 

  • Yamakawa A, Yamashita K, Makishima A, Nakamura E (2010) Chromium isotope systematics of achondrites. chronology and isotopic heterogeneity of the inner Solar System bodies. Astrophys J 720:150

    ADS  Google Scholar 

  • Young ED, Simon JI, Galy A, Tonui E, Russell SS, Lovera O (2005) Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science 308:223–227

    ADS  Google Scholar 

  • Zanetti M, van der Bogert CH, Reiss D, Hiesinger H (2011) The lunar crater aristarchus: morphologic observations of impact melt features and absolute model age determination. Eur Planet Sci 6:#573

    Google Scholar 

  • Zuber MT, Smith DE, Alkalai L, Lehman DH, Watkins MM (the GRAIL Team) (2008) Outstanding questions on the internal structure and thermal evolution of the Moon and future prospects from the GRAIL mission. In: Proc. 39th lunar planet sci conf #1074

    Google Scholar 

Download references

Acknowledgements

In the present paper the authors report about results from numerous space missions, and they wish to thank astronauts, engineers scientists and others who contributed to the success of these missions. We are grateful for the support and help from ISSI directors and staff, and we thank Bill Hartmann, Alex Halliday, Ernst Hauber and Lukas Viglietti for discussions, advice and comments regarding our paper, the references and the figures. We very much appreciate the invitation to this publication by the Editors of Astronomy and Astrophysics Review. Our very special thanks go to Martin C. Huber for his patience, critical reviewing and supportive handling of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Geiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiss, J., Rossi, A.P. On the chronology of lunar origin and evolution. Astron Astrophys Rev 21, 68 (2013). https://doi.org/10.1007/s00159-013-0068-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-013-0068-1

Keywords

Navigation