Our astrochemical heritage

REVIEW ARTICLE

Abstract

Our Sun and planetary system were born about 4.5 billion years ago. How did this happen, and what is the nature of our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet-formation period. They are represented by the prestellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity.

In this review, we first present the information on the chemical composition of meteorites, comets and other small bodies of the Solar System, which is potentially linked to the first phases of the Solar System’s formation. Then we describe the observed chemical composition in the prestellar core, protostellar envelope and protoplanetary-disk phases, including the processes that lead to them. Finally, we draw together pieces from the different objects and phases to understand whether and how much we inherited chemically from the time of the Sun’s birth.

Keywords

Astrochemistry ISM: clouds Stars: formation Protoplanetary disks Comets: general Meteorites, meteors, meteoroids 

References

  1. Acke B, van den Ancker ME (2004) ISO spectroscopy of disks around Herbig Ae/Be stars. Astron Astrophys 426:151–170. doi:10.1051/0004-6361:20040400 ADSCrossRefGoogle Scholar
  2. Adams FC (2010) The birth environment of the solar system. Annu Rev Astron Astrophys 48:47–85. doi:10.1146/annurev-astro-081309-130830 ADSCrossRefGoogle Scholar
  3. Adande GR, Ziurys LM (2012) Millimeter-wave observations of CN and HNC and their 15N isotopologues: a new evaluation of the 14N/15N ratio across the galaxy. Astrophys J 744:194. doi:10.1088/0004-637X/744/2/194 ADSCrossRefGoogle Scholar
  4. Aikawa Y, Nomura H (2006) Physical and chemical structure of protoplanetary disks with grain growth. Astrophys J 642:1152–1162. doi:10.1086/501114 ADSCrossRefGoogle Scholar
  5. Aikawa Y, Umebayashi T, Nakano T, Miyama SM (1999) Evolution of molecular abundances in protoplanetary disks with accretion flow. Astrophys J 519:705–725. doi:10.1086/307400 ADSCrossRefGoogle Scholar
  6. Aikawa Y, Wakelam V, Garrod RT, Herbst E (2008) Molecular evolution and star formation: from prestellar cores to protostellar cores. Astrophys J 674:984–996. doi:10.1086/524096 ADSCrossRefGoogle Scholar
  7. Aikawa Y, Kamuro D, Sakon I, Itoh Y, Terada H, Noble JA, Pontoppidan KM, Fraser HJ, Tamura M, Kandori R, Kawamura A, Ueno M (2012) AKARI observations of ice absorption bands towards edge-on young stellar objects. Astron Astrophys 538:A57. doi:10.1051/0004-6361/201015999 ADSCrossRefGoogle Scholar
  8. Aléon J (2010) Multiple origins of nitrogen isotopic anomalies in meteorites and comets. Astrophys J 722:1342–1351. doi:10.1088/0004-637X/722/2/1342 ADSCrossRefGoogle Scholar
  9. Alexander CMO, Fogel M, Yabuta H, Cody GD (2007) The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim Cosmochim Acta 71:4380–4403. doi:10.1016/j.gca.2007.06.052 ADSCrossRefGoogle Scholar
  10. Allegre CJ, Staudacher T, Sarda P, Kurz M (1983) Constraints on evolution of earth’s mantle from rare gas systematics. Nature 303:762–766. doi:10.1038/303762a0 ADSCrossRefGoogle Scholar
  11. Allen A, Li ZY, Shu FH (2003) Collapse of magnetized singular isothermal toroids. II. Rotation and magnetic braking. Astrophys J 599:363–379. doi:10.1086/379243 ADSCrossRefGoogle Scholar
  12. Andrews SM, Williams JP (2007) High-Resolution submillimeter constraints on circumstellar disk structure. Astrophys J 659:705–728. doi:10.1086/511741 ADSCrossRefGoogle Scholar
  13. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2009) Protoplanetary disk structures in Ophiuchus. Astrophys J 700:1502–1523. doi:10.1088/0004-637X/700/2/1502 ADSCrossRefGoogle Scholar
  14. Andrews SM, Wilner DJ, Espaillat C, Hughes AM, Dullemond CP, McClure MK, Qi C, Brown JM (2011) Resolved images of large cavities in protoplanetary transition disks. Astrophys J 732:42. doi:10.1088/0004-637X/732/1/42 ADSCrossRefGoogle Scholar
  15. Arce HG, Santiago-García J, Jørgensen JK, Tafalla M, Bachiller R (2008) Complex molecules in the L1157 molecular outflow. Astrophys J Lett 681:L21–L24. doi:10.1086/590110 ADSCrossRefGoogle Scholar
  16. Arce HG, Borkin MA, Goodman AA, Pineda JE, Beaumont CN (2011) A bubbling nearby molecular cloud: COMPLETE shells in Perseus. Astrophys J 742:105. doi:10.1088/0004-637X/742/2/105 ADSCrossRefGoogle Scholar
  17. Aresu G, Meijerink R, Kamp I, Spaans M, Thi WF, Woitke P (2012) FUV and X-ray irradiated protoplanetary disks: a grid of models II—gas diagnostic line emission. ArXiv e-prints Google Scholar
  18. Armitage PJ (2011) Dynamics of protoplanetary disks. Annu Rev Astron Astrophys 49:195–236. doi:10.1146/annurev-astro-081710-102521 ADSCrossRefGoogle Scholar
  19. Arpigny C, Jehin E, Manfroid J, Hutsemékers D, Schulz R, Stüwe JA, Zucconi JM, Ilyin I (2003) Anomalous nitrogen isotope ratio in comets. Science 301:1522–1525. doi:10.1126/science.1086711 ADSCrossRefGoogle Scholar
  20. Arquilla R, Goldsmith PF (1986) A detailed examination of the kinematics of rotating dark clouds. Astrophys J 303:356–374. doi:10.1086/164082 ADSCrossRefGoogle Scholar
  21. Awad Z, Viti S, Collings MP, Williams DA (2010) Warm cores around regions of low-mass star formation. Mon Not R Astron Soc 407:2511–2518. doi:10.1111/j.1365-2966.2010.17077.x ADSCrossRefGoogle Scholar
  22. Bachiller R, Perez Gutierrez M (1997) Shock chemistry in the young bipolar outflow L1157. Astrophys J Lett 487:L93. doi:10.1086/310877 ADSCrossRefGoogle Scholar
  23. Bacmann A, Lefloch B, Ceccarelli C, Castets A, Steinacker J, Loinard L (2002) The degree of CO depletion in pre-stellar cores. Astron Astrophys 389:L6–L10. doi:10.1051/0004-6361:20020652 ADSCrossRefGoogle Scholar
  24. Bacmann A, Lefloch B, Ceccarelli C, Steinacker J, Castets A, Loinard L (2003) CO depletion and deuterium fractionation in prestellar cores. Astrophys J Lett 585:L55–L58. doi:10.1086/374263 ADSCrossRefGoogle Scholar
  25. Bacmann A, Taquet V, Faure A, Kahane C, Ceccarelli C (2012) Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models. Astron Astrophys 541:L12. doi:10.1051/0004-6361/201219207 ADSCrossRefGoogle Scholar
  26. Barucci MA, Belskaya IN, Fulchignoni M, Birlan M (2005) Taxonomy of centaurs and Trans-Neptunian objects. Astron J 130:1291–1298. doi:10.1086/431957 ADSCrossRefGoogle Scholar
  27. Barucci MA, Dotto E, Levasseur-Regourd AC (2011) Space missions to small bodies: asteroids and cometary nuclei. Astron Astrophys Rev 19:48. doi:10.1007/s00159-011-0048-2 ADSCrossRefGoogle Scholar
  28. Basu S, Mouschovias TC (1994) Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. 1. Axisymmetric solutions. Astrophys J 432:720–741. doi:10.1086/174611 ADSCrossRefGoogle Scholar
  29. Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. Astron J 99:924–945. doi:10.1086/115385 ADSCrossRefGoogle Scholar
  30. Benedettini M, Giannini T, Nisini B, Tommasi E, Lorenzetti D, Di Giorgio AM, Saraceno P, Smith HA, White GJ (2000) The ISO spectroscopic view of the HH 24-26 region. Astron Astrophys 359:148–158 ADSGoogle Scholar
  31. Benedettini M, Viti S, Giannini T, Nisini B, Goldsmith PF, Saraceno P (2002) Comparing SWAS and ISO observations of water in outflows. Astron Astrophys 395:657–662. doi:10.1051/0004-6361:20021303 ADSCrossRefGoogle Scholar
  32. Benedettini M, Busquet G, Lefloch B, Codella C, Cabrit S, Ceccarelli C, Giannini T, Nisini B, Vasta M, Cernicharo J, Lorenzani A, di Giorgio AM (2012) The CHESS survey of the L1157-B1 shock: the dissociative jet shock as revealed by Herschel-PACS. Astron Astrophys 539:L3. doi:10.1051/0004-6361/201118732 ADSCrossRefGoogle Scholar
  33. Bennett CJ, Kaiser RI (2007) On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys J 661:899–909. doi:10.1086/516745 ADSCrossRefGoogle Scholar
  34. Bennett CJ, Jamieson CS, Osamura Y, Kaiser RI (2006) Laboratory studies on the irradiation of methane in interstellar, cometary, and solar system ices. Astrophys J 653:792–811. doi:10.1086/508561 ADSCrossRefGoogle Scholar
  35. Bergin EA, Tafalla M (2007) Cold dark clouds: the initial conditions for star formation. Annu Rev Astron Astrophys 45:339–396. doi:10.1146/annurev.astro.45.071206.100404 ADSCrossRefGoogle Scholar
  36. Bergin EA, Plume R, Williams JP, Myers PC (1999) The ionization fraction in dense molecular gas. II. Massive cores. Astrophys J 512:724–739. doi:10.1086/306791 ADSCrossRefGoogle Scholar
  37. Bergin EA, Alves J, Huard T, Lada CJ (2002) N2H+ and C18O depletion in a cold dark cloud. Astrophys J Lett 570:L101–L104. doi:10.1086/340950 ADSCrossRefGoogle Scholar
  38. Bergin E, Calvet N, D’Alessio P, Herczeg GJ (2003) The effects of UV continuum and Lyα radiation on the chemical equilibrium of T Tauri disks. Astrophys J Lett 591:L159–L162. doi:10.1086/377148 ADSCrossRefGoogle Scholar
  39. Bergin E, Calvet N, Sitko ML, Abgrall H, D’Alessio P, Herczeg GJ, Roueff E, Qi C, Lynch DK, Russell RW, Brafford SM, Perry RB (2004) A new probe of the planet-forming region in T Tauri disks. Astrophys J Lett 614:L133–L136. doi:10.1086/425865 ADSCrossRefGoogle Scholar
  40. Bergin EA, Aikawa Y, Blake GA, van Dishoeck EF (2007) The chemical evolution of protoplanetary disks. In: Protostars and planets V, pp 751–766 Google Scholar
  41. Bergman P, Parise B, Liseau R, Larsson B (2011) Deuterated formaldehyde in ρ Ophiuchi A. Astron Astrophys 527:A39. doi:10.1051/0004-6361/201015012 ADSCrossRefGoogle Scholar
  42. Bernstein MP, Dworkin JP, Sandford SA, Cooper GW, Allamandola LJ (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403 ADSCrossRefGoogle Scholar
  43. Biver N, Bockelée-Morvan D, Crovisier J, Colom P, Henry F, Moreno R, Paubert G, Despois D, Lis DC (2002) Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planets 90:323–333 ADSCrossRefGoogle Scholar
  44. Bizzocchi L, Caselli P, Dore L (2010) Detection of N15NH+ in L1544. Astron Astrophys 510:L5. doi:10.1051/0004-6361/200913835 ADSCrossRefGoogle Scholar
  45. Bjerkeli P, Liseau R, Olberg M, Falgarone E, Frisk U, Hjalmarson Å, Klotz A, Larsson B, Olofsson AOH, Olofsson G, Ristorcelli I, Sandqvist A (2009) Odin observations of water in molecular outflows and shocks. Astron Astrophys 507:1455–1466. doi:10.1051/0004-6361/200912064 ADSCrossRefGoogle Scholar
  46. Bjerkeli P, Liseau R, Nisini B, Tafalla M, Benedettini M, Bergman P, Dionatos O, Giannini T, Herczeg G, Justtanont K, Larsson B, McOey C, Olberg M, Olofsson AOH (2011) Herschel observations of the Herbig–Haro objects HH 52-54. Astron Astrophys 533:A80. doi:10.1051/0004-6361/201116846 ADSCrossRefGoogle Scholar
  47. Bjerkeli P, Liseau R, Larsson B, Rydbeck G, Nisini B, Tafalla M, Antoniucci S, Benedettini M, Bergman P, Cabrit S, Giannini T, Melnick G, Neufeld D, Santangelo G, van Dishoeck EF (2012) H2O line mapping at high spatial and spectral resolution. Herschel observations of the VLA 1623 outflow. Astron Astrophys 546:A29. doi:10.1051/0004-6361/201219776 ADSCrossRefGoogle Scholar
  48. Blake GA, Sutton EC, Masson CR, Phillips TG (1987) Molecular abundances in OMC-1—the chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys J 315:621–645. doi:10.1086/165165 ADSCrossRefGoogle Scholar
  49. Bockelée-Morvan D (2011) An overview of comet composition. In: IAU symposium, vol 280, pp 261–274. doi:10.1017/S1743921311025038 Google Scholar
  50. Bockelee-Morvan D, Gautier D, Lis DC, Young K, Keene J, Phillips T, Owen T, Crovisier J, Goldsmith PF, Bergin EA, Despois D, Wootten A (1998) Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133:147–162. doi:10.1006/icar.1998.5916 ADSCrossRefGoogle Scholar
  51. Bockelée-Morvan D, Biver N, Jehin E, Cochran AL, Wiesemeyer H, Manfroid J, Hutsemékers D, Arpigny C, Boissier J, Cochran W, Colom P, Crovisier J, Milutinovic N, Moreno R, Prochaska JX, Ramirez I, Schulz R, Zucconi JM (2008) Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes. Astrophys J Lett 679:L49–L52. doi:10.1086/588781 ADSCrossRefGoogle Scholar
  52. Bockelée-Morvan D, Biver N, de Swinyard B, Val-Borro M, Crovisier J, Hartogh P, Lis DC, Moreno R, Szutowicz S, Lellouch E, Emprechtinger M, Blake GA, Courtin R, Jarchow C, Kidger M, Küppers M, Rengel M, Davis GR, Fulton T, Naylor D, Sidher S (2012) Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garrard). Astron Astrophys 544:L15. doi:10.1051/0004-6361/201219744 ADSCrossRefGoogle Scholar
  53. Boduch P, Domaracka A, Fulvio D, Langlinay T, Lv XY, Palumbo ME, Rothard H, Strazzulla G (2012) Chemistry induced by energetic ions in water ice mixed with molecular nitrogen and oxygen. Astron Astrophys 544:A30. doi:10.1051/0004-6361/201219365 ADSCrossRefGoogle Scholar
  54. Boley AC (2009) The two modes of gas giant planet formation. Astrophys J Lett 695:L53–L57. doi:10.1088/0004-637X/695/1/L53 ADSCrossRefGoogle Scholar
  55. Boley AC, Durisen RH (2008) Gravitational instabilities, chondrule formation, and the FU Orionis phenomenon. Astrophys J 685:1193–1209. doi:10.1086/591013 ADSCrossRefGoogle Scholar
  56. Bonal L, Huss GR, Nagashima K, Krot AN (2009) Hydrogen isotopic composition of 15N-rich clasts in the CB/CH-like chondrite Isheyevo. Meteorit Planet Sci 72:5178 Google Scholar
  57. Bonal L, Huss GR, Krot AN, Nagashima K, Ishii HA, Bradley JP (2010) Highly 15N-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo. Geochim Cosmochim Acta 74:6590–6609. doi:10.1016/j.gca.2010.08.017 ADSCrossRefGoogle Scholar
  58. Bonal L, Hily-Blant P, Faure A, Quirico E (2012) Highly variable 15N-Enrichments in solar system reflect different routes of interstellar N isotopic fractionation. Meteorit Planet Sci 75:5226 Google Scholar
  59. Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839. doi:10.1126/science.276.5320.1836 ADSCrossRefGoogle Scholar
  60. Bottinelli S, Ceccarelli C, Lefloch B, Williams JP, Castets A, Caux E, Cazaux S, Maret S, Parise B, Tielens AGGM (2004a) Complex molecules in the hot core of the Low-Mass protostar NGC 1333 IRAS 4A. Astrophys J 615:354–358. doi:10.1086/423952 ADSCrossRefGoogle Scholar
  61. Bottinelli S, Ceccarelli C, Neri R, Williams JP, Caux E, Cazaux S, Lefloch B, Maret S, Tielens AGGM (2004b) Near-Arcsecond resolution observations of the hot corino of the solar-type protostar IRAS 16293-2422. Astrophys J Lett 617:L69–L72. doi:10.1086/426964 ADSCrossRefGoogle Scholar
  62. Bottinelli S, Ceccarelli C, Williams JP, Lefloch B (2007) Hot corinos in NGC 1333-IRAS4B and IRAS2A. Astron Astrophys 463:601–610. doi:10.1051/0004-6361:20066242 ADSCrossRefGoogle Scholar
  63. Bouwman J, Cuppen HM, Steglich M, Allamandola LJ, Linnartz H (2011a) Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates. Astron Astrophys 529:A46. doi:10.1051/0004-6361/201015762 ADSCrossRefGoogle Scholar
  64. Bouwman J, Mattioda AL, Linnartz H, Allamandola LJ (2011b) Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. I. Mid-IR spectroscopy and photoproducts. Astron Astrophys 525:A93. doi:10.1051/0004-6361/201015059 ADSCrossRefGoogle Scholar
  65. Braiding CR, Wardle M (2012) The hall effect in star formation. Mon Not R Astron Soc 422:261–281. doi:10.1111/j.1365-2966.2012.20601.x ADSCrossRefGoogle Scholar
  66. Brasser R (2008) A two-stage formation process for the Oort comet cloud and its implications. Astron Astrophys 492:251–255. doi:10.1051/0004-6361:200810452 ADSCrossRefGoogle Scholar
  67. Broten NW, MacLeod JM, Avery LW, Irvine WM, Hoglund B, Friberg P, Hjalmarson A (1984) The detection of interstellar methylcyanoacetylene. Astrophys J Lett 276:L25–L29. doi:10.1086/184181 ADSCrossRefGoogle Scholar
  68. Brown ME (2012) The compositions of Kuiper Belt objects. Annu Rev Earth Planet Sci 40:467–494. doi:10.1146/annurev-earth-042711-105352 ADSCrossRefGoogle Scholar
  69. Brown DW, Chandler CJ, Carlstrom JE, Hills RE, Lay OP, Matthews BC, Richer JS, Wilson CD (2000) A submillimetre survey for protostellar accretion discs using the JCMT-CSO interferometer. Mon Not R Astron Soc 319:154–162. doi:10.1046/j.1365-8711.2000.03805.x ADSCrossRefGoogle Scholar
  70. Brown ME, Schaller EL, Fraser WC (2012) Water ice in the Kuiper Belt. Astron J 143:146. doi:10.1088/0004-6256/143/6/146 ADSCrossRefGoogle Scholar
  71. Brunetto R, Borg J, Dartois E, Rietmeijer FJM, Grossemy F, Sandt C, Le Sergeant D’Hendecourt L, Rotundi A, Dumas P, Djouadi Z, Jamme F (2011) Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: clues to its origin. Icarus 212:896–910. doi:10.1016/j.icarus.2011.01.038 ADSCrossRefGoogle Scholar
  72. Brünken S, Gupta H, Gottlieb CA, McCarthy MC, Thaddeus P (2007) Detection of the carbon chain negative ion C8H in TMC-1. Astrophys J Lett 664:L43–L46. doi:10.1086/520703 ADSCrossRefGoogle Scholar
  73. Busemann H, Alexander CMO, Nittler LR, Zega TJ, Stroud RM, Bajt S, Cody GD, Yabuta H (2006) Correlated analyses of D- and 15N-rich carbon grains from CR2 chondrite EET 92042. In: Proceedings of 69th annual meeting of the meteoritical society, Zurich, Switzerland, August 6–11, 2006. Meteoritics & planetary science, vol 41, p 5327. abs/2006M%26PSA..41.5327B Google Scholar
  74. Butner HM, Charnley SB, Ceccarelli C, Rodgers SD, Pardo JR, Parise B, Cernicharo J, Davis GR (2007) Discovery of interstellar heavy water. Astrophys J Lett 659:L137–L140. doi:10.1086/517883 ADSCrossRefGoogle Scholar
  75. Calvet N, Briceño C, Hernández J, Hoyer S, Hartmann L, Sicilia-Aguilar A, Megeath ST, D’Alessio P (2005a) Disk evolution in the orion OB1 association. Astron J 129:935–946. doi:10.1086/426910 ADSCrossRefGoogle Scholar
  76. Calvet N, D’Alessio P, Watson DM, Franco-Hernández R, Furlan E, Green J, Sutter PM, Forrest WJ, Hartmann L, Uchida KI, Keller LD, Sargent B, Najita J, Herter TL, Barry DJ, Hall P (2005b) Disks in transition in the Taurus population: Spitzer IRS spectra of GM Aurigae and DM Tauri. Astrophys J Lett 630:L185–L188. doi:10.1086/491652 ADSCrossRefGoogle Scholar
  77. Cameron AGW, Truran JW (1977) The supernova trigger for formation of the solar system. Icarus 30:447–461. doi:10.1016/0019-1035(77)90101-4 ADSCrossRefGoogle Scholar
  78. Carr JS, Najita JR (2008) Organic molecules and water in the planet formation region of young circumstellar disks. Science 319:1504. doi:10.1126/science.1153807 ADSCrossRefGoogle Scholar
  79. Caselli P, Walmsley CM, Terzieva R, Herbst E (1998) The ionization fraction in dense cloud cores. Astrophys J 499:234. doi:10.1086/305624 ADSCrossRefGoogle Scholar
  80. Caselli P, Walmsley CM, Tafalla M, Dore L, Myers PC (1999) CO depletion in the starless cloud core L1544. Astrophys J Lett 523:L165–L169. doi:10.1086/312280 ADSCrossRefGoogle Scholar
  81. Caselli P, Benson PJ, Myers PC, Tafalla M (2002) Dense cores in dark clouds. XIV. N2H+ (1-0) maps of dense cloud cores. Astrophys J 572:238–263. doi:10.1086/340195 ADSCrossRefGoogle Scholar
  82. Caselli P, Stantcheva T, Shalabiea O, Shematovich VI, Herbst E (2002a) Deuterium fractionation on interstellar grains studied with modified rate equations and a Monte Carlo approach. Planet Space Sci 50:1257–1266. doi:10.1016/S0032-0633(02)00092-2 ADSCrossRefGoogle Scholar
  83. Caselli P, Walmsley CM, Zucconi A, Tafalla M, Dore L, Myers PC (2002b) Molecular ions in L1544. II. The ionization degree. Astrophys J 565:344–358. doi:10.1086/324302 ADSCrossRefGoogle Scholar
  84. Caselli P, van der Tak FFS, Ceccarelli C, Bacmann A (2003) Abundant H2D+ in the pre-stellar core L1544. Astron Astrophys 403:L37–L41. doi:10.1051/0004-6361:20030526 ADSCrossRefGoogle Scholar
  85. Caselli P, Keto E, Bergin EA, Tafalla M, Aikawa Y, Douglas T, Pagani L, Yildiz UA, van der Tak FFS, Walmsley CM, Codella C, Nisini B, Kristensen LE, van Dishoeck EF (2012) First detection of water vapor in a pre-stellar core. ArXiv e-prints Google Scholar
  86. Caux E, Kahane C, Castets A, Coutens A, Ceccarelli C, Bacmann A, Bisschop S, Bottinelli S, Comito C, Helmich FP, Lefloch B, Parise B, Schilke P, Tielens AGGM, van Dishoeck E, Vastel C, Wakelam V, Walters A (2011) TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics. Astron Astrophys 532:A23. doi:10.1051/0004-6361/201015399 ADSCrossRefGoogle Scholar
  87. Cazaux S, Tielens AGGM (2002) Molecular hydrogen formation in the interstellar medium. Astrophys J Lett 575:L29–L32. doi:10.1086/342607 ADSCrossRefGoogle Scholar
  88. Cazaux S, Tielens AGGM, Ceccarelli C, Castets A, Wakelam V, Caux E, Parise B, Teyssier D (2003) The hot core around the Low-mass protostar IRAS 16293-2422: scoundrels rule! Astrophys J Lett 593:L51–L55. doi:10.1086/378038 ADSCrossRefGoogle Scholar
  89. Cazaux S, Cobut V, Marseille M, Spaans M, Caselli P (2010) Water formation on bare grains: when the chemistry on dust impacts interstellar gas. Astron Astrophys 522:A74. doi:10.1051/0004-6361/201014026 ADSCrossRefGoogle Scholar
  90. Cazaux S, Caselli P, Spaans M (2011) Interstellar ices as witnesses of star formation: selective deuteration of water and organic molecules unveiled. Astrophys J Lett 741:L34. doi:10.1088/2041-8205/741/2/L34 ADSCrossRefGoogle Scholar
  91. Ceccarelli C, Hollenbach DJ, Tielens AGGM (1996) Far-Infrared line emission from collapsing protostellar envelopes. Astrophys J 471:400. doi:10.1086/177978 ADSCrossRefGoogle Scholar
  92. Ceccarelli C, Castets A, Loinard L, Caux E, Tielens AGGM (1998) Detection of doubly deuterated formaldehyde towards the low-luminosity protostar IRAS 16293-2422. Astron Astrophys 338:L43–L46 ADSGoogle Scholar
  93. Ceccarelli C, Castets A, Caux E, Hollenbach D, Loinard L, Molinari S, Tielens AGGM (2000a) The structure of the collapsing envelope around the low-mass protostar IRAS 16293-2422. Astron Astrophys 355:1129–1137 ADSGoogle Scholar
  94. Ceccarelli C, Loinard L, Castets A, Tielens AGGM, Caux E (2000b) The hot core of the solar-type protostar IRAS 16293-2422: H2CO emission. Astron Astrophys 357:L9–L12 ADSGoogle Scholar
  95. Ceccarelli C, Dominik C, Lefloch B, Caselli P, Caux E (2004) Detection of H2D+: measuring the midplane degree of ionization in the disks of DM Tauri and TW Hydrae. Astrophys J Lett 607:L51–L54. doi:10.1086/421461 ADSCrossRefGoogle Scholar
  96. Ceccarelli C, Dominik C, Caux E, Lefloch B, Caselli P (2005) Discovery of deuterated water in a young protoplanetary disk. Astrophys J Lett 631:L81–L84. doi:10.1086/497028 ADSCrossRefGoogle Scholar
  97. Ceccarelli C, Caselli P, Herbst E, Tielens AGGM, Caux E (2007) Extreme deuteration and hot corinos: the earliest chemical signatures of Low-Mass star formation. In: Protostars and planets V pp 47–62 Google Scholar
  98. Chandler CJ, Koerner DW, Sargent AI, Wood DOS (1995) Dust emission from protostars: the disk and envelope of HH 24 MMS. Astrophys J Lett 449:L139. doi:10.1086/309644 ADSCrossRefGoogle Scholar
  99. Chapillon E, Dutrey A, Guilloteau S, Piétu V, Wakelam V, Hersant F, Gueth F, Henning T, Launhardt R, Schreyer K, Semenov D (2012a) Chemistry in disks. VII. First detection of HC3N in protoplanetary disks. Astrophys J 756:58. doi:10.1088/0004-637X/756/1/58 ADSCrossRefGoogle Scholar
  100. Chapillon E, Guilloteau S, Dutrey A, Piétu V, Guélin M (2012b) Chemistry in disks. VI. CN and HCN in protoplanetary disks. Astron Astrophys 537:A60. doi:10.1051/0004-6361/201116762 ADSCrossRefGoogle Scholar
  101. Charnley SB, Tielens AGGM, Millar TJ (1992) On the molecular complexity of the hot cores in Orion A—grain surface chemistry as ‘The last refuge of the scoundrel’. Astrophys J Lett 399:L71–L74. doi:10.1086/186609 ADSCrossRefGoogle Scholar
  102. Charnley SB, Tielens AGGM, Rodgers SD (1997) Deuterated methanol in the Orion compact ridge. Astrophys J Lett 482:L203. doi:10.1086/310697 ADSCrossRefGoogle Scholar
  103. Chaussidon M, Srinivasan G (2012) New constraints on the origin of short-lived 10Be in the early solar system. Meteorit Planet Sci 75:5192 Google Scholar
  104. Chiang HF, Looney LW, Tobin JJ (2012) The envelope and embedded disk around the class 0 protostar L1157-mm: dual-wavelength interferometric observations and modeling. Astrophys J 756:168. doi:10.1088/0004-637X/756/2/168 ADSCrossRefGoogle Scholar
  105. Chiar JE, Pendleton YJ, Allamandola LJ, Boogert ACA, Ennico K, Greene TP, Geballe TR, Keane JV, Lada CJ, Mason RE, Roellig TL, Sandford SA, Tielens AGGM, Werner MW, Whittet DCB, Decin L, Eriksson K (2011) Ices in the quiescent IC 5146 dense cloud. Astrophys J 731:9. doi:10.1088/0004-637X/731/1/9 ADSCrossRefGoogle Scholar
  106. Choi M, Tatematsu K, Park G, Kang M (2007) Ammonia imaging of the disks in the NGC 1333 IRAS 4A protobinary system. Astrophys J Lett 667:L183–L186. doi:10.1086/522116 ADSCrossRefGoogle Scholar
  107. Cieza LA, Mathews GS, Williams JP, Ménard FC, Kraus AL, Schreiber MR, Romero GA, Orellana M, Ireland MJ (2012) Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making. Astrophys J 752:75. doi:10.1088/0004-637X/752/1/75 ADSCrossRefGoogle Scholar
  108. Codella C, Benedettini M, Beltrán MT, Gueth F, Viti S, Bachiller R, Tafalla M, Cabrit S, Fuente A, Lefloch B (2009) Methyl cyanide as tracer of bow shocks in L1157-B1. Astron Astrophys 507:L25–L28. doi:10.1051/0004-6361/200913340 ADSCrossRefGoogle Scholar
  109. Codella C, Lefloch B, Ceccarelli C, Cernicharo J, Caux E, Lorenzani A, Viti S, Hily-Blant P, Parise B, Maret S, Nisini B, Caselli P, Cabrit S, Pagani L, Benedettini M, Boogert A, Gueth F, Melnick G, Neufeld D, Pacheco S, Salez M, Schuster K, Bacmann A, Baudry A, Bell T, Bergin EA, Blake G, Bottinelli S, Castets A, Comito C, Coutens A, Crimier N, Dominik C, Demyk K, Encrenaz P, Falgarone E, Fuente A, Gerin M, Goldsmith P, Helmich F, Hennebelle P, Henning T, Herbst E, Jacq T, Kahane C, Kama M, Klotz A, Langer W, Lis D, Lord S, Pearson J, Phillips T, Saraceno P, Schilke P, Tielens X, van der Tak F, van der Wiel M, Vastel C, Wakelam V, Walters A, Wyrowski F, Yorke H, Borys C, Delorme Y, Kramer C, Larsson B, Mehdi I, Ossenkopf V, Stutzki J (2010) The CHESS spectral survey of star forming regions: peering into the protostellar shock L1157-B1. I. Shock chemical complexity. Astron Astrophys 518:L112. doi:10.1051/0004-6361/201014582 ADSCrossRefGoogle Scholar
  110. Codella C, Ceccarelli C, Bottinelli S, Salez M, Viti S, Lefloch B, Cabrit S, Caux E, Faure A, Vasta M, Wiesenfeld L (2012a) First detection of hydrogen chloride toward protostellar shocks. Astrophys J 744:164. doi:10.1088/0004-637X/744/2/164 ADSCrossRefGoogle Scholar
  111. Codella C, Ceccarelli C, Lefloch B, Fontani F, Busquet G, Caselli P, Kahane C, Lis D, Taquet V, Vasta M, Viti S, Wiesenfeld L (2012b) The Herschel and IRAM CHESS spectral surveys of the protostellar shock L1157-B1: Fossil deuteration. Astrophys J Lett 757:L9. doi:10.1088/2041-8205/757/1/L9 ADSCrossRefGoogle Scholar
  112. Cordiner MA, Charnley SB, Wirström ES, Smith RG (2012) Organic chemistry of Low-mass Star-forming cores. I. 7 mm spectroscopy of chamaeleon MMS1. Astrophys J 744:131. doi:10.1088/0004-637X/744/2/131 ADSCrossRefGoogle Scholar
  113. Cortes SR, Meyer MR, Carpenter JM, Pascucci I, Schneider G, Wong T, Hines DC (2009) Grain growth and global structure of the protoplanetary disk associated with the mature classical T Tauri star, PDS 66. Astrophys J 697:1305–1315. doi:10.1088/0004-637X/697/2/1305 ADSCrossRefGoogle Scholar
  114. Coutens A, Vastel C, Caux E, Ceccarelli C, Bottinelli S, Wiesenfeld L, Faure A, Scribano Y, Kahane C (2012) A study of deuterated water in the low-mass protostar IRAS 16293-2422. Astron Astrophys 539:A132. doi:10.1051/0004-6361/201117627 ADSCrossRefGoogle Scholar
  115. Crapsi A, Caselli P, Walmsley CM, Myers PC, Tafalla M, Lee CW, Bourke TL (2005) Probing the evolutionary status of starless cores through N2H+ and N2D+ observations. Astrophys J 619:379–406. doi:10.1086/426472 ADSCrossRefGoogle Scholar
  116. Crapsi A, Caselli P, Walmsley MC, Tafalla M (2007) Observing the gas temperature drop in the high-density nucleus of L 1544. Astron Astrophys 470:221–230. doi:10.1051/0004-6361:20077613 ADSCrossRefGoogle Scholar
  117. Crimier N, Ceccarelli C, Lefloch B, Faure A (2009) Physical structure and water line spectrum predictions of the intermediate mass protostar OMC2-FIR4. Astron Astrophys 506:1229–1241. doi:10.1051/0004-6361/200911651 ADSCrossRefGoogle Scholar
  118. Crimier N, Ceccarelli C, Maret S, Bottinelli S, Caux E, Kahane C, Lis DC, Olofsson J (2010) The solar type protostar IRAS16293-2422: new constraints on the physical structure. Astron Astrophys 519:A65. doi:10.1051/0004-6361/200913112 ADSCrossRefGoogle Scholar
  119. Crovisier J, Biver N, Bockelée-Morvan D, Boissier J, Colom P, Lis DC (2009) The chemical diversity of comets: synergies between space exploration and ground-based radio observations. Earth Moon Planets 105:267–272. doi:10.1007/s11038-009-9293-z ADSCrossRefGoogle Scholar
  120. Cuppen HM, Herbst E (2005) Monte Carlo simulations of H2 formation on grains of varying surface roughness. Mon Not R Astron Soc 361:565–576. doi:10.1111/j.1365-2966.2005.09189.x ADSCrossRefGoogle Scholar
  121. Cuppen HM, van Dishoeck EF, Herbst E, Tielens AGGM (2009) Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores. Astron Astrophys 508:275–287. doi:10.1051/0004-6361/200913119 ADSCrossRefGoogle Scholar
  122. Czaja AD (2010) Early earth: microbes and the rise of oxygen. Nat Geosci 3:522–523. doi:10.1038/ngeo929 ADSCrossRefGoogle Scholar
  123. D’Alessio P, Calvet N, Hartmann L, Lizano S, Cantó J (1999) Accretion disks around young objects. II. Tests of well-mixed models with ISM dust. Astrophys J 527:893–909. doi:10.1086/308103 ADSCrossRefGoogle Scholar
  124. D’Alessio P, Calvet N, Hartmann L (2001) Accretion disks around young objects. III. Grain growth. Astrophys J 553:321–334. doi:10.1086/320655 ADSCrossRefGoogle Scholar
  125. D’Alessio P, Calvet N, Hartmann L, Franco-Hernández R, Servín H (2006) Effects of dust growth and settling in T Tauri disks. Astrophys J 638:314–335. doi:10.1086/498861 ADSCrossRefGoogle Scholar
  126. Dalgarno A, Lepp S (1984) Deuterium fractionation mechanisms in interstellar clouds. Astrophys J Lett 287:L47–L50. doi:10.1086/184395 ADSCrossRefGoogle Scholar
  127. Dauphas N (2003) The dual origin of the terrestrial atmosphere. Icarus 165:326–339. doi:10.1016/S0019-1035(03)00198-2 ADSCrossRefGoogle Scholar
  128. Dauphas N, Chaussidon M (2011) A perspective from extinct radionuclides on a young stellar object: the sun and its accretion disk. Annu Rev Earth Planet Sci 39:351–386. doi:10.1146/annurev-earth-040610-133428 ADSCrossRefGoogle Scholar
  129. Dauphas N, Robert F, Marty B (2000) The late asteroidal and cometary bombardment of earth as recorded in water deuterium to Protium ratio. Icarus 148:508–512. doi:10.1006/icar.2000.6489 ADSCrossRefGoogle Scholar
  130. Delsemme AH (1992) Cometary origin of carbon and water on the terrestrial planets. Adv Space Res 12:5–12. doi:10.1016/0273-1177(92)90147-P ADSCrossRefGoogle Scholar
  131. D’Hendecourt LB, Allamandola LJ, Baas F, Greenberg JM (1982) Interstellar grain explosions—molecule cycling between gas and dust. Astron Astrophys 109:L12–L14 ADSGoogle Scholar
  132. Dominik C, Blum J, Cuzzi JN, Wurm G (2007) Growth of dust as the initial step toward planet formation. In: Protostars and planets V, pp 783–800 Google Scholar
  133. Dones L, Weissman PR, Levison HF, Duncan MJ (2004) Oort cloud formation and dynamics, pp 153–174 Google Scholar
  134. Doty SD, Neufeld DA (1997) Models for dense molecular cloud cores. Astrophys J 489:122. doi:10.1086/304764 ADSCrossRefGoogle Scholar
  135. Dubernet ML, Cernicharo J, Daniel F, Debray B, Faure A, Feautrier N, Flower D, Grosjean A, Roueff E, Spielfiedel A, Stoecklin T, Valiron P (2004) Ro-vibrational collisional excitation database: BASECOL. In: Combes F, Barret D, Contini T, Meynadier F, Pagani L (eds) SF2A-2004: Semaine de l’astrophysique Francaise, p 525. http://www.obspm.fr/basecol Google Scholar
  136. Duchêne G, Ménard F, Stapelfeldt K, Duvert G (2003) A layered edge-on circumstellar disk around HK Tau B. Astron Astrophys 400:559–565. doi:10.1051/0004-6361:20021906 ADSCrossRefGoogle Scholar
  137. Dulieu F, Amiaud L, Congiu E, Fillion JH, Matar E, Momeni A, Pirronello V, Lemaire JL (2010) Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astron Astrophys 512:A30. doi:10.1051/0004-6361/200912079 ADSCrossRefGoogle Scholar
  138. Dullemond CP, Monnier JD (2010) The inner regions of protoplanetary disks. Annu Rev Astron Astrophys 48:205–239. doi:10.1146/annurev-astro-081309-130932 ADSCrossRefGoogle Scholar
  139. Dullemond CP, Henning T, Visser R, Geers VC, van Dishoeck EF, Pontoppidan KM (2007a) Dust sedimentation in protoplanetary disks with polycyclic aromatic hydrocarbons. Astron Astrophys 473:457–466. doi:10.1051/0004-6361:20077581 ADSCrossRefGoogle Scholar
  140. Dullemond CP, Hollenbach D, Kamp I, D’Alessio P (2007b) Models of the structure and evolution of protoplanetary disks. In: Protostars and planets V, pp 555–572 Google Scholar
  141. Durisen RH, Boss AP, Mayer L, Nelson AF, Quinn T, Rice WKM (2007) Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In: Protostars and planets V, pp 607–622 Google Scholar
  142. Dutrey A, Guilloteau S, Duvert G, Prato L, Simon M, Schuster K, Menard F (1996) Dust and gas distribution around T Tauri stars in Taurus-Auriga. I. Interferometric 2.7 mm continuum and 13CO J = 1-0 observations. Astron Astrophys 309:493–504 ADSGoogle Scholar
  143. Dutrey A, Guilloteau S, Guelin M (1997) Chemistry of protosolar-like nebulae: the molecular content of the DM Tau and GG Tau disks. Astron Astrophys 317:L55–L58 ADSGoogle Scholar
  144. Dutrey A, Guilloteau S, Ho P (2007a) Interferometric spectroimaging of molecular gas in protoplanetary disks. In: Protostars and planets V, pp 495–506 Google Scholar
  145. Dutrey A, Henning T, Guilloteau S, Semenov D, Piétu V, Schreyer K, Bacmann A, Launhardt R, Pety J, Gueth F (2007b) Chemistry in disks. I. Deep search for N2H+ in the protoplanetary disks around LkCa 15, MWC 480, and DM Tauri. Astron Astrophys 464:615–623. doi:10.1051/0004-6361:20065385 ADSCrossRefGoogle Scholar
  146. Dutrey A, Wakelam V, Boehler Y, Guilloteau S, Hersant F, Semenov D, Chapillon E, Henning T, Piétu V, Launhardt R, Gueth F, Schreyer K (2011) Chemistry in disks. V. Sulfur-bearing molecules in the protoplanetary disks surrounding LkCa15, MWC480, DM Tauri, and GO Tauri. Astron Astrophys 535:A104. doi:10.1051/0004-6361/201116931 ADSCrossRefGoogle Scholar
  147. Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by stardust. Meteorit Planet Sci 44:1323–1330. doi:10.1111/j.1945-5100.2009.tb01224.x ADSCrossRefGoogle Scholar
  148. Enoch ML, Corder S, Duchêne G, Bock DC, Bolatto AD, Culverhouse TL, Kwon W, Lamb JW, Leitch EM, Marrone DP, Muchovej SJ, Pérez LM, Scott SL, Teuben PJ, Wright MCH, Zauderer BA (2011) Disk and envelope structure in class 0 protostars. II. High-resolution millimeter mapping of the Serpens sample. Astrophys J Suppl Ser 195:21. doi:10.1088/0067-0049/195/2/21 ADSCrossRefGoogle Scholar
  149. Evans NJ II, Rawlings JMC, Shirley YL, Mundy LG (2001) Tracing the mass during Low-Mass star formation. II. Modeling the submillimeter emission from preprotostellar cores. Astrophys J 557:193–208. doi:10.1086/321639 ADSCrossRefGoogle Scholar
  150. Fedele D, van den Ancker ME, Acke B, van der Plas G, van Boekel R, Wittkowski M, Henning T, Bouwman J, Meeus G, Rafanelli P (2008) The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution. Astron Astrophys 491:809–820. doi:10.1051/0004-6361:200810126 ADSCrossRefGoogle Scholar
  151. Fedele D, Bruderer S, van Dishoeck EF, Herczeg GJ, Evans NJ, Bouwman J, Henning T, Green J (2012) Warm H2O and OH in the disk around the Herbig star HD 163296. Astron Astrophys 544:L9. doi:10.1051/0004-6361/201219615 ADSCrossRefGoogle Scholar
  152. Feigelson ED, Montmerle T (1999) High-Energy processes in young stellar objects. Annu Rev Astron Astrophys 37:363–408. doi:10.1146/annurev.astro.37.1.363 ADSCrossRefGoogle Scholar
  153. Fisher DE (1982) Implications of terrestrial Ar-40/Ar-36 for atmospheric and mantle evolutionary models. Phys Earth Planet Inter 29:242–251. doi:10.1016/0031-9201(82)90015-2 ADSCrossRefGoogle Scholar
  154. Flower DR, Pineau Des Forêts G, Walmsley CM (2006) The importance of the ortho: para H2 ratio for the deuteration of molecules during pre-protostellar collapse. Astron Astrophys 449:621–629. doi:10.1051/0004-6361:20054246 ADSCrossRefGoogle Scholar
  155. Fogel JKJ, Bethell TJ, Bergin EA, Calvet N, Semenov D (2011) Chemistry of a protoplanetary disk with grain settling and Lyα radiation. Astrophys J 726:29. doi:10.1088/0004-637X/726/1/29 ADSCrossRefGoogle Scholar
  156. Fouchet T, Irwin PGJ, Parrish P, Calcutt SB, Taylor FW, Nixon CA, Owen T (2004) Search for spatial variation in the Jovian 15N/14N ratio from Cassini/CIRS observations. Icarus 172:50–58. doi:10.1016/j.icarus.2003.11.011 ADSCrossRefGoogle Scholar
  157. France K, Schindhelm E, Herczeg GJ, Brown A, Abgrall H, Alexander RD, Bergin EA, Brown JM, Linsky JL, Roueff E, Yang H (2012) A Hubble space telescope survey of H2 emission in the circumstellar environments of young stars. Astrophys J 756:171. doi:10.1088/0004-637X/756/2/171 ADSCrossRefGoogle Scholar
  158. Franklin J, Snell RL, Kaufman MJ, Melnick GJ, Neufeld DA, Hollenbach DJ, Bergin EA (2008) SWAS observations of water in molecular outflows. Astrophys J 674:1015–1031. doi:10.1086/524924 ADSCrossRefGoogle Scholar
  159. Frau P, Galli D, Girart JM (2011) Comparing star formation models with interferometric observations of the protostar NGC 1333 IRAS 4A. I. Magnetohydrodynamic collapse models. Astron Astrophys 535:A44. doi:10.1051/0004-6361/201117813 ADSCrossRefGoogle Scholar
  160. Friberg P, Hjalmarson A, Madden SC, Irvine WM (1988) Methanol in dark clouds. Astron Astrophys 195:281–289 ADSGoogle Scholar
  161. Friesen RK, Di Francesco J, Shimajiri Y, Takakuwa S (2010) The initial conditions of clustered star formation. II. N2H+ observations of the Ophiuchus B core. Astrophys J 708:1002–1024. doi:10.1088/0004-637X/708/2/1002 ADSCrossRefGoogle Scholar
  162. Fuchs GW, Cuppen HM, Ioppolo S, Romanzin C, Bisschop SE, Andersson S, van Dishoeck EF, Linnartz H (2009) Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach. Astron Astrophys 505:629–639. doi:10.1051/0004-6361/200810784 ADSCrossRefGoogle Scholar
  163. Fuente A, Cernicharo J, Agúndez M, Berné O, Goicoechea JR, Alonso-Albi T, Marcelino N (2010) Molecular content of the circumstellar disk in AB Aurigae. First detection of SO in a circumstellar disk. Astron Astrophys 524:A19. doi:10.1051/0004-6361/201014905 ADSCrossRefGoogle Scholar
  164. Furlan E, Hartmann L, Calvet N, D’Alessio P, Franco-Hernández R, Forrest WJ, Watson DM, Uchida KI, Sargent B, Green JD, Keller LD, Herter TL (2006) A survey and analysis of Spitzer infrared spectrograph spectra of T Tauri stars in Taurus. Astrophys J Suppl Ser 165:568–605. doi:10.1086/505468 ADSCrossRefGoogle Scholar
  165. Furuya K, Aikawa Y, Tomida K, Matsumoto T, Saigo K, Tomisaka K, Hersant F, Wakelam V (2012) Chemistry in the first hydrostatic core stage adopting three-dimensional radiation hydrodynamic simulations. ArXiv e-prints Google Scholar
  166. Galli D, Shu FH (1993a) Collapse of magnetized molecular cloud cores. I. Semianalytical solution. Astrophys J 417:220. doi:10.1086/173305 ADSCrossRefGoogle Scholar
  167. Galli D, Shu FH (1993b) Collapse of magnetized molecular cloud cores. II. Numerical results. Astrophys J 417:243. doi:10.1086/173306 ADSCrossRefGoogle Scholar
  168. García RJM, Carnerup A, Christy AG, Welham NJ, Hyde ST (2002) Morphology: an ambiguous indicator of biogenicity. Astrobiology 2:353–369. doi:10.1089/153110702762027925 ADSCrossRefGoogle Scholar
  169. Garrod RT, Herbst E (2006) Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron Astrophys 457:927–936. doi:10.1051/0004-6361:20065560 ADSCrossRefGoogle Scholar
  170. Garrod RT, Pauly T (2011) On the formation of CO2 and other interstellar ices. Astrophys J 735:15. doi:10.1088/0004-637X/735/1/15 ADSCrossRefGoogle Scholar
  171. Garrod RT, Wakelam V, Herbst E (2007) Non-thermal desorption from interstellar dust grains via exothermic surface reactions. Astron Astrophys 467:1103–1115. doi:10.1051/0004-6361:20066704 ADSCrossRefGoogle Scholar
  172. Garrod RT, Weaver SLW, Herbst E (2008) Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. Astrophys J 682:283–302. doi:10.1086/588035 ADSCrossRefGoogle Scholar
  173. Garrod RT, Vasyunin AI, Semenov DA, Wiebe DS, Henning T (2009) A new modified-rate approach for Gas-Grain chemistry: comparison with a unified large-scale Monte Carlo simulation. Astrophys J Lett 700:L43–L46. doi:10.1088/0004-637X/700/1/L43 ADSCrossRefGoogle Scholar
  174. Geers VC, Augereau JC, Pontoppidan KM, Dullemond CP, Visser R, Kessler-Silacci JE, Evans NJ II, van Dishoeck EF, Blake GA, Boogert ACA, Brown JM, Lahuis F, Merín B (2006) C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features. Astron Astrophys 459:545–556. doi:10.1051/0004-6361:20064830 ADSCrossRefGoogle Scholar
  175. Geiss J, Gloeckler G (1998) Abundances of deuterium and Helium-3 in the protosolar cloud. Space Sci Rev 84:239–250 ADSCrossRefGoogle Scholar
  176. Gerakines PA, Schutte WA, Ehrenfreund P (1996) Ultraviolet processing of interstellar ice analogs. I. Pure ices. Astron Astrophys 312:289–305 ADSGoogle Scholar
  177. Gerin M, Marcelino N, Biver N, Roueff E, Coudert LH, Elkeurti M, Lis DC, Bockelée-Morvan D (2009) Detection of 15NH2D in dense cores: a new tool for measuring the 14N/15N ratio in the cold ISM. Astron Astrophys 498:L9–L12. doi:10.1051/0004-6361/200911759 ADSCrossRefGoogle Scholar
  178. Girart JM, Rao R, Marrone DP (2006) Magnetic fields in the formation of sun-like stars. Science 313:812–814. doi:10.1126/science.1129093 ADSCrossRefGoogle Scholar
  179. Glassgold AE, Najita J, Igea J (1997) X-Ray ionization of protoplanetary disks. Astrophys J 480:344. doi:10.1086/303952 ADSCrossRefGoogle Scholar
  180. Goldsmith PF (2001) Molecular depletion and thermal balance in dark cloud cores. Astrophys J 557:736–746. doi:10.1086/322255 ADSCrossRefGoogle Scholar
  181. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469. doi:10.1038/nature03676 ADSCrossRefGoogle Scholar
  182. Goodman AA, Benson PJ, Fuller GA, Myers PC (1993) Dense cores in dark clouds. VIII. Velocity gradients. Astrophys J 406:528–547. doi:10.1086/172465 ADSCrossRefGoogle Scholar
  183. Gorti U, Hollenbach D (2004) Models of chemistry, thermal balance, and infrared spectra from intermediate-aged disks around G and K stars. Astrophys J 613:424–447. doi:10.1086/422406 ADSCrossRefGoogle Scholar
  184. Gorti U, Hollenbach D (2008) Line emission from gas in optically thick dust disks around young stars. Astrophys J 683:287–303. doi:10.1086/589616 ADSCrossRefGoogle Scholar
  185. Goto M, Carmona A, Linz H, Stecklum B, Henning T, Meeus G, Usuda T (2012) Kinematics of ionized gas at 0.01 AU of TW Hya. Astrophys J 748:6. doi:10.1088/0004-637X/748/1/6 ADSCrossRefGoogle Scholar
  186. Gounelle M, Meibom A (2008) The origin of Short-lived radionuclides and the astrophysical environment of solar system formation. Astrophys J 680:781–792. doi:10.1086/587613 ADSCrossRefGoogle Scholar
  187. Gratton RG, Carretta E, Bragaglia A (2012) Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron Astrophys Rev 20:50. doi:10.1007/s00159-012-0050-3 ADSCrossRefGoogle Scholar
  188. Gredel R, Lepp S, Dalgarno A, Herbst E (1989) Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules. Astrophys J 347:289–293. doi:10.1086/168117 ADSCrossRefGoogle Scholar
  189. Guelin M, Langer WD, Snell RL, Wootten HA (1977) Observations of DCO/plus/—the electron abundance in dark clouds. Astrophys J Lett 217:L165–L168. doi:10.1086/182562 ADSCrossRefGoogle Scholar
  190. Guhathakurta P, Draine BT (1989) Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains. Astrophys J 345:230–244. doi:10.1086/167899 ADSCrossRefGoogle Scholar
  191. Guilloteau S, Piétu V, Dutrey A, Guélin M (2006) Deuterated molecules in DM Tauri: DCO+, but no HDO. Astron Astrophys 448:L5–L8. doi:10.1051/0004-6361:200600005 ADSCrossRefGoogle Scholar
  192. Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron Astrophys 513:A56. doi:10.1051/0004-6361/200912852 CrossRefGoogle Scholar
  193. Habart E, Boulanger F, Verstraete L, Walmsley CM, Pineau des Forêts G (2004a) Some empirical estimates of the H2 formation rate in photon-dominated regions. Astron Astrophys 414:531–544. doi:10.1051/0004-6361:20031659 ADSCrossRefGoogle Scholar
  194. Habart E, Natta A, Krügel E (2004b) PAHs in circumstellar disks around Herbig Ae/Be stars. Astron Astrophys 427:179–192. doi:10.1051/0004-6361:20035916 ADSCrossRefGoogle Scholar
  195. Habart E, Natta A, Testi L, Carbillet M (2006) Spatially resolved PAH emission in the inner disks of Herbig Ae/Be stars. Astron Astrophys 449:1067–1075. doi:10.1051/0004-6361:20052994 ADSCrossRefGoogle Scholar
  196. Hartogh P, Lis DC, Bockelée-Morvan D, de Val-Borro M, Biver N, Küppers M, Emprechtinger M, Bergin EA, Crovisier J, Rengel M, Moreno R, Szutowicz S, Blake GA (2011) Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478:218–220. doi:10.1038/nature10519 ADSCrossRefGoogle Scholar
  197. Hasegawa TI, Herbst E, Leung CM (1992) Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys J Suppl Ser 82:167–195. doi:10.1086/191713 ADSCrossRefGoogle Scholar
  198. Hassel GE, Herbst E, Garrod RT (2008) Modeling the lukewarm corino phase: is L1527 unique? Astrophys J 681:1385–1395. doi:10.1086/588185 ADSCrossRefGoogle Scholar
  199. Hassel GE, Harada N, Herbst E (2011) Carbon-chain species in warm-up models. Astrophys J 743:182. doi:10.1088/0004-637X/743/2/182 ADSCrossRefGoogle Scholar
  200. Heinzeller D, Nomura H, Walsh C, Millar TJ (2011) Chemical evolution of protoplanetary disks—the effects of viscous accretion, turbulent mixing, and disk winds. Astrophys J 731:115. doi:10.1088/0004-637X/731/2/115 ADSCrossRefGoogle Scholar
  201. Hennebelle P, Fromang S (2008) Magnetic processes in a collapsing dense core. I. Accretion and ejection. Astron Astrophys 477:9–24. doi:10.1051/0004-6361:20078309 ADSMATHCrossRefGoogle Scholar
  202. Henning T, Semenov D, Guilloteau S, Dutrey A, Hersant F, Wakelam V, Chapillon E, Launhardt R, Piétu V, Schreyer K (2010) Chemistry in disks. III. Photochemistry and X-ray driven chemistry probed by the ethynyl radical (CCH) in DM Tau, LkCa 15, and MWC 480. Astrophys J 714:1511–1520. doi:10.1088/0004-637X/714/2/1511 ADSCrossRefGoogle Scholar
  203. Herbst E, Klemperer W (1973) The formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505–534. doi:10.1086/152436 ADSCrossRefGoogle Scholar
  204. Herbst E, van Dishoeck EF (2009) Complex organic interstellar molecules. Annu Rev Astron Astrophys 47:427–480. doi:10.1146/annurev-astro-082708-101654 ADSCrossRefGoogle Scholar
  205. Hersant F, Wakelam V, Dutrey A, Guilloteau S, Herbst E (2009) Cold CO in circumstellar disks. On the effects of photodesorption and vertical mixing. Astron Astrophys 493:L49–L52. doi:10.1051/0004-6361:200811082 ADSCrossRefGoogle Scholar
  206. Hily-Blant P, Walmsley M, Pineau Des Forêts G, Flower D (2010) Nitrogen chemistry and depletion in starless cores. Astron Astrophys 513:A41. doi:10.1051/0004-6361/200913200 ADSCrossRefGoogle Scholar
  207. Hirahara Y, Suzuki H, Yamamoto S, Kawaguchi K, Kaifu N, Ohishi M, Takano S, Ishikawa SI, Masuda A (1992) Mapping observations of sulfur-containing carbon-chain molecules in Taurus molecular cloud 1 (TMC-1). Astrophys J 394:539–551. doi:10.1086/171605 ADSCrossRefGoogle Scholar
  208. Hiraoka K, Miyagoshi T, Takayama T, Yamamoto K, Kihara Y (1998) Gas-grain processes for the formation of CH4 and H2O: reactions of H atoms with C, O, and CO in the solid phase at 12 K. Astrophys J 498:710. doi:10.1086/305572 ADSCrossRefGoogle Scholar
  209. Hiraoka K, Sato T, Sato S, Sogoshi N, Yokoyama T, Takashima H, Kitagawa S (2002) Formation of formaldehyde by the tunneling reaction of H with solid CO at 10 K revisited. Astrophys J 577:265–270. doi:10.1086/342132 ADSCrossRefGoogle Scholar
  210. Hogerheijde MR, Bergin EA, Brinch C, Cleeves LI, Fogel JKJ, Blake GA, Dominik C, Lis DC, Melnick G, Neufeld D, Panić O, Pearson JC, Kristensen L, Yıldız UA, van Dishoeck EF (2011) Detection of the water reservoir in a forming planetary system. Science 334:338. doi:10.1126/science.1208931 ADSCrossRefGoogle Scholar
  211. Hollenbach D, McKee CF (1989) Molecule formation and infrared emission in fast interstellar shocks. III. Results for J shocks in molecular clouds. Astrophys J 342:306–336. doi:10.1086/167595 ADSCrossRefGoogle Scholar
  212. Hollenbach D, Salpeter EE (1971) Surface recombination of hydrogen molecules. Astrophys J 163:155. doi:10.1086/150754 ADSCrossRefGoogle Scholar
  213. Hollenbach D, Kaufman MJ, Bergin EA, Melnick GJ (2009) Water, O2, and ice in molecular clouds. Astrophys J 690:1497–1521. doi:10.1088/0004-637X/690/2/1497 ADSCrossRefGoogle Scholar
  214. Honda M, Inoue AK, Fukagawa M, Oka A, Nakamoto T, Ishii M, Terada H, Takato N, Kawakita H, Okamoto YK, Shibai H, Tamura M, Kudo T, Itoh Y (2009) Detection of water ice grains on the surface of the circumstellar disk around HD 142527. Astrophys J Lett 690:L110–L113. doi:10.1088/0004-637X/690/2/L110 ADSCrossRefGoogle Scholar
  215. Horner J, Mousis O, Hersant F (2007) Constraints on the formation regions of comets from their D:H ratios. Earth Moon Planets 100:43–56. doi:10.1007/s11038-006-9096-4 ADSCrossRefGoogle Scholar
  216. Hughes AM, Andrews SM, Espaillat C, Wilner DJ, Calvet N, D’Alessio P, Qi C, Williams JP, Hogerheijde MR (2009) A spatially resolved inner hole in the disk around GM Aurigae. Astrophys J 698:131–142. doi:10.1088/0004-637X/698/1/131 ADSCrossRefGoogle Scholar
  217. Hughes AM, Wilner DJ, Andrews SM, Williams JP, Su KYL, Murray-Clay RA, Qi C (2011) Resolved submillimeter observations of the HR 8799 and HD 107146 debris disks. Astrophys J 740:38. doi:10.1088/0004-637X/740/1/38 ADSCrossRefGoogle Scholar
  218. Ilee JD, Boley AC, Caselli P, Durisen RH, Hartquist TW, Rawlings JMC (2011) Chemistry in a gravitationally unstable protoplanetary disc. Mon Not R Astron Soc 417:2950–2961. doi:10.1111/j.1365-2966.2011.19455.x ADSCrossRefGoogle Scholar
  219. Ilgner M, Henning T, Markwick AJ, Millar TJ (2004) Transport processes and chemical evolution in steady accretion disk flows. Astron Astrophys 415:643–659. doi:10.1051/0004-6361:20034061 ADSCrossRefGoogle Scholar
  220. Ioppolo S, Cuppen HM, Romanzin C, van Dishoeck EF, Linnartz H (2008) Laboratory evidence for efficient water formation in interstellar ices. Astrophys J 686:1474–1479. doi:10.1086/591506 ADSCrossRefGoogle Scholar
  221. Ioppolo S, Palumbo ME, Baratta GA, Mennella V (2009) Formation of interstellar solid CO2 after energetic processing of icy grain mantles. Astron Astrophys 493:1017–1028. doi:10.1051/0004-6361:200809769 ADSCrossRefGoogle Scholar
  222. Ioppolo S, van Boheemen Y, Cuppen HM, van Dishoeck EF, Linnartz H (2011) Surface formation of CO2 ice at low temperatures. Mon Not R Astron Soc 413:2281–2287. doi:10.1111/j.1365-2966.2011.18306.x ADSCrossRefGoogle Scholar
  223. Irvine WM, Friberg P, Kaifu N, Kawaguchi K, Kitamura Y, Matthews HE, Minh Y, Saito S, Ukita N, Yamamoto S (1989) Observations of some oxygen-containing and sulfur-containing organic molecules in cold dark clouds. Astrophys J 342:871–875. doi:10.1086/167643 ADSCrossRefGoogle Scholar
  224. Isella A, Testi L, Natta A (2006) Large dust grains in the inner region of circumstellar disks. Astron Astrophys 451:951–959. doi:10.1051/0004-6361:20054647 ADSCrossRefGoogle Scholar
  225. Jehin E, Manfroid J, Hutsemékers D, Arpigny C, Zucconi JM (2009) Isotopic ratios in comets: status and perspectives. Earth Moon Planets 105:167–180. doi:10.1007/s11038-009-9322-y ADSCrossRefGoogle Scholar
  226. Jing D, He J, Brucato J, De Sio A, Tozzetti L, Vidali G (2011) On water formation in the interstellar medium: laboratory study of the O+D reaction on surfaces. Astrophys J Lett 741:L9. doi:10.1088/2041-8205/741/1/L9 ADSCrossRefGoogle Scholar
  227. Jones AP, Williams DA (1985) Time-dependent sticking coefficients and mantle growth on interstellar grains. Mon Not R Astron Soc 217:413–421 ADSGoogle Scholar
  228. Joos M, Hennebelle P, Ciardi A (2012) Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron Astrophys 543:A128. doi:10.1051/0004-6361/201118730 ADSCrossRefGoogle Scholar
  229. Jørgensen JK, van Dishoeck EF (2010a) The HDO/H2O ratio in gas in the inner regions of a low-mass protostar. Astrophys J Lett 725:L172–L175. doi:10.1088/2041-8205/725/2/L172 ADSCrossRefGoogle Scholar
  230. Jørgensen JK, van Dishoeck EF (2010b) Water vapor in the inner 25 AU of a young disk around a Low-Mass protostar. Astrophys J Lett 710:L72–L76. doi:10.1088/2041-8205/710/1/L72 ADSCrossRefGoogle Scholar
  231. Jørgensen JK, Schöier FL, van Dishoeck EF (2002) Physical structure and CO abundance of low-mass protostellar envelopes. Astron Astrophys 389:908–930. doi:10.1051/0004-6361:20020681 ADSCrossRefGoogle Scholar
  232. Jørgensen JK, Schöier FL, van Dishoeck EF (2005) Molecular freeze-out as a tracer of the thermal and dynamical evolution of pre- and protostellar cores. Astron Astrophys 435:177–182. doi:10.1051/0004-6361:20042092 ADSCrossRefGoogle Scholar
  233. Jørgensen JK, Bourke TL, Myers PC, Di Francesco J, van Dishoeck EF, Lee CF, Ohashi N, Schöier FL, Takakuwa S, Wilner DJ, Zhang Q (2007) PROSAC: a submillimeter array survey of low-mass protostars. I. Overview of program: envelopes, disks, outflows, and hot cores. Astrophys J 659:479–498. doi:10.1086/512230 ADSCrossRefGoogle Scholar
  234. Jørgensen JK, van Dishoeck EF, Visser R, Bourke TL, Wilner DJ, Lommen D, Hogerheijde MR, Myers PC (2009) PROSAC: a submillimeter array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the class 0 through I stages. Astron Astrophys 507:861–879. doi:10.1051/0004-6361/200912325 ADSCrossRefGoogle Scholar
  235. Jørgensen JK, Bourke TL, Nguyen Luong Q, Takakuwa S (2011) Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422. An overview of a large molecular line survey from the submillimeter array. Astron Astrophys 534:A100. doi:10.1051/0004-6361/201117139 CrossRefGoogle Scholar
  236. Jørgensen JK, Favre C, Bisschop SE, Bourke TL, van Dishoeck EF, Schmalzl M (2012) Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys J Lett 757:L4. doi:10.1088/2041-8205/757/1/L4 ADSCrossRefGoogle Scholar
  237. Kaifu N, Ohishi M, Kawaguchi K, Saito S, Yamamoto S, Miyaji T, Miyazawa K, Ishikawa SI, Noumaru C, Harasawa S, Okuda M, Suzuki H (2004) A 8.8–50GHz complete spectral line survey toward TMC-1 I. Survey data. Publ Astron Soc Jpn 56:69–173 ADSGoogle Scholar
  238. Kamp I (2011) Evolution of PAHs in protoplanetary disks. In: Joblin C, Tielens AGGM (eds) EAS publications series. EAS publications series, vol 46, pp 271–283. doi:10.1051/eas/1146029 Google Scholar
  239. Kamp I, Woitke P, Pinte C, Tilling I, Thi WF, Menard F, Duchene G, Augereau JC (2011) Continuum and line modelling of discs around young stars. II. Line diagnostics for GASPS from the DENT grid. Astron Astrophys 532:A85. doi:10.1051/0004-6361/201016399 ADSCrossRefGoogle Scholar
  240. Kaufman MJ, Neufeld DA (1996) Far-Infrared water emission from magnetohydrodynamic shock waves. Astrophys J 456:611. doi:10.1086/176683 ADSCrossRefGoogle Scholar
  241. Kavelaars JJ, Mousis O, Petit JM, Weaver HA (2011) On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets. Astrophys J Lett 734:L30. doi:10.1088/2041-8205/734/2/L30 ADSCrossRefGoogle Scholar
  242. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144:577–589. doi:10.1016/S0012-821X(96)00182-3 ADSCrossRefGoogle Scholar
  243. Keller LP, Messenger S, Flynn GJ, Clemett S, Wirick S, Jacobsen C (2004) The nature of molecular cloud material in interplanetary dust. Geochim Cosmochim Acta 68:2577–2589. doi:10.1016/j.gca.2003.10.044 ADSCrossRefGoogle Scholar
  244. Keller LD, Sloan GC, Forrest WJ, Ayala S, D’Alessio P, Shah S, Calvet N, Najita J, Li A, Hartmann L, Sargent B, Watson DM, Chen CH (2008) PAH emission from Herbig Ae/Be stars. Astrophys J 684:411–429. doi:10.1086/589818 ADSCrossRefGoogle Scholar
  245. Kessler-Silacci JE, Hillenbrand LA, Blake GA, Meyer MR (2005) 8–13 μm spectroscopy of young stellar objects: evolution of the silicate feature. Astrophys J 622:404–429. doi:10.1086/427793 ADSCrossRefGoogle Scholar
  246. Keto E, Caselli P (2008) The different structures of the two classes of starless cores. Astrophys J 683:238–247. doi:10.1086/589147 ADSCrossRefGoogle Scholar
  247. Keto E, Caselli P (2010) Dynamics and depletion in thermally supercritical starless cores. Mon Not R Astron Soc 402:1625–1634. doi:10.1111/j.1365-2966.2009.16033.x ADSCrossRefGoogle Scholar
  248. Kita NT, Togashi S, Morishita Y, Terashima S, Yurimoto H (1998) Search for 60Ni excesses in MET-78008 ureilite: an ion microprobe study. Antarct Meteor Res 11:103 ADSGoogle Scholar
  249. Kita NT, Nagahara H, Togashi S, Morishita Y (2000) A short duration of chondrule formation in the solar nebula: evidence from 26Al in Semarkona ferromagnesian chondrules. Geochim Cosmochim Acta 64:3913–3922. doi:10.1016/S0016-7037(00)00488-9 ADSCrossRefGoogle Scholar
  250. Krasnopolsky R, Li ZY, Shang H (2011) Disk formation in magnetized clouds enabled by the hall effect. Astrophys J 733:54. doi:10.1088/0004-637X/733/1/54 ADSCrossRefGoogle Scholar
  251. Kristensen LE, Visser R, van Dishoeck EF, Yıldı zUA, Doty SD, Herczeg GJ, Liu FC, Parise B, Jørgensen JK, van Kempen TA, Brinch C, Wampfler SF, Bruderer S, Benz AO, Hogerheijde MR, Deul E, Bachiller R, Baudry A, Benedettini M, Bergin EA, Bjerkeli P, Blake GA, Bontemps S, Braine J, Caselli P, Cernicharo J, Codella C, Daniel F, de Graauw T, di Giorgio AM, Dominik C, Encrenaz P, Fich M, Fuente A, Giannini T, Goicoechea JR, Helmich F, Herpin F, Jacq T, Johnstone D, Kaufman MJ, Larsson B, Lis D, Liseau R, Marseille M, McCoey C, Melnick G, Neufeld D, Nisini B, Olberg M, Pearson JC, Plume R, Risacher C, Santiago-García J, Saraceno P, Shipman R, Tafalla M, Tielens AGGM, van der Tak F, Wyrowski F, Beintema D, de Jonge A, Dieleman P, Ossenkopf V, Roelfsema P, Stutzki J (2010) Water in low-mass star-forming regions with Herschel. HIFI spectroscopy of NGC 1333. Astron Astrophys 521:L30. doi:10.1051/0004-6361/201015100 ADSCrossRefGoogle Scholar
  252. Kristensen LE, van Dishoeck EF, Tafalla M, Bachiller R, Nisini B, Liseau R, Yıldız UA (2011) Water in low-mass star-forming regions with Herschel (WISH-LM). High-velocity H2O bullets in L1448-MM observed with HIFI. Astron Astrophys 531:L1. doi:10.1051/0004-6361/201116975 ADSCrossRefGoogle Scholar
  253. Kristensen LE, van Dishoeck EF, Bergin EA, Visser R, Yıldız UA, San Jose-Garcia I, Jørgensen JK, Herczeg GJ, Johnstone D, Wampfler SF, Benz AO, Bruderer S, Cabrit S, Caselli P, Doty SD, Harsono D, Herpin F, Hogerheijde MR, Karska A, van Kempen TA, Liseau R, Nisini B, Tafalla M, van der Tak F, Wyrowski F (2012) Water in star-forming regions with Herschel (WISH). II. Evolution of 557 GHz 110-101 emission in low-mass protostars. Astron Astrophys 542:A8. doi:10.1051/0004-6361/201118146 ADSCrossRefGoogle Scholar
  254. Kwon W, Looney LW, Mundy LG, Chiang HF, Kemball AJ (2009) Grain growth and density distribution of the youngest protostellar systems. Astrophys J 696:841–852. doi:10.1088/0004-637X/696/1/841 ADSCrossRefGoogle Scholar
  255. Laas JC, Garrod RT, Herbst E, Widicus Weaver SL (2011) Contributions from grain surface and gas phase chemistry to the formation of methyl formate and its structural isomers. Astrophys J 728:71. doi:10.1088/0004-637X/728/1/71 ADSCrossRefGoogle Scholar
  256. Lada CJ, Bergin EA, Alves JF, Huard TL (2003) The dynamical state of Barnard 68: a thermally supported, pulsating dark cloud. Astrophys J 586:286–295. doi:10.1086/367610 ADSCrossRefGoogle Scholar
  257. Lahuis F, van Dishoeck EF, Boogert ACA, Pontoppidan KM, Blake GA, Dullemond CP, Evans NJ II, Hogerheijde MR, Jørgensen JK, Kessler-Silacci JE, Knez C (2006) Hot organic molecules toward a young low-mass star: a look at inner disk chemistry. Astrophys J Lett 636:L145–L148. doi:10.1086/500084 ADSCrossRefGoogle Scholar
  258. Lattelais M, Pauzat F, Ellinger Y, Ceccarelli C (2009) Interstellar complex organic molecules and the minimum energy principle. Astrophys J Lett 696:L133–L136. doi:10.1088/0004-637X/696/2/L133 ADSCrossRefGoogle Scholar
  259. Laughlin G, Bodenheimer P (1994) Nonaxisymmetric evolution in protostellar disks. Astrophys J 436:335–354. doi:10.1086/174909 ADSCrossRefGoogle Scholar
  260. Le Guillou C, Rouzaud JN, Bonal L, Quirico E, Derenne S, Remusat L (2012) High resolution TEM of chondritic carbonaceous matter: metamorphic evolution and heterogeneity. Meteorit Planet Sci 47:345–362. doi:10.1111/j.1945-5100.2012.01336.x ADSCrossRefGoogle Scholar
  261. Lécuyer C, Simon L, Guy F (2000) Comparison of carbon, nitrogen and water budgets on Venus and the earth. Earth Planet Sci Lett 181:33–40. doi:10.1016/S0012-821X(00)00195-3 ADSCrossRefGoogle Scholar
  262. Lee T, Shu FH, Shang H, Glassgold AE, Rehm KE (1998) Protostellar cosmic rays and extinct radioactivities in meteorites. Astrophys J 506:898–912. doi:10.1086/306284 ADSCrossRefGoogle Scholar
  263. Lee JE, Evans NJ II, Bergin EA (2005) Comparisons of an evolutionary chemical model with other models. Astrophys J 631:351–360. doi:10.1086/432531 ADSCrossRefGoogle Scholar
  264. Lee N, Williams JP, Cieza LA (2011) Protoplanetary disk masses in IC348: a rapid decline in the population of small dust grains after 1 Myr. Astrophys J 736:135. doi:10.1088/0004-637X/736/2/135 ADSCrossRefGoogle Scholar
  265. Lefloch B, Castets A, Cernicharo J, Langer WD, Zylka R (1998) Cores and cavities in NGC 1333. Astron Astrophys 334:269–279 ADSGoogle Scholar
  266. Lefloch B, Cabrit S, Codella C, Melnick G, Cernicharo J, Caux E, Benedettini M, Boogert A, Caselli P, Ceccarelli C, Gueth F, Hily-Blant P, Lorenzani A, Neufeld D, Nisini B, Pacheco S, Pagani L, Pardo JR, Parise B, Salez M, Schuster K, Viti S, Bacmann A, Baudry A, Bell T, Bergin EA, Blake G, Bottinelli S, Castets A, Comito C, Coutens A, Crimier N, Dominik C, Demyk K, Encrenaz P, Falgarone E, Fuente A, Gerin M, Goldsmith P, Helmich F, Hennebelle P, Henning T, Herbst E, Jacq T, Kahane C, Kama M, Klotz A, Langer W, Lis D, Lord S, Maret S, Pearson J, Phillips T, Saraceno P, Schilke P, Tielens X, van der Tak F, van der Wiel M, Vastel C, Wakelam V, Walters A, Wyrowski F, Yorke H, Bachiller R, Borys C, de Lange G, Delorme Y, Kramer C, Larsson B, Lai R, Maiwald FW, Martin-Pintado J, Mehdi I, Ossenkopf V, Siegel P, Stutzki J (2010) The CHESS spectral survey of star forming regions: peering into the protostellar shock L1157-B1. II. Shock dynamics. Astron Astrophys 518:L113. doi:10.1051/0004-6361/201014630 ADSCrossRefGoogle Scholar
  267. Lefloch B, Cernicharo J, Pacheco S, Ceccarelli C (2011) Shocked water in the Cepheus E protostellar outflow. Astron Astrophys 527:L3. doi:10.1051/0004-6361/201016247 ADSCrossRefGoogle Scholar
  268. Leger A, Jura M, Omont A (1985) Desorption from interstellar grains. Astron Astrophys 144:147–160 ADSGoogle Scholar
  269. Levison HF, Duncan MJ, Brasser R, Kaufmann DE (2010) Capture of the sun’s Oort cloud from stars in its birth cluster. Science 329:187. doi:10.1126/science.1187535 ADSCrossRefGoogle Scholar
  270. Licandro J, Hargrove K, Kelley M, Campins H, Ziffer J, Alí-Lagoa V, Fernández Y, Rivkin A (2012) 5–14 μm Spitzer spectra of Themis family asteroids. Astron Astrophys 537:A73. doi:10.1051/0004-6361/201118142 ADSCrossRefGoogle Scholar
  271. Lis DC, Wootten A, Gerin M, Roueff E (2010) Nitrogen isotopic fractionation in interstellar ammonia. Astrophys J Lett 710:L49–L52. doi:10.1088/2041-8205/710/1/L49 ADSCrossRefGoogle Scholar
  272. Liseau R, Ceccarelli C, Larsson B, Nisini B, White GJ, Ade P, Armand C, Burgdorf M, Caux E, Cerulli R, Church S, Clegg PE, Digorgio A, Furniss I, Giannini T, Glencross W, Gry C, King K, Lim T, Lorenzetti D, Molinari S, Naylor D, Orfei R, Saraceno P, Sidher S, Smith H, Spinoglio L, Swinyard B, Texier D, Tommasi E, Trams N, Unger S (1996) Thermal H2O emission from the Herbig–Haro flow HH 54. Astron Astrophys 315:L181–L184 ADSGoogle Scholar
  273. Liu FC, Parise B, Kristensen L, Visser R, van Dishoeck EF, Güsten R (2011) Water deuterium fractionation in the low-mass protostar NGC1333-IRAS2A. Astron Astrophys 527:A19. doi:10.1051/0004-6361/201015519 ADSCrossRefGoogle Scholar
  274. Loinard L, Castets A, Ceccarelli C, Caux E, Tielens AGGM (2001) Doubly deuterated molecular species in protostellar environments. Astrophys J Lett 552:L163–L166. doi:10.1086/320331 ADSCrossRefGoogle Scholar
  275. Lommen DJP, van Dishoeck EF, Wright CM, Maddison ST, Min M, Wilner DJ, Salter DM, van Langevelde HJ, Bourke TL, van der Burg RFJ, Blake GA (2010) Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope. Astron Astrophys 515:A77. doi:10.1051/0004-6361/200913150 ADSCrossRefGoogle Scholar
  276. Looney LW, Mundy LG, Welch WJ (2000) Unveiling the circumstellar envelope and disk: a subarcsecond survey of circumstellar structures. Astrophys J 529:477–498. doi:10.1086/308239 ADSCrossRefGoogle Scholar
  277. López-Sepulcre A, Kama M, Ceccarelli C, Dominik C, Caux E, Fuente A, Alonso-Albi T (submitted) Astron Astrophys Google Scholar
  278. Machida MN, Inutsuka SI, Matsumoto T (2011) Effect of magnetic braking on circumstellar disk formation in a strongly magnetized cloud. Publ Astron Soc Jpn 63:555 ADSGoogle Scholar
  279. Malbet F, Benisty M, de Wit WJ, Kraus S, Meilland A, Millour F, Tatulli E, Berger JP, Chesneau O, Hofmann KH, Isella A, Natta A, Petrov RG, Preibisch T, Stee P, Testi L, Weigelt G, Antonelli P, Beckmann U, Bresson Y, Chelli A, Dugué M, Duvert G, Gennari S, Glück L, Kern P, Lagarde S, Le Coarer E, Lisi F, Perraut K, Puget P, Rantakyrö F, Robbe-Dubois S, Roussel A, Zins G, Accardo M, Acke B, Agabi K, Altariba E, Arezki B, Aristidi E, Baffa C, Behrend J, Blöcker T, Bonhomme S, Busoni S, Cassaing F, Clausse JM, Colin J, Connot C, Delboulbé A, Domiciano de Souza A, Driebe T, Feautrier P, Ferruzzi D, Forveille T, Fossat E, Foy R, Fraix-Burnet D, Gallardo A, Giani E, Gil C, Glentzlin A, Heiden M, Heininger M, Hernandez Utrera O, Kamm D, Kiekebusch M, Le Contel D, Le Contel JM, Lesourd T, Lopez B, Lopez M, Magnard Y, Marconi A, Mars G, Martinot-Lagarde G, Mathias P, Mège P, Monin JL, Mouillet D, Mourard D, Nussbaum E, Ohnaka K, Pacheco J, Perrier C, Rabbia Y, Rebattu S, Reynaud F, Richichi A, Robini A, Sacchettini M, Schertl D, Schöller M, Solscheid W, Spang A, Stefanini P, Tallon M, Tallon-Bosc I, Tasso D, Vakili F, von der Lühe O, Valtier JC, Vannier M (2007) Disk and wind interaction in the young stellar object MWC 297 spatially resolved with AMBER/VLTI. Astron Astrophys 464:43–53. doi:10.1051/0004-6361:20053924 ADSCrossRefGoogle Scholar
  280. Mandell AM, Bast J, van Dishoeck EF, Blake GA, Salyk C, Mumma MJ, Villanueva G (2012) First detection of Near-infrared line emission from organics in young circumstellar disks. Astrophys J 747:92. doi:10.1088/0004-637X/747/2/92 ADSCrossRefGoogle Scholar
  281. Manfroid J, Jehin E, Hutsemékers D, Cochran A, Zucconi JM, Arpigny C, Schulz R, Stüwe JA, Ilyin I (2009) The CN isotopic ratios in comets. Astron Astrophys 503:613–624. doi:10.1051/0004-6361/200911859 ADSCrossRefGoogle Scholar
  282. Marcelino N, Cernicharo J, Roueff E, Gerin M, Mauersberger R (2005) Deuterated thioformaldehyde in the Barnard 1 cloud. Astrophys J 620:308–320. doi:10.1086/426934 ADSCrossRefGoogle Scholar
  283. Marcelino N, Cernicharo J, Agúndez M, Roueff E, Gerin M, Martín-Pintado J, Mauersberger R, Thum C (2007) Discovery of interstellar propylene (CH2CHCH3): missing links in interstellar gas-phase chemistry. Astrophys J Lett 665:L127–L130. doi:10.1086/521398 ADSCrossRefGoogle Scholar
  284. Marcelino N, Brünken S, Cernicharo J, Quan D, Roueff E, Herbst E, Thaddeus P (2010) The puzzling behavior of HNCO isomers in molecular clouds. Astron Astrophys 516:A105. doi:10.1051/0004-6361/200913806 ADSCrossRefGoogle Scholar
  285. Marhas KK, Goswami JN, Davis AM (2002) Short-Lived nuclides in hibonite grains from Murchison: evidence for solar system evolution. Science 298:2182–2185. doi:10.1126/science.1078322 ADSCrossRefGoogle Scholar
  286. Marshall CP, Emry JR, Olcott Marshall A (2011) Haematite pseudomicrofossils present in the 3.5-billion-year-old apex chert. Nat Geosci 4:240–243. doi:10.1038/ngeo1084 ADSCrossRefGoogle Scholar
  287. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313:56–66. doi:10.1016/j.epsl.2011.10.040 ADSCrossRefGoogle Scholar
  288. Marty B, Zimmermann L, Burnard PG, Wieler R, Heber VS, Burnett DL, Wiens RC, Bochsler P (2010) Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the early solar system. Geochim Cosmochim Acta 74:340–355 ADSCrossRefGoogle Scholar
  289. Mathews GS, Dent WRF, Williams JP, Howard CD, Meeus G, Riaz B, Roberge A, Sandell G, Vandenbussche B, Duchêne G, Kamp I, Ménard F, Montesinos B, Pinte C, Thi WF, Woitke P, Alacid JM, Andrews SM, Ardila DR, Aresu G, Augereau JC, Barrado D, Brittain S, Ciardi DR, Danchi W, Eiroa C, Fedele D, Grady CA, de Gregorio-Monsalvo I, Heras A, Huelamo N, Krivov A, Lebreton J, Liseau R, Martin-Zaidi C, Mendigutía I, Mora A, Morales-Calderon M, Nomura H, Pantin E, Pascucci I, Phillips N, Podio L, Poelman DR, Ramsay S, Rice K, Riviere-Marichalar P, Solano E, Tilling I, Walker H, White GJ, Wright G (2010) GAS in protoplanetary systems (GASPS). I. First results. Astron Astrophys 518:L127. doi:10.1051/0004-6361/201014595 ADSCrossRefGoogle Scholar
  290. Matrajt G, Messenger S, Brownlee D, Joswiak D (2012) Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteorit Planet Sci 47:525–549. doi:10.1111/j.1945-5100.2011.01310.x ADSCrossRefGoogle Scholar
  291. Matthews HE, Sears TJ (1983) The detection of vinyl cyanide in TMC-1. Astrophys J 272:149–153. doi:10.1086/161271 ADSCrossRefGoogle Scholar
  292. Matthews HE, Friberg P, Irvine WM (1985) The detection of acetaldehyde in cold dust clouds. Astrophys J 290:609–614. doi:10.1086/163018 ADSCrossRefGoogle Scholar
  293. McCarthy MC, Gottlieb CA, Gupta H, Thaddeus P (2006) Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys J Lett 652:L141–L144. doi:10.1086/510238 ADSCrossRefGoogle Scholar
  294. McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of Short-Lived 10Be in a Calcium-Aluminum-Rich inclusion from the Allende meteorite. Science 289:1334–1337. doi:10.1126/science.289.5483.1334 ADSCrossRefGoogle Scholar
  295. Meibom A, Krot AN, Robert F, Mostefaoui S, Russell SS, Petaev MI, Gounelle M (2007) Nitrogen and carbon isotopic composition of the sun inferred from a high-temperature solar nebular condensate. Astrophys J Lett 656:L33–L36. doi:10.1086/512052 ADSCrossRefGoogle Scholar
  296. Meier R, Owen TC, Jewitt DC, Matthews HE, Senay M, Biver N, Bockelee-Morvan D, Crovisier J, Gautier D (1998) Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN. Science 279:1707. doi:10.1126/science.279.5357.1707 ADSCrossRefGoogle Scholar
  297. Meijerink R, Glassgold AE, Najita JR (2008) Atomic diagnostics of X-ray-irradiated protoplanetary disks. Astrophys J 676:518–531. doi:10.1086/527411 ADSCrossRefGoogle Scholar
  298. Mellon RR, Li ZY (2008) Magnetic braking and protostellar disk formation: the ideal MHD limit. Astrophys J 681:1356–1376. doi:10.1086/587542 ADSCrossRefGoogle Scholar
  299. Merín B, Augereau JC, van Dishoeck EF, Kessler-Silacci J, Dullemond CP, Blake GA, Lahuis F, Brown JM, Geers VC, Pontoppidan KM, Comerón F, Frasca A, Guieu S, Alcalá JM, Boogert ACA, Evans NJ II, D’Alessio P, Mundy LG, Chapman N (2007) Abundant crystalline silicates in the disk of a very low mass star. Astrophys J 661:361–367. doi:10.1086/513092 ADSCrossRefGoogle Scholar
  300. Messenger S (2000) Identification of molecular-cloud material in interplanetary dust particles. Nature 404:968–971 ADSCrossRefGoogle Scholar
  301. Milam SN, Charnley SB (2012) Observations of nitrogen fractionation in prestellar cores: nitriles tracing interstellar chemistry. In: Lunar and planetary institute science conference abstracts, Technical Report, vol 43, p 2618, Lunar and Planetary Inst, Google Scholar
  302. Miyauchi N, Hidaka H, Chigai T, Nagaoka A, Watanabe N, Kouchi A (2008) Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10 K. Chem Phys Lett 456:27–30. doi:10.1016/j.cplett.2008.02.095 ADSCrossRefGoogle Scholar
  303. Modica P, Palumbo ME (2010) Formation of methyl formate after cosmic ion irradiation of icy grain mantles. Astron Astrophys 519:A22. doi:10.1051/0004-6361/201014101 ADSCrossRefGoogle Scholar
  304. Mokrane H, Chaabouni H, Accolla M, Congiu E, Dulieu F, Chehrouri M, Lemaire JL (2009) Experimental evidence for water formation via ozone hydrogenation on dust grains at 10 K. Astrophys J Lett 705:L195–L198. doi:10.1088/0004-637X/705/2/L195 ADSCrossRefGoogle Scholar
  305. Morbidelli A, Chambers J, Lunine JI, Petit JM, Robert F, Valsecchi GB, Cyr KE (2000) Source regions and time scales for the delivery of water to earth. Meteorit Planet Sci 35:1309–1320. doi:10.1111/j.1945-5100.2000.tb01518.x ADSCrossRefGoogle Scholar
  306. Mouschovias TC (1979) Ambipolar diffusion in interstellar clouds—a new solution. Astrophys J 228:475–481. doi:10.1086/156868 ADSCrossRefGoogle Scholar
  307. Moynier F, Blichert-Toft J, Wang K, Herzog GF, Albarede F (2011) The elusive 60Fe in the solar nebula. Astrophys J 741:71. doi:10.1088/0004-637X/741/2/71 ADSCrossRefGoogle Scholar
  308. Müller HSP, Schlöder F, Stutzki J, Winnewisser G (2005) The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J Mol Struct 742:215–227. doi:10.1016/j.molstruc.2005.01.027 ADSCrossRefGoogle Scholar
  309. Mumma MJ, Charnley SB (2011) The chemical composition of comets: emerging taxonomies and natal heritage. Annu Rev Astron Astrophys 49:471–524. doi:10.1146/annurev-astro-081309-130811 ADSCrossRefGoogle Scholar
  310. Muñoz Caro GM, Meierhenrich UJ, Schutte WA, Barbier B, Arcones Segovia A, Rosenbauer H, Thiemann WHP, Brack A, Greenberg JM (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406 ADSCrossRefGoogle Scholar
  311. Muñoz Caro GM, Meierhenrich U, Schutte WA, Thiemann WHP, Greenberg JM (2004) UV-photoprocessing of interstellar ice analogs: detection of hexamethylenetetramine-based species. Astron Astrophys 413:209–216. doi:10.1051/0004-6361:20031447 ADSCrossRefGoogle Scholar
  312. Murakawa K, Tamura M, Nagata T (2000) 1–4 micron spectrophotometry of dust in the Taurus dark cloud: water ice distribution in Heiles cloud 2. Astrophys J Suppl Ser 128:603–613. doi:10.1086/313387 ADSCrossRefGoogle Scholar
  313. Muzerolle J, Calvet N, Hartmann L, D’Alessio P (2003) Unveiling the inner disk structure of T Tauri stars. Astrophys J Lett 597:L149–L152. doi:10.1086/379921 ADSCrossRefGoogle Scholar
  314. Nakamura T, Noguchi T, Tanaka M, Zolensky ME, Kimura M, Tsuchiyama A, Nakato A, Ogami T, Ishida H, Uesugi M, Yada T, Shirai K, Fujimura A, Okazaki R, Sandford SA, Ishibashi Y, Abe M, Okada T, Ueno M, Mukai T, Yoshikawa M, Kawaguchi J (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113. doi:10.1126/science.1207758 ADSCrossRefGoogle Scholar
  315. Natta A, Prusti T, Neri R, Wooden D, Grinin VP, Mannings V (2001) A reconsideration of disk properties in Herbig Ae stars. Astron Astrophys 371:186–197. doi:10.1051/0004-6361:20010334 ADSCrossRefGoogle Scholar
  316. Natta A, Testi L, Calvet N, Henning T, Waters R, Wilner D (2007) Dust in protoplanetary disks: properties and evolution. In: Protostars and planets V, pp 767–781 Google Scholar
  317. Nguyen AN, Stadermann FJ, Zinner E, Stroud RM, Alexander CMO, Nittler LR (2007) Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. Astrophys J 656:1223–1240. doi:10.1086/510612 ADSCrossRefGoogle Scholar
  318. Nisini B, Benedettini M, Giannini T, Codella C, Lorenzetti D, di Giorgio AM, Richer JS (2000) Far infrared mapping of the gas cooling along the L1448 outflow. Astron Astrophys 360:297–310 ADSGoogle Scholar
  319. Noble JA, Dulieu F, Congiu E, Fraser HJ (2011) CO2 formation in quiescent clouds: an experimental study of the CO + OH pathway. Astrophys J 735:121. doi:10.1088/0004-637X/735/2/121 ADSCrossRefGoogle Scholar
  320. Oba Y, Watanabe N, Kouchi A, Hama T, Pirronello V (2010) Experimental study of CO2 formation by surface reactions of non-energetic OH radicals with CO molecules. Astrophys J Lett 712:L174–L178. doi:10.1088/2041-8205/712/2/L174 ADSCrossRefGoogle Scholar
  321. Oba Y, Watanabe N, Hama T, Kuwahata K, Hidaka H, Kouchi A (2012) Water formation through a quantum tunneling surface reaction, OH+H2, at 10 K. Astrophys J 749:67. doi:10.1088/0004-637X/749/1/67 ADSCrossRefGoogle Scholar
  322. Öberg KI, Garrod RT, van Dishoeck EF, Linnartz H (2009a) Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments. Astron Astrophys 504:891–913. doi:10.1051/0004-6361/200912559 ADSCrossRefGoogle Scholar
  323. Öberg KI, Linnartz H, Visser R, van Dishoeck EF (2009b) Photodesorption of ices. II. H2O and D2O. Astrophys J 693:1209–1218. doi:10.1088/0004-637X/693/2/1209 ADSCrossRefGoogle Scholar
  324. Öberg KI, van Dishoeck EF, Linnartz H (2009c) Photodesorption of ices I: CO, N2, and CO2. Astron Astrophys 496:281–293. doi:10.1051/0004-6361/200810207 ADSCrossRefGoogle Scholar
  325. Öberg KI, Qi C, Fogel JKJ, Bergin EA, Andrews SM, Espaillat C, van Kempen TA, Wilner DJ, Pascucci I (2010a) The disk imaging survey of chemistry with SMA. I. Taurus protoplanetary disk data. Astrophys J 720:480–493. doi:10.1088/0004-637X/720/1/480 ADSCrossRefGoogle Scholar
  326. Öberg KI, van Dishoeck EF, Linnartz H, Andersson S (2010b) The effect of H2O on ice photochemistry. Astrophys J 718:832–840. doi:10.1088/0004-637X/718/2/832 ADSCrossRefGoogle Scholar
  327. Öberg KI, Qi C, Fogel JKJ, Bergin EA, Andrews SM, Espaillat C, Wilner DJ, Pascucci I, Kastner JH (2011a) Disk imaging survey of chemistry with SMA. II. Southern sky protoplanetary disk data and full sample statistics. Astrophys J 734:98. doi:10.1088/0004-637X/734/2/98 ADSCrossRefGoogle Scholar
  328. Öberg KI, Qi C, Wilner DJ, Andrews SM (2011b) The ionization fraction in the DM Tau protoplanetary disk. Astrophys J 743:152. doi:10.1088/0004-637X/743/2/152 ADSCrossRefGoogle Scholar
  329. Öberg KI, van der Marel N, Kristensen LE, van Dishoeck EF (2011c) Complex molecules toward Low-mass protostars: the Serpens core. Astrophys J 740:14. doi:10.1088/0004-637X/740/1/14 ADSCrossRefGoogle Scholar
  330. Ohishi M, Kaifu N (1998) Chemical and physical evolution of dark clouds. Molecular spectral line survey toward TMC-1. Faraday Discuss 109:205. doi:10.1039/a801058g ADSCrossRefGoogle Scholar
  331. Oliveira CM, Hébrard G, Howk JC, Kruk JW, Chayer P, Moos HW (2003) Interstellar deuterium, nitrogen, and oxygen abundances toward GD 246, WD 2331-475, HZ 21, and Lanning 23: results from the FUSE mission. Astrophys J 587:235–255. doi:10.1086/368019 ADSCrossRefGoogle Scholar
  332. Olofsson J, Juhász A, Henning T, Mutschke H, Tamanai A, Moór A, Ábrahám P (2012) Transient dust in warm debris disks. Detection of Fe-rich olivine grains. Astron Astrophys 542:A90. doi:10.1051/0004-6361/201118735 ADSCrossRefGoogle Scholar
  333. Ossenkopf V, Henning T (1994) Dust opacities for protostellar cores. Astron Astrophys 291:943–959 ADSGoogle Scholar
  334. Owen T, Bar-Nun A (1995) Comets, impacts and atmospheres. Icarus 116:215–226. doi:10.1006/icar.1995.1122 ADSCrossRefGoogle Scholar
  335. Owen T, Mahaffy PR, Niemann HB, Atreya S, Wong M (2001) Protosolar nitrogen. Astrophys J Lett 553:L77–L79. doi:10.1086/320501 ADSCrossRefGoogle Scholar
  336. Padovani M, Galli D (2011) Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores. Astron Astrophys 530:A109. doi:10.1051/0004-6361/201116853 ADSCrossRefGoogle Scholar
  337. Pagani L, Bacmann A, Cabrit S, Vastel C (2007) Depletion and low gas temperature in the L183 (=L134N) prestellar core: the N2H+-N2D+ tool. Astron Astrophys 467:179–186. doi:10.1051/0004-6361:20066670 ADSCrossRefGoogle Scholar
  338. Pagani L, Vastel C, Hugo E, Kokoouline V, Greene CH, Bacmann A, Bayet E, Ceccarelli C, Peng R, Schlemmer S (2009) Chemical modeling of L183 (L134N): an estimate of the ortho/para H2 ratio. Astron Astrophys 494:623–636. doi:10.1051/0004-6361:200810587 ADSCrossRefGoogle Scholar
  339. Pagani L, Steinacker J, Bacmann A, Stutz A, Henning T (2010) The ubiquity of Micrometer-Sized dust grains in the dense interstellar medium. Science 329:1622. doi:10.1126/science.1193211 ADSCrossRefGoogle Scholar
  340. Palumbo ME, Pendleton YJ, Strazzulla G (2000) Hydrogen isotopic substitution studies of the 2165 wavenumber (4.62 micron) “XCN” feature produced by ion bombardment. Astrophys J 542:890–893. doi:10.1086/317061 ADSCrossRefGoogle Scholar
  341. Parise B, Ceccarelli C, Tielens AGGM, Herbst E, Lefloch B, Caux E, Castets A, Mukhopadhyay I, Pagani L, Loinard L (2002) Detection of doubly-deuterated methanol in the solar-type protostar IRAS 16293-2422. Astron Astrophys 393:L49–L53. doi:10.1051/0004-6361:20021131 ADSCrossRefGoogle Scholar
  342. Parise B, Castets A, Herbst E, Caux E, Ceccarelli C, Mukhopadhyay I, Tielens AGGM (2004) First detection of triply-deuterated methanol. Astron Astrophys 416:159–163. doi:10.1051/0004-6361:20034490 ADSCrossRefGoogle Scholar
  343. Parise B, Caux E, Castets A, Ceccarelli C, Loinard L, Tielens AGGM, Bacmann A, Cazaux S, Comito C, Helmich F, Kahane C, Schilke P, van Dishoeck E, Wakelam V, Walters A (2005) HDO abundance in the envelope of the solar-type protostar IRAS 16293-2422. Astron Astrophys 431:547–554. doi:10.1051/0004-6361:20041899 ADSCrossRefGoogle Scholar
  344. Parise B, Ceccarelli C, Tielens AGGM, Castets A, Caux E, Lefloch B, Maret S (2006) Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars. Astron Astrophys 453:949–958. doi:10.1051/0004-6361:20054476 ADSCrossRefGoogle Scholar
  345. Parise B, Belloche A, Du F, Güsten R, Menten KM (2011) Extended emission of D2H+ in a prestellar core. Astron Astrophys 526:A31. doi:10.1051/0004-6361/201015475 ADSCrossRefGoogle Scholar
  346. Peng R, Yoshida H, Chamberlin RA, Phillips TG, Lis DC, Gerin M (2010) A comprehensive survey of hydrogen chloride in the galaxy. Astrophys J 723:218–228. doi:10.1088/0004-637X/723/1/218 ADSCrossRefGoogle Scholar
  347. Peng TC, Despois D, Brouillet N, Parise B, Baudry A (2012) Deuterated methanol in orion BN/KL. Astron Astrophys 543:A152. doi:10.1051/0004-6361/201118310 ADSCrossRefGoogle Scholar
  348. Persson MV, Jørgensen JK, van Dishoeck EF (2012) Subarcsecond resolution observations of warm water toward three deeply embedded low-mass protostars. Astron Astrophys 541:A39. doi:10.1051/0004-6361/201117917 ADSCrossRefGoogle Scholar
  349. Petit JM, Mousis O, Kavelaars JJ (2012) Formation location of Enceladus and comets from D/H measurements. In: Lunar and planetary institute science conference abstracts, vol 43, p 1937 Google Scholar
  350. Pickett HM, Poynter RL, Cohen EA, Delitsky ML, Pearson JC, Müller HSP (1998) Submillimeter, millimeter and microwave spectral line catalog. J Quant Spectrosc Radiat Transf 60:883–890. doi:10.1016/S0022-4073(98)00091-0 ADSCrossRefGoogle Scholar
  351. Pilling S, Andrade DPP, da Silveira EF, Rothard H, Domaracka A, Boduch P (2012) Formation of unsaturated hydrocarbons in interstellar ice analogues by cosmic rays. Mon Not R Astron Soc 423:2209–2221. doi:10.1111/j.1365-2966.2012.21031.x ADSCrossRefGoogle Scholar
  352. Pineda JE, Maury AJ, Fuller GA, Testi L, García-Appadoo D, Peck AB, Villard E, Corder SA, van Kempen TA, Turner JL, Tachihara K, Dent W (2012) The first ALMA view of IRAS 16293-2422. Direct detection of infall onto source B and high-resolution kinematics of source A. Astron Astrophys 544:L7. doi:10.1051/0004-6361/201219589 ADSCrossRefGoogle Scholar
  353. Pirronello V, Liu C, Roser JE, Vidali G (1999) Measurements of molecular hydrogen formation on carbonaceous grains. Astron Astrophys 344:681–686 ADSGoogle Scholar
  354. Pizzarello S, Holmes W (2009) Nitrogen-containing compounds in two CR2 meteorites: 15N composition, molecular distribution and precursor molecules. Geochim Cosmochim Acta 73:2150–2162 ADSCrossRefGoogle Scholar
  355. Pizzarello S, Huang Y (2005) The deuterium enrichment of individual amino acids in carbonaceous meteorites: a case for the presolar distribution of biomolecule precursors. Geochim Cosmochim Acta 69:599–605. doi:10.1016/j.gca.2004.07.031 ADSCrossRefGoogle Scholar
  356. Pizzarello S, Huang Y, Becker L, Poreda RJ, Nieman RA, Cooper G, Williams M (2001) The organic content of the Tagish lake meteorite. Science 293:2236–2239. doi:10.1126/science.1062614 ADSCrossRefGoogle Scholar
  357. Pizzarello S, Zolensky M, Turk KA (2003) Nonracemic isovaline in the Murchison meteorite: chiral distribution and mineral association. Geochim Cosmochim Acta 67:1589–1595. doi:10.1016/S0016-7037(02)01283-8 ADSCrossRefGoogle Scholar
  358. Podio L, Kamp I, Flower D, Howard C, Sandell G, Mora A, Aresu G, Brittain S, Dent WRF, Pinte C, White GJ (2012) Herschel/PACS observations of young sources in Taurus: the far-infrared counterpart of optical jets. Astron Astrophys 545:A44. doi:10.1051/0004-6361/201219475 ADSCrossRefGoogle Scholar
  359. Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85. doi:10.1006/icar.1996.0190 ADSCrossRefGoogle Scholar
  360. Pontoppidan KM, Salyk C, Blake GA, Käufl HU (2010a) Spectrally resolved pure rotational lines of water in protoplanetary disks. Astrophys J Lett 722:L173–L177. doi:10.1088/2041-8205/722/2/L173 ADSCrossRefGoogle Scholar
  361. Pontoppidan KM, Salyk C, Blake GA, Meijerink R, Carr JS, Najita J (2010b) A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. I. Detection rates. Astrophys J 720:887–903. doi:10.1088/0004-637X/720/1/887 ADSCrossRefGoogle Scholar
  362. Prasad SS, Tarafdar SP (1983) UV radiation field inside dense clouds—its possible existence and chemical implications. Astrophys J 267:603–609. doi:10.1086/160896 ADSCrossRefGoogle Scholar
  363. Preibisch T, Feigelson ED (2005) The evolution of X-ray emission in young stars. Astrophys J Suppl Ser 160:390–400. doi:10.1086/432094 ADSCrossRefGoogle Scholar
  364. Qi C, Ho PTP, Wilner DJ, Takakuwa S, Hirano N, Ohashi N, Bourke TL, Zhang Q, Blake GA, Hogerheijde M, Saito M, Choi M, Yang J (2004) Imaging the disk around TW Hydrae with the submillimeter array. Astrophys J Lett 616:L11–L14. doi:10.1086/421063 ADSCrossRefGoogle Scholar
  365. Qi C, Wilner DJ, Aikawa Y, Blake GA, Hogerheijde MR (2008) Resolving the chemistry in the disk of TW Hydrae. I. Deuterated species. Astrophys J 681:1396–1407. doi:10.1086/588516 ADSCrossRefGoogle Scholar
  366. Quan D, Herbst E, Osamura Y, Roueff E (2010) Gas-grain modeling of isocyanic acid (HNCO), cyanic acid (HOCN), fulminic acid (HCNO), and isofulminic acid (HONC) in assorted interstellar environments. Astrophys J 725:2101–2109. doi:10.1088/0004-637X/725/2/2101 ADSCrossRefGoogle Scholar
  367. Rafikov RR (2006) Microwave emission from spinning dust in circumstellar disks. Astrophys J 646:288–296. doi:10.1086/504793 ADSCrossRefGoogle Scholar
  368. Ratajczak A, Taquet V, Kahane C, Ceccarelli C, Faure A, Quirico E (2011) The puzzling deuteration of methanol in low- to high-mass protostars. Astron Astrophys 528:L13. doi:10.1051/0004-6361/201016402 ADSCrossRefGoogle Scholar
  369. Raymond SN, O’Brien DP, Morbidelli A, Kaib NA (2009) Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203:644–662. doi:10.1016/j.icarus.2009.05.016 ADSCrossRefGoogle Scholar
  370. Redman MP, Rawlings JMC, Nutter DJ, Ward-Thompson D, Williams DA (2002) Molecular gas freeze-out in the pre-stellar core L1689B. Mon Not R Astron Soc 337:L17–L21. doi:10.1046/j.1365-8711.2002.06106.x ADSCrossRefGoogle Scholar
  371. Remijan AJ, Hollis JM, Snyder LE, Jewell PR, Lovas FJ (2006) Methyltriacetylene (CH3C6H) toward TMC-1: the largest detected symmetric top. Astrophys J Lett 643:L37–L40. doi:10.1086/504918 ADSCrossRefGoogle Scholar
  372. Remusat L, Palhol F, Robert F, Derenne S (2005) Hydrogen isotopic composition of aliphatic linkages in carbonaceous chondrites insoluble organic matter. In: Mackwell S, Stansbery E (eds) 36th annual lunar and planetary science conference, lunar and planetary institute science conference abstracts, vol 36, p 1350 Google Scholar
  373. Remusat L, Robert F, Meibom A, Mostefaoui S, Delpoux O, Binet L, Gourier D, Derenne S (2009) Proto-planetary disk chemistry recorded by D-rich organic radicals in carbonaceous chondrites. Astrophys J 698:2087–2092. doi:10.1088/0004-637X/698/2/2087 ADSCrossRefGoogle Scholar
  374. Requena-Torres MA, Marcelino N, Jiménez-Serra I, Martín-Pintado J, Martín S, Mauersberger R (2007) Organic chemistry in the dark clouds L1448 and L183: a unique grain mantle composition. Astrophys J Lett 655:L37–L40. doi:10.1086/511677 ADSCrossRefGoogle Scholar
  375. Riaz B, Honda M, Campins H, Micela G, Guarcello MG, Gledhill T, Hough J, Martín EL (2012) The radial distribution of dust species in young brown Dwarf discs. Mon Not R Astron Soc 420:2603–2624. doi:10.1111/j.1365-2966.2011.20233.x ADSCrossRefGoogle Scholar
  376. Ricci L, Testi L, Maddison ST, Wilner DJ (2012) Fomalhaut debris disk emission at 7 millimeters: constraints on the collisional models of planetesimals. Astron Astrophys 539:L6. doi:10.1051/0004-6361/201118524 ADSCrossRefGoogle Scholar
  377. Robert F (2003) The D/H ratio in chondrites. Space Sci Rev 106:87–101. doi:10.1023/A:1024629402715 ADSCrossRefGoogle Scholar
  378. Robert F, Derenne S (2006) The molecular structure and isotopic compositions of the insoluble organic matter in chondrites. Meteorit Planet Sci 41:5259 Google Scholar
  379. Roberts H, Herbst E, Millar TJ (2003) Enhanced deuterium fractionation in dense interstellar cores resulting from multiply deuterated \(\mathrm{H}^{+}_{3}\). Astrophys J Lett 591:L41–L44. doi:10.1086/376962 ADSCrossRefGoogle Scholar
  380. Roberts JF, Rawlings JMC, Viti S, Williams DA (2007) Desorption from interstellar ices. Mon Not R Astron Soc 382:733–742. doi:10.1111/j.1365-2966.2007.12402.x ADSCrossRefGoogle Scholar
  381. Robitaille TP, Whitney BA, Indebetouw R, Wood K, Denzmore P (2006) Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. Astrophys J Suppl Ser 167:256–285. doi:10.1086/508424 ADSCrossRefGoogle Scholar
  382. Rodríguez LF, Loinard L, D’Alessio P, Wilner DJ, Ho PTP (2005) IRAS 16293-2422B: a compact, possibly isolated protoplanetary disk in a class 0 object. Astrophys J Lett 621:L133–L136. doi:10.1086/429223 ADSCrossRefGoogle Scholar
  383. Romanzin C, Ioppolo S, Cuppen HM, van Dishoeck EF, Linnartz H (2011) Water formation by surface O3 hydrogenation. J Chem Phys 134(8):084,504. doi:10.1063/1.3532087 CrossRefGoogle Scholar
  384. Sakai N, Ikeda M, Morita M, Sakai T, Takano S, Osamura Y, Yamamoto S (2007) Production pathways of CCS and CCCS inferred from their 13C isotopic species. Astrophys J 663:1174–1179. doi:10.1086/518595 ADSCrossRefGoogle Scholar
  385. Sakai N, Sakai T, Hirota T, Yamamoto S (2008) Abundant Carbon-Chain molecules toward the Low-Mass protostar IRAS 04368+2557 in L1527. Astrophys J 672:371–381. doi:10.1086/523635 ADSCrossRefGoogle Scholar
  386. Sakai N, Saruwatari O, Sakai T, Takano S, Yamamoto S (2010a) Abundance anomaly of the 13C species of CCH. Astron Astrophys 512:A31. doi:10.1051/0004-6361/200913098 ADSCrossRefGoogle Scholar
  387. Sakai N, Shiino T, Hirota T, Sakai T, Yamamoto S (2010b) Long Carbon-chain molecules and their anions in the starless core, Lupus-1A. Astrophys J Lett 718:L49–L52. doi:10.1088/2041-8205/718/2/L49 ADSCrossRefGoogle Scholar
  388. Salyk C, Pontoppidan KM, Blake GA, Lahuis F, van Dishoeck EF, Evans II NJ (2008) H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. Astrophys J Lett 676:L49–L52. doi:10.1086/586894 ADSCrossRefGoogle Scholar
  389. Salyk C, Pontoppidan KM, Blake GA, Najita JR, Carr JS (2011) A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models. Astrophys J 731:130. doi:10.1088/0004-637X/731/2/130 ADSCrossRefGoogle Scholar
  390. Santangelo G, Nisini B, Giannini T, Antoniucci S, Vasta M, Codella C, Lorenzani A, Tafalla M, Liseau R, van Dishoeck EF, Kristensen LE (2012) The Herschel HIFI water line survey in the low-mass proto-stellar outflow L1448. Astron Astrophys 538:A45. doi:10.1051/0004-6361/201118113 ADSCrossRefGoogle Scholar
  391. Sargent BA, Forrest WJ, Tayrien C, McClure MK, Watson DM, Sloan GC, Li A, Manoj P, Bohac CJ, Furlan E, Kim KH, Green JD (2009) Dust processing and grain growth in protoplanetary disks in the Taurus-Auriga star-forming region. Astrophys J Suppl Ser 182:477–508. doi:10.1088/0067-0049/182/2/477 ADSCrossRefGoogle Scholar
  392. Schaller EL, Brown ME (2007) Volatile loss and retention on Kuiper belt objects. In: AAS/Division for planetary sciences meeting abstracts. Bulletin of the American astronomical society, vol 39, p 511 Google Scholar
  393. Schöier FL, Jørgensen JK, van Dishoeck EF, Blake GA (2002) Does IRAS 16293-2422 have a hot core? Chemical inventory and abundance changes in its protostellar environment. Astron Astrophys 390:1001–1021. doi:10.1051/0004-6361:20020756 ADSCrossRefGoogle Scholar
  394. Schöier FL, van der Tak FFS, van Dishoeck EF, Black JH (2005) An atomic and molecular database for analysis of submillimetre line observations. Astron Astrophys 432:369–379. doi:10.1051/0004-6361:20041729 ADSCrossRefGoogle Scholar
  395. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76 ADSCrossRefGoogle Scholar
  396. Schräpler R, Blum J, Seizinger A, Kley W (2012) The physics of protoplanetesimal dust agglomerates. VII. The low-velocity collision behavior of large dust agglomerates. ArXiv e-prints Google Scholar
  397. Semenov DA (2011) Chemical evolution of a protoplanetary disk. In: IAU symposium, vol 280, pp 114–126. doi:10.1017/S1743921311024914 Google Scholar
  398. Shen CJ, Greenberg JM, Schutte WA, van Dishoeck EF (2004) Cosmic ray induced explosive chemical desorption in dense clouds. Astron Astrophys 415:203–215. doi:10.1051/0004-6361:20031669 ADSCrossRefGoogle Scholar
  399. Shimajiri Y, Takahashi S, Takakuwa S, Saito M, Kawabe R (2008) Millimeter- and submillimeter-wave observations of the OMC-2/3 region. II. Observational evidence for outflow-triggered star formation in the OMC-2 FIR 3/4 region. Astrophys J 683:255–266. doi:10.1086/588629 ADSCrossRefGoogle Scholar
  400. Shu FH (1977) Self-similar collapse of isothermal spheres and star formation. Astrophys J 214:488–497. doi:10.1086/155274 ADSCrossRefGoogle Scholar
  401. Shu FH, Adams FC, Lizano S (1987) Star formation in molecular clouds—observation and theory. Annu Rev Astron Astrophys 25:23–81. doi:10.1146/annurev.aa.25.090187.000323 ADSCrossRefGoogle Scholar
  402. Sicilia D, Ioppolo S, Vindigni T, Baratta GA, Palumbo ME (2012) Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures. Astron Astrophys 543:A155. doi:10.1051/0004-6361/201219390 ADSCrossRefGoogle Scholar
  403. Siebenmorgen R, Heymann F (2012) Polycyclic aromatic hydrocarbons in protoplanetary disks: emission and X-ray destruction. Astron Astrophys 543:A25. doi:10.1051/0004-6361/201219039 ADSCrossRefGoogle Scholar
  404. Siebenmorgen R, Krügel E (2010) The destruction and survival of polycyclic aromatic hydrocarbons in the disks of T Tauri stars. Astron Astrophys 511:A6. doi:10.1051/0004-6361/200912035 ADSCrossRefGoogle Scholar
  405. Skrzypczak A, Binet L, Gourier D, Derenne S, Robert F (2003) On the controversial biogenicity of the organic matter in the oldest Archean cherts: can electron paramagnetic resonance provide clues? In: Mackwell S, Stansbery E (eds) Lunar and planetary institute science conference abstracts, lunar and planetary institute science conference abstracts, vol 34, p 1677 Google Scholar
  406. Snyder LE, Hollis JM, Jewell PR, Lovas FJ, Remijan A (2006) Confirmation of interstellar methylcyanodiacetylene (CH3C5N). Astrophys J 647:412–417. doi:10.1086/505323 ADSCrossRefGoogle Scholar
  407. Spitzer L (1978) Physical processes in the interstellar medium Google Scholar
  408. Stäuber P, Doty SD, van Dishoeck EF, Benz AO (2005) X-ray chemistry in the envelopes around young stellar objects. Astron Astrophys 440:949–966. doi:10.1051/0004-6361:20052889 ADSCrossRefGoogle Scholar
  409. Sturm B, Bouwman J, Henning T, Evans NJ, Acke B, Mulders GD, Waters LBFM, van Dishoeck EF, Meeus G, Green JD, Augereau JC, Olofsson J, Salyk C, Najita J, Herczeg GJ, van Kempen TA, Kristensen LE, Dominik C, Carr JS, Waelkens C, Bergin E, Blake GA, Brown JM, Chen JH, Cieza L, Dunham MM, Glassgold A, Güdel M, Harvey PM, Hogerheijde MR, Jaffe D, Jørgensen JK, Kim HJ, Knez C, Lacy JH, Lee JE, Maret S, Meijerink R, Merín B, Mundy L, Pontoppidan KM, Visser R, Yıldız UA (2010) First results of the Herschel key program “Dust, ice and gas in time” (DIGIT): dust and gas spectroscopy of HD 100546. Astron Astrophys 518:L129. doi:10.1051/0004-6361/201014674 ADSCrossRefGoogle Scholar
  410. Tafalla M, Myers PC, Caselli P, Walmsley CM (2004) On the internal structure of starless cores. I. Physical conditions and the distribution of CO, CS, N2H+, and NH3 in L1498 and L1517B. Astron Astrophys 416:191–212. doi:10.1051/0004-6361:20031704 ADSCrossRefGoogle Scholar
  411. Tafalla M, Santiago-García J, Myers PC, Caselli P, Walmsley CM, Crapsi A (2006) On the internal structure of starless cores. II. A molecular survey of L1498 and L1517B. Astron Astrophys 455:577–593. doi:10.1051/0004-6361:20065311 ADSCrossRefGoogle Scholar
  412. Taquet V, Ceccarelli C, Kahane C (2012a) Formaldehyde and methanol deuteration in protostars: fossils from a past fast high-density pre-collapse phase. Astrophys J Lett 748:L3. doi:10.1088/2041-8205/748/1/L3 ADSCrossRefGoogle Scholar
  413. Taquet V, Ceccarelli C, Kahane C (2012b) Multilayer modeling of porous grain surface chemistry. I. The GRAINOBLE model. Astron Astrophys 538:A42. doi:10.1051/0004-6361/201117802 ADSCrossRefGoogle Scholar
  414. Taquet V, Lopez-Sepulcre A, Ceccarelli C, Kahane C (2012c, in print) Arcsecond resolution observations of deuterated water towards low-mass protostar. Astron Astrophys A42. doi:10.1051/0004-6361/201117812
  415. Taquet V, Peters P, Kahane C, Ceccarelli C, Lopez-Sepulcre A, Toubin C, Duflot D, Wiesenfeld L (2012d, in print) Modelling of deuterated water ice formation. Astron Astrophys A42. doi:10.1051/0004-6361/201117802
  416. Tatulli E, Isella A, Natta A, Testi L, Marconi A, Malbet F, Stee P, Petrov RG, Millour F, Chelli A, Duvert G, Antonelli P, Beckmann U, Bresson Y, Dugué M, Gennari S, Glück L, Kern P, Lagarde S, Le Coarer E, Lisi F, Perraut K, Puget P, Rantakyrö F, Robbe-Dubois S, Roussel A, Weigelt G, Zins G, Accardo M, Acke B, Agabi K, Altariba E, Arezki B, Aristidi E, Baffa C, Behrend J, Blöcker T, Bonhomme S, Busoni S, Cassaing F, Clausse JM, Colin J, Connot C, Delboulbé A, Domiciano de Souza A, Driebe T, Feautrier P, Ferruzzi D, Forveille T, Fossat E, Foy R, Fraix-Burnet D, Gallardo A, Giani E, Gil C, Glentzlin A, Heiden M, Heininger M, Hernandez Utrera O, Hofmann KH, Kamm D, Kiekebusch M, Kraus S, Le Contel D, Le Contel JM, Lesourd T, Lopez B, Lopez M, Magnard Y, Mars G, Martinot-Lagarde G, Mathias P, Mège P, Monin JL, Mouillet D, Mourard D, Nussbaum E, Ohnaka K, Pacheco J, Perrier C, Rabbia Y, Rebattu S, Reynaud F, Richichi A, Robini A, Sacchettini M, Schertl D, Schöller M, Solscheid W, Spang A, Stefanini P, Tallon M, Tallon-Bosc I, Tasso D, Vakili F, von der Lühe O, Valtier JC, Vannier M (2007) Constraining the wind launching region in Herbig Ae stars: AMBER/VLTI spectroscopy of HD 104237. Astron Astrophys 464:55–58. doi:10.1051/0004-6361:20065719 ADSCrossRefGoogle Scholar
  417. Terada H, Tokunaga AT, Kobayashi N, Takato N, Hayano Y, Takami H (2007) Detection of water ice in Edge-on protoplanetary disks: HK Tauri B and HV Tauri C. Astrophys J 667:303–307. doi:10.1086/520951 ADSCrossRefGoogle Scholar
  418. Testi L, Natta A, Shepherd DS, Wilner DJ (2003) Large grains in the disk of CQ Tau. Astron Astrophys 403:323–328. doi:10.1051/0004-6361:20030362 ADSCrossRefGoogle Scholar
  419. Thi WF, van Zadelhoff GJ, van Dishoeck EF (2004) Organic molecules in protoplanetary disks around T Tauri and Herbig Ae stars. Astron Astrophys 425:955–972. doi:10.1051/0004-6361:200400026 ADSCrossRefGoogle Scholar
  420. Thi WF, Mathews G, Ménard F, Woitke P, Meeus G, Riviere-Marichalar P, Pinte C, Howard CD, Roberge A, Sandell G, Pascucci I, Riaz B, Grady CA, Dent WRF, Kamp I, Duchêne G, Augereau JC, Pantin E, Vandenbussche B, Tilling I, Williams JP, Eiroa C, Barrado D, Alacid JM, Andrews S, Ardila DR, Aresu G, Brittain S, Ciardi DR, Danchi W, Fedele D, de Gregorio-Monsalvo I, Heras A, Huelamo N, Krivov A, Lebreton J, Liseau R, Martin-Zaidi C, Mendigutía I, Montesinos B, Mora A, Morales-Calderon M, Nomura H, Phillips N, Podio L, Poelman DR, Ramsay S, Rice K, Solano E, Walker H, White GJ, Wright G (2010a) Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass. Astron Astrophys 518:L125. doi:10.1051/0004-6361/201014578 ADSCrossRefGoogle Scholar
  421. Thi WF, Woitke P, Kamp I (2010b) Warm non-equilibrium gas phase chemistry as a possible origin of high HDO/H2O ratios in hot and dense gases: application to inner protoplanetary discs. Mon Not R Astron Soc 407:232–246. doi:10.1111/j.1365-2966.2009.16162.x ADSCrossRefGoogle Scholar
  422. Thomas KL, Blanford GE, Keller LP, Klock W, McKay DS (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim Cosmochim Acta 57:1551–1566. doi:10.1016/0016-7037(93)90012-L ADSCrossRefGoogle Scholar
  423. Tielens AGGM (1983) Surface chemistry of deuterated molecules. Astron Astrophys 119:177–184 ADSGoogle Scholar
  424. Tielens AGGM (2005) The physics and chemistry of the interstellar medium CrossRefGoogle Scholar
  425. Troland TH, Crutcher RM (2008) Magnetic fields in dark cloud cores: Arecibo OH Zeeman observations. Astrophys J 680:457–465. doi:10.1086/587546 ADSCrossRefGoogle Scholar
  426. Troscompt N, Faure A, Maret S, Ceccarelli C, Hily-Blant P, Wiesenfeld L (2009) Constraining the ortho-to-para ratio of H2 with anomalous H2CO absorption. Astron Astrophys 506:1243–1247. doi:10.1051/0004-6361/200912770 ADSCrossRefGoogle Scholar
  427. van der Tak FFS, Schilke P, Müller HSP, Lis DC, Phillips TG, Gerin M, Roueff E (2002) Triply deuterated ammonia in NGC 1333. Astron Astrophys 388:L53–L56. doi:10.1051/0004-6361:20020647 ADSCrossRefGoogle Scholar
  428. van der Tak FFS, Caselli P, Ceccarelli C (2005) Line profiles of molecular ions toward the pre-stellar core LDN 1544. Astron Astrophys 439:195–203. doi:10.1051/0004-6361:20052792 ADSCrossRefGoogle Scholar
  429. van Dishoeck EF, Thi WF, van Zadelhoff GJ (2003) Detection of DCO+ in a circumstellar disk. Astron Astrophys 400:L1–L4. doi:10.1051/0004-6361:20030091 ADSCrossRefGoogle Scholar
  430. van Dishoeck EF, Kristensen LE, Benz AO, Bergin EA, Caselli P, Cernicharo J, Herpin F, Hogerheijde MR, Johnstone D, Liseau R, Nisini B, Shipman R, Tafalla M, van der Tak F, Wyrowski F, Aikawa Y, Bachiller R, Baudry A, Benedettini M, Bjerkeli P, Blake GA, Bontemps S, Braine J, Brinch C, Bruderer S, Chavarría L, Codella C, Daniel F, de Graauw T, Deul E, di Giorgio AM, Dominik C, Doty SD, Dubernet ML, Encrenaz P, Feuchtgruber H, Fich M, Frieswijk W, Fuente A, Giannini T, Goicoechea JR, Helmich FP, Herczeg GJ, Jacq T, Jørgensen JK, Karska A, Kaufman MJ, Keto E, Larsson B, Lefloch B, Lis D, Marseille M, McCoey C, Melnick G, Neufeld D, Olberg M, Pagani L, Panić O, Parise B, Pearson JC, Plume R, Risacher C, Salter D, Santiago-García J, Saraceno P, Stäuber P, van Kempen TA, Visser R, Viti S, Walmsley M, Wampfler SF (2011) Water in Star-forming regions with the Herschel space observatory (WISH). I. Overview of key program and first results. Publ Astron Soc Pac 123:138–170. doi:10.1086/658676 ADSCrossRefGoogle Scholar
  431. van Kempen TA, van Dishoeck EF, Güsten R, Kristensen LE, Schilke P, Hogerheijde MR, Boland W, Menten KM, Wyrowski F (2009) APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. II. Distribution and origin of warm molecular gas. Astron Astrophys 507:1425–1442. doi:10.1051/0004-6361/200912507 ADSCrossRefGoogle Scholar
  432. van Zadelhoff GJ, van Dishoeck EF, Thi WF, Blake GA (2001) Submillimeter lines from circumstellar disks around pre-main sequence stars. Astron Astrophys 377:566–580. doi:10.1051/0004-6361:20011137 ADSCrossRefGoogle Scholar
  433. Vasta M, Codella C, Lorenzani A, Santangelo G, Nisini B, Giannini T, Tafalla M, Liseau R, van Dishoeck EF, Kristensen L (2012) Water emission from the chemically rich outflow L1157. Astron Astrophys 537:A98. doi:10.1051/0004-6361/201118201 ADSCrossRefGoogle Scholar
  434. Vastel C, Phillips TG, Ceccarelli C, Pearson J (2003) First detection of doubly deuterated hydrogen sulfide. Astrophys J Lett 593:L97–L100. doi:10.1086/378261 ADSCrossRefGoogle Scholar
  435. Vastel C, Phillips TG, Yoshida H (2004) Detection of D2H+ in the dense interstellar medium. Astrophys J Lett 606:L127–L130. doi:10.1086/421265 ADSCrossRefGoogle Scholar
  436. Vastel C, Ceccarelli C, Caux E, Coutens A, Cernicharo J, Bottinelli S, Demyk K, Faure A, Wiesenfeld L, Scribano Y, Bacmann A, Hily-Blant P, Maret S, Walters A, Bergin EA, Blake GA, Castets A, Crimier N, Dominik C, Encrenaz P, Gérin M, Hennebelle P, Kahane C, Klotz A, Melnick G, Pagani L, Parise B, Schilke P, Wakelam V, Baudry A, Bell T, Benedettini M, Boogert A, Cabrit S, Caselli P, Codella C, Comito C, Falgarone E, Fuente A, Goldsmith PF, Helmich F, Henning T, Herbst E, Jacq T, Kama M, Langer W, Lefloch B, Lis D, Lord S, Lorenzani A, Neufeld D, Nisini B, Pacheco S, Pearson J, Phillips T, Salez M, Saraceno P, Schuster K, Tielens X, van der Tak F, van der Wiel MHD, Viti S, Wyrowski F, Yorke H, Cais P, Krieg JM, Olberg M, Ravera L (2010) Ortho-to-para ratio of interstellar heavy water. Astron Astrophys 521:L31. doi:10.1051/0004-6361/201015101 ADSCrossRefGoogle Scholar
  437. Vasyunin AI, Semenov D, Henning T, Wakelam V, Herbst E, Sobolev AM (2008) Chemistry in protoplanetary disks: a sensitivity analysis. Astrophys J 672:629–641. doi:10.1086/523887 ADSCrossRefGoogle Scholar
  438. Vasyunin AI, Wiebe DS, Birnstiel T, Zhukovska S, Henning T, Dullemond CP (2011) Impact of grain evolution on the chemical structure of protoplanetary disks. Astrophys J 727:76. doi:10.1088/0004-637X/727/2/76 ADSCrossRefGoogle Scholar
  439. Villeneuve J, Chaussidon M, Libourel G (2009) Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325:985. doi:10.1126/science.1173907 ADSCrossRefGoogle Scholar
  440. Visser R, Geers VC, Dullemond CP, Augereau JC, Pontoppidan KM, van Dishoeck EF (2007) PAH chemistry and IR emission from circumstellar disks. Astron Astrophys 466:229–241. doi:10.1051/0004-6361:20066829 ADSCrossRefGoogle Scholar
  441. Visser R, van Dishoeck EF, Doty SD, Dullemond CP (2009) The chemical history of molecules in circumstellar disks. I. Ices. Astron Astrophys 495:881–897. doi:10.1051/0004-6361/200810846 ADSCrossRefGoogle Scholar
  442. Visser R, Doty SD, van Dishoeck EF (2011) The chemical history of molecules in circumstellar disks. II. Gas-phase species. Astron Astrophys 534:A132. doi:10.1051/0004-6361/201117249 ADSCrossRefGoogle Scholar
  443. Visser  R, Kristensen LE, Bruderer S, van Dishoeck EF, Herczeg GJ, Brinch C, Doty SD, Harsono D, Wolfire MG (2012) Modelling Herschel observations of hot molecular gas emission from embedded low-mass protostars. Astron Astrophys 537:A55. doi:10.1051/0004-6361/201117109 ADSCrossRefGoogle Scholar
  444. Viti S, Collings MP, Dever JW, McCoustra MRS, Williams DA (2004) Evaporation of ices near massive stars: models based on laboratory temperature programmed desorption data. Mon Not R Astron Soc 354:1141–1145. doi:10.1111/j.1365-2966.2004.08273.x ADSCrossRefGoogle Scholar
  445. Vorobyov EI (2011) Embedded protostellar disks around (sub-)solar stars. II. Disk masses, sizes, densities, temperatures, and the planet formation perspective. Astrophys J 729:146. doi:10.1088/0004-637X/729/2/146 ADSCrossRefGoogle Scholar
  446. Wakelam V, Herbst E (2008) Polycyclic aromatic hydrocarbons in dense cloud chemistry. Astrophys J 680:371–383. doi:10.1086/587734 ADSCrossRefGoogle Scholar
  447. Wakelam V, Herbst E, Selsis F (2006) The effect of uncertainties on chemical models of dark clouds. Astron Astrophys 451:551–562. doi:10.1051/0004-6361:20054682 ADSCrossRefGoogle Scholar
  448. Wakelam V, Herbst E, Loison JC, Smith IWM, Chandrasekaran V, Pavone B, Adams NG, Bacchus-Montabonel MC, Bergeat A, Béroff K, Bierbaum VM, Chabot M, Dalgarno A, van Dishoeck EF, Faure A, Geppert WD, Gerlich D, Galli D, Hébrard E, Hersant F, Hickson KM, Honvault P, Klippenstein SJ, Le Picard S, Nyman G, Pernot P, Schlemmer S, Selsis F, Sims IR, Talbi D, Tennyson J, Troe J, Wester R, Wiesenfeld L (2012) A KInetic database for astrochemistry (KIDA). Astrophys J Suppl Ser 199:21. doi:10.1088/0067-0049/199/1/21 ADSCrossRefGoogle Scholar
  449. Walmsley CM, Jewell PR, Snyder LE, Winnewisser G (1984) Detection of interstellar methyldiacetylene (CH3C4H) in the dark dust cloud TMC 1. Astron Astrophys 134:L11–L14 ADSGoogle Scholar
  450. Walsh C, Nomura H, Millar TJ, Aikawa Y (2012) Chemical processes in protoplanetary disks. II. On the importance of photochemistry and X-ray ionization. Astrophys J 747:114. doi:10.1088/0004-637X/747/2/114 ADSCrossRefGoogle Scholar
  451. Ward-Thompson D, Scott PF, Hills RE, Andre P (1994) A submillimetre continuum survey of pre protostellar cores. Mon Not R Astron Soc 268:276 ADSGoogle Scholar
  452. Ward-Thompson D, Motte F, Andre P (1999) The initial conditions of isolated star formation. III. Millimetre continuum mapping of pre-stellar cores. Mon Not R Astron Soc 305:143–150. doi:10.1046/j.1365-8711.1999.02412.x ADSCrossRefGoogle Scholar
  453. Wardle M (2004) Star formation and the hall effect. Astrophys Space Sci 292:317–323. doi:10.1023/B:ASTR.0000045033.80068.1f ADSCrossRefGoogle Scholar
  454. Watanabe N, Kouchi A (2002) Efficient formation of formaldehyde and methanol by the addition of hydrogen atoms to CO in H2O-CO ice at 10 K. Astrophys J Lett 571:L173–L176. doi:10.1086/341412 ADSCrossRefGoogle Scholar
  455. Watson WD (1974) Ion-molecule reactions, molecule formation, and hydrogen-isotope exchange in dense interstellar clouds. Astrophys J 188:35–42. doi:10.1086/152681 ADSCrossRefGoogle Scholar
  456. Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. Mon Not R Astron Soc 180:57–70 ADSGoogle Scholar
  457. Whittet DCB (2010) Oxygen depletion in the interstellar medium: implications for grain models and the distribution of elemental oxygen. Astrophys J 710:1009–1016. doi:10.1088/0004-637X/710/2/1009 ADSCrossRefGoogle Scholar
  458. Whittet DCB, Duley WW (1991) Carbon monoxide frosts in the interstellar medium. Astron Astrophys Rev 2:167–189. doi:10.1007/BF00872766 ADSCrossRefGoogle Scholar
  459. Whittet DCB, Cook AM, Herbst E, Chiar JE, Shenoy SS (2011) Observational constraints on methanol production in interstellar and preplanetary ices. Astrophys J 742:28. doi:10.1088/0004-637X/742/1/28 ADSCrossRefGoogle Scholar
  460. Wienen M, Wyrowski F, Schuller F, Menten KM, Walmsley CM, Bronfman L, Motte F (2012) Ammonia from cold high-mass clumps discovered in the inner galactic disk by the ATLASGAL survey. Astron Astrophys 544:A146. doi:10.1051/0004-6361/201118107 ADSCrossRefGoogle Scholar
  461. Willacy K, Langer WD (2000) The importance of photoprocessing in protoplanetary disks. Astrophys J 544:903–920. doi:10.1086/317236 ADSCrossRefGoogle Scholar
  462. Willacy K, Millar TJ (1998) Desorption processes and the deuterium fractionation in molecular clouds. Mon Not R Astron Soc 298:562–568. doi:10.1046/j.1365-8711.1998.01648.x ADSCrossRefGoogle Scholar
  463. Willacy K, Langer WD, Velusamy T (1998) Dust emission and molecular depletion in L1498. Astrophys J Lett 507:L171–L175. doi:10.1086/311695 ADSCrossRefGoogle Scholar
  464. Willacy K, Langer W, Allen M, Bryden G (2006) Turbulence-driven diffusion in protoplanetary disks: chemical effects in the outer regions. Astrophys J 644:1202–1213. doi:10.1086/503702 ADSCrossRefGoogle Scholar
  465. Williams JP, Cieza LA (2011) Protoplanetary disks and their evolution. Annu Rev Astron Astrophys 49:67–117. doi:10.1146/annurev-astro-081710-102548 ADSCrossRefGoogle Scholar
  466. Wilner DJ, D’Alessio P, Calvet N, Claussen MJ, Hartmann L (2005) Toward planetesimals in the disk around TW Hydrae: 3.5 centimeter dust emission. Astrophys J Lett 626:L109–L112. doi:10.1086/431757 ADSCrossRefGoogle Scholar
  467. Windmark F, Birnstiel T, Ormel CW, Dullemond CP (2012) Breaking through: the effects of a velocity distribution on barriers to dust growth. Astron Astrophys 544:L16. doi:10.1051/0004-6361/201220004 ADSCrossRefGoogle Scholar
  468. Wirström ES, Charnley SB, Cordiner MA, Milam SN (2012) Isotopic anomalies in primitive solar system matter: spin-state-dependent fractionation of nitrogen and deuterium in interstellar clouds. Astrophys J Lett 757:L11. doi:10.1088/2041-8205/757/1/L11 ADSCrossRefGoogle Scholar
  469. Woitke P, Pinte C, Tilling I, Ménard F, Kamp I, Thi WF, Duchêne G, Augereau JC (2010) Continuum and line modelling of discs around young stars. I. 300000 disc models for HERSCHEL/GASPS. Mon Not R Astron Soc 405:L26–L30. doi:10.1111/j.1745-3933.2010.00852.x ADSCrossRefGoogle Scholar
  470. Wood K, Lada CJ, Bjorkman JE, Kenyon SJ, Whitney B, Wolff MJ (2002) Infrared signatures of protoplanetary disk evolution. Astrophys J 567:1183–1191. doi:10.1086/338662 ADSCrossRefGoogle Scholar
  471. Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) The UMIST database for astrochemistry 2006. Astron Astrophys 466:1197–1204. doi:10.1051/0004-6361:20064981 ADSCrossRefGoogle Scholar
  472. Wooden DH, Harker DE, Woodward CE, Butner HM, Koike C, Witteborn FC, McMurtry CW (1999) Silicate mineralogy of the dust in the inner coma of comet C/1995 01 (Hale-Bopp) pre- and postperihelion. Astrophys J 517:1034–1058. doi:10.1086/307206 ADSCrossRefGoogle Scholar
  473. Wooden DH, Woodward CE, Harker DE (2004) Discovery of crystalline silicates in comet C/2001 Q4 (NEAT). Astrophys J Lett 612:L77–L80. doi:10.1086/424593 ADSCrossRefGoogle Scholar
  474. Wootten A (1989) The duplicity of IRAS 16293-2422: a protobinary star? Astrophys J 337:858. doi:10.1086/167156 ADSCrossRefGoogle Scholar
  475. Wootten A, Snell R, Glassgold AE (1979) The determination of electron abundances in interstellar clouds. Astrophys J 234:876–880. doi:10.1086/157569 ADSCrossRefGoogle Scholar
  476. Wouterloot JGA, Henkel C, Brand J, Davis GR (2008) Galactic interstellar 18O/17O ratios—a radial gradient? Astron Astrophys 487:237–246. doi:10.1051/0004-6361:20078156 ADSCrossRefGoogle Scholar
  477. Wyatt MC (2008) Evolution of debris disks. Annu Rev Astron Astrophys 46:339–383. doi:10.1146/annurev.astro.45.051806.110525 ADSCrossRefGoogle Scholar
  478. Xie T, Allen M, Langer WD (1995) Turbulent diffusion and its effects on the chemistry of molecular clouds. Astrophys J 440:674. doi:10.1086/175305 ADSCrossRefGoogle Scholar
  479. Yamaguchi T, Takano S, Sakai N, Sakai T, Sheng-Yuan TL, Su YN, Hirano N, Takakuwa S, Aikawa Y, Nomura H, Yamamoto S (2011) Detection of phosphorus nitride in the lynds 1157 B1 shocked region. Publ Astron Soc Jpn 63:L37–L41 ADSGoogle Scholar
  480. Yang L, Ciesla FJ (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteorit Planet Sci 47:99–119. doi:10.1111/j.1945-5100.2011.01315.x ADSCrossRefGoogle Scholar
  481. Yıldız UA, Kristensen LE, van Dishoeck EF, Belloche A, van Kempen TA, Hogerheijde MR, Güsten R, van der Marel N (2012) APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. III. NGC 1333 IRAS 4A/4B envelope, outflow, and ultraviolet heating. Astron Astrophys 542:A86. doi:10.1051/0004-6361/201118368 CrossRefGoogle Scholar
  482. Young ED, Gounelle M, Smith RL, Morris MR, Pontoppidan KM (2011) Astronomical oxygen isotopic evidence for supernova enrichment of the solar system birth environment by propagating star formation. Astrophys J 729:43. doi:10.1088/0004-637X/729/1/43 ADSCrossRefGoogle Scholar
  483. Zolensky M, Nakamura-Messenger K, Rietmeijer F, Leroux H, Mikouchi T, Ohsumi K, Simon S, Grossman L, Stephan T, Weisberg M, Velbel M, Zega T, Stroud R, Tomeoka K, Ohnishi I, Tomioka N, Nakamura T, Matrajt G, Joswiak D, Brownlee D, Langenhorst F, Krot A, Kearsley A, Ishii H, Graham G, Dai ZR, Chi M, Bradley J, Hagiya K, Gounelle M, Bridges J (2008) Comparing wild 2 particles to chondrites and IDPs. Meteorit Planet Sci 43:261–272. doi:10.1111/j.1945-5100.2008.tb00621.x ADSCrossRefGoogle Scholar
  484. Zsom A, Ormel CW, Dullemond CP, Henning T (2011) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? III. Sedimentation driven coagulation inside the snowline. Astron Astrophys 534:A73. doi:10.1051/0004-6361/201116515 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of LeedsLeedsUK
  2. 2.Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274UJF-Grenoble 1/CNRS-INSUGrenobleFrance

Personalised recommendations