Skip to main content
Log in

Evolutionary and pulsational properties of white dwarf stars

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. Since the coolest white dwarfs are very old objects, the present population of white dwarfs contains a wealth of information on the evolution of stars from birth to death, and on the star formation rate throughout the history of our Galaxy. Thus, the study of white dwarfs has potential applications in different fields of astrophysics. In particular, white dwarfs can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, such as our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow these stars to be used as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. Last but not least, since many white dwarf stars undergo pulsational instabilities, the study of their properties constitutes a powerful tool for applications beyond stellar astrophysics. In particular, white dwarfs can be used to constrain fundamental properties of elementary particles such as axions and neutrinos and to study problems related to the variation of fundamental constants. These potential applications of white dwarfs have led to renewed interest in the calculation of very detailed evolutionary and pulsational models for these stars. In this work, we review the essentials of the physics of white dwarf stars. We enumerate the reasons that make these stars excellent chronometers, and we describe why white dwarfs provide tools for a wide variety of applications. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with a unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows one to measure stellar masses with unprecedented precision and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrikosov AA (1961) Some properties of strongly compressed matter. Soviet Phys JETP 12: 1254–1259

    Google Scholar 

  • Adams WS (1915) The spectrum of the companion of Sirius. Publ Astronom Soc Pac 27: 236–237

    ADS  Google Scholar 

  • Adams WS (1925) The relativity displacement of the spectral lines in the companion of Sirius. Proc Natl Acad Sci 11: 382–387

    ADS  Google Scholar 

  • Aizenman M, Smeyers P, Weigert A (1977) Avoided crossing of modes of non-radial stellar oscillations. Astron Astrophys 54: 41–46

    ADS  Google Scholar 

  • Alcock C, Allsman RA, Alves D et al (1995) First observation of parallax in a gravitational microlensing event. Astrophys J Lett 454: L125–L128

    ADS  Google Scholar 

  • Alcock C, Allsman RA, Alves D et al (1997) The MACHO project large magellanic cloud microlensing results from the first two years and the nature of the Galactic dark halo. Astrophys J 486: 697–726

    ADS  Google Scholar 

  • Alcock C, Allsman RA, Alves D et al (2000) Binary microlensing events from the MACHO project. Astrophys J 541: 270–297

    ADS  Google Scholar 

  • Althaus LG, Benvenuto OG (2000) Diffusion in helium white dwarf stars. Mon Not R Astron Soc 317: 952–964

    ADS  Google Scholar 

  • Althaus LG, Serenelli AM, Benvenuto OG (2001) Diffusion and the occurrence of hydrogen-shell flashes in helium white dwarf stars. Mon Not R Astron Soc 323: 471–483

    ADS  Google Scholar 

  • Althaus LG, Serenelli AM, Córsico AH, Montgomery MH (2003) New evolutionary models for massive ZZ Ceti stars. I. First results for their pulsational properties. Astron Astrophys 404: 593–609

    ADS  Google Scholar 

  • Althaus LG, Serenelli AM, Panei JA, Córsico AH, García-Berro E, Scóccola CG (2005a) The formation and evolution of hydrogen-deficient post-AGB white dwarfs: the emerging chemical profile and the expectations for the PG 1159-DB-DQ evolutionary connection. Astron Astrophys 435: 631–648

    ADS  Google Scholar 

  • Althaus LG, Miller Bertolami MM, Córsico AH, García-Berro E, Gil-Pons P (2005b) The formation of DA white dwarfs with thin hydrogen envelopes. Astron Astrophys 440: L1–L4

    ADS  Google Scholar 

  • Althaus LG, Córsico AH, Kepler SO, Miller Bertolami MM (2008a) On the systematics of asteroseismological mass determinations of PG 1159 stars. Astron Astrophys 478: 175–180

    ADS  Google Scholar 

  • Althaus LG, Córsico AH, Miller Bertolami MM, García-Berro E, Kepler SO (2008b) Evidence of thin helium envelopes in PG 1159 stars. Astrophys J Lett 677: L35–L38

    ADS  Google Scholar 

  • Althaus LG, Panei JA, Miller Bertolami MM et al (2009a) New evolutionary sequences for hot H-deficient white dwarfs on the basis of a full account of progenitor evolution. Astrophys J 704: 1605–1615

    ADS  Google Scholar 

  • Althaus LG, García-Berro E, Córsico AH, Miller Bertolami MM, Romero AD (2009b) On the formation of hot DQ white dwarfs. Astrophys J Lett 693: L23–L26

    ADS  Google Scholar 

  • Althaus LG, Córsico AH, Torres S, García-Berro E (2009c) On the origin of white dwarfs with carbon-dominated atmospheres: the case of H1504+65. Astron Astrophys 494: 1021–1024

    ADS  Google Scholar 

  • Althaus LG, Córsico AH, Bischoff-Kim A, Romero AD, Renedo I, García-Berro E, Miller Bertolami MM (2010a) New chemical profiles for the asteroseismology of ZZ Ceti stars. Astrophys J 717: 897–907

    ADS  Google Scholar 

  • Althaus LG, García-Berro E, Renedo I, Isern J, Córsico AH, Rohrmann RD (2010b) Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion. Astrophys J 719: 612–621

    ADS  Google Scholar 

  • Anderson W (1929) Gewöhnliche materie und strahlende energie als verschiedene Phasen eines und desselben Grundstoffes. Z Phys 54: 433–444

    ADS  Google Scholar 

  • Baglin A, Schatzman E (1969) Low-luminosity stars. Gordon and Breach Science Publishers, New York, p 385

    Google Scholar 

  • Barlow BN, Dunlap BH, Rosen R, Clemens JC (2008) Two new variable Hot DQ stars. Astrophys J 688: L95

    ADS  Google Scholar 

  • Barstow MA (2006) The importance of UV observations for the study of white dwarfs and the local interstellar medium. The Ultraviolet Universe. Stars from Birth to Death. IAU Joint Discussion 4 XXVI IAU General Assembly, Prague, 39

  • Beauchamp A, Wesemael F, Bergeron P, Fontaine G, Saffer RA, Liebert J, Brassard P (1999) Spectroscopic studies of DB white dwarfs: the instability strip of the pulsating DB (V777 Herculis) stars. Astrophys J 516: 887–891

    ADS  Google Scholar 

  • Becker AC, Rest A, Stubbs C et al (2005) The SuperMACHO microlensing survey. IAU Symp 225: 357–362

    ADS  Google Scholar 

  • Bedin LR, King IR, Anderson J, Piotto G, Salaris M, Cassisi S, Serenelli AM (2008) Reaching the end of the white dwarf cooling sequence in NGC 6791. Astrophys J 678: 1279–1291

    ADS  Google Scholar 

  • Benvenuto OG, De Vito MA (2005) The formation of helium white dwarfs in close binary systems-II. Mon Not R Astron Soc 362: 891–905

    ADS  Google Scholar 

  • Benvenuto OG, Córsico AH, Althaus LG, Serenelli AM (2002) Time-dependent diffusion in pulsating white dwarf stars: asteroseismology of G117-B15A. Mon Not R Astron Soc 332: 399–408

    ADS  Google Scholar 

  • Bergeron P, Wesemael F, Fontaine G (1991) Synthetic spectra and atmospheric properties of cool DA white dwarfs. Astrophys J 367: 253–269

    ADS  Google Scholar 

  • Bergeron P, Wesemael F, Lamontagne R, Fontaine G, Saffer RA, Allard NF (1995) Optical and ultraviolet analyses of ZZ Ceti stars and study of the atmospheric convective efficiency in DA white dwarfs. Astrophys J 449: 258–279

    ADS  Google Scholar 

  • Bergeron P, Leggett SK, Ruiz M-T (2001) Photometric and spectroscopic analysis of cool white dwarfs with trigonometric parallax measurements. Astrophys J Suppl 133: 413–449

    ADS  Google Scholar 

  • Bergeron P, Fontaine G, Billères M, Boudreault S, Green EM (2004) On the purity of the ZZ Ceti instability strip: discovery of more pulsating DA dhite dwarfs on the basis of optical spectroscopy. Astrophys J 600: 404–408

    ADS  Google Scholar 

  • Bischoff-Kim A (2009) Asteroseismological Analysis of rich pulsating white dwarfs. Am Inst Phys Conf Ser 1170: 621

    ADS  Google Scholar 

  • Bischoff-Kim A, Montgomery MH, Winget DE (2008a) Fine grid asteroseismology of G117-B15A and R548. Astrophys J 675: 1505–1511

    ADS  Google Scholar 

  • Bischoff-Kim A, Montgomery MH, Winget DE (2008b) Strong limits on the DFSZ axion mass with G117-B15A. Astrophys J 675: 1512–1517

    ADS  Google Scholar 

  • Bognár Zs, Paparó M, Bradley PA, Bischoff-Kim A (2009) Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239. Mon Not R Astron Soc 399: 1954–1963

    ADS  Google Scholar 

  • Bond HE, Ciardullo R (1993) 403: NATO ASI Series. Kluwer, Dordrecht OSC, p 491

    Google Scholar 

  • Bond HE, Meakes MG (1990) The pulsating nucleus of the planetary nebula Longmore 4. Astron J 100: 788–792

    ADS  Google Scholar 

  • Bond HE, Kawaler SD, Ciardullo R et al (1996) Asteroseismological observations of the central star of the planetary nebula NGC 1501. Astron J 112: 2699–2711

    ADS  Google Scholar 

  • Bradley PA (1996) Theoretical models for asteroseismology of DA white dwarf stars. Astrophys J 468: 350–368

    ADS  Google Scholar 

  • Bradley PA (1998) Asteroseismological constraints on the structure of the ZZ Ceti stars G117-B15A and R548 . Astrophys J Suppl 116: 307–319

    MathSciNet  ADS  Google Scholar 

  • Bradley PA (2001) Asteroseismological constraints on the structure of the ZZ Ceti stars L19-2 and GD 165. Astrophys J 552: 326–339

    ADS  Google Scholar 

  • Bradley PA (2006) Preliminary seismology of the DA white dwarf G 185-32. Mem Soc Astron Italiana 77: 437–438

    ADS  Google Scholar 

  • Bradley PA, Dziembowski WA (1996) A theoretical analysis of pulsation driving in PG 1159 Stars. Astrophys J 462: 376–385

    ADS  Google Scholar 

  • Bradley PA, Kleinman SJ (1997) 214: White dwarfs. Kluwer, Dordrecht OSC, p 445

    Google Scholar 

  • Bradley PA, Winget DE (1994a) Hot or not? Theoretical blue edges for DA and DB white dwarfs models. Astrophys J 421: 236–244

    ADS  Google Scholar 

  • Bradley PA, Winget DE (1994b) An asteroseismological determination of the structure of the DBV white dwarf GD 358. Astrophys J 430: 850–857

    ADS  Google Scholar 

  • Bradley PA, Winget DE, Wood MA (1993) The potential for asteroseismology of DB white dwarf stars. Astrophys J 406: 661–673

    ADS  Google Scholar 

  • Branch D, Livio M, Yungelson L, Boffi F, Baron E (1995) In search of the progenitors of type IA supernovae. Publ Astron Soc Pac 107: 1019–1029

    ADS  Google Scholar 

  • Brassard P, Fontaine G, Wesemael F, Kawaler SD, Tassoul M (1991) Adiabatic properties of pulsating DA white dwarfs. I - the treatment of the Brunt-Vaisala frequency and the region of period formation. Astrophys J 367: 601–611

    ADS  Google Scholar 

  • Brassard P, Fontaine G, Wesemael F, Hansen CJ (1992a) Adiabatic properties of pulsating DA white dwarfs. II—mode trapping in compositionally stratified models. Astrophys J Suppl 80: 369–401

    ADS  Google Scholar 

  • Brassard P, Pelletier C, Fontaine G, Wesemael F (1992b) Adiabatic properties of pulsating DA white dwarfs. III—a finite-element code for solving nonradial pulsation equations. Astrophys J Suppl 80: 725–752

    ADS  Google Scholar 

  • Brassard P, Fontaine G, Wesemael F, Talon A (1993) 403: White dwarfs: advances in observation and theory. Kluwer, Dordrecht OSC, p 485

    Google Scholar 

  • Brassard P, Fontaine G, Wesemael F (1995) The modeling of energy distributions and light curves of ZZ Ceti stars. 1: basic theory and semianalytic expressions for the emergent flux. Astrophys J Suppl 96: 545–580

    ADS  Google Scholar 

  • Brickhill AJ (1991) The pulsations of ZZ Ceti stars. III—the driving mechanism. Mon Not R Astron Soc 251: 673–680

    ADS  Google Scholar 

  • Brown TM, Gilliland RL (1994) Asteroseismology. Annu Rev Astron Astrophys 32: 37–82

    ADS  Google Scholar 

  • Camacho J, Torres S, Isern J, Althaus LG, García–Berro E (2007) The contribution of oxygen-neon white dwarfs to the MACHO content of the Galactic halo. Astron Astrophys 471: 151–158

    ADS  Google Scholar 

  • Casewell SL, Dobbie PD, Napiwotzki R, Burleigh MR, Barstow MA, Jameson RF (2009) High-resolution optical spectroscopy of Praesepe white dwarfs. Mon Not R Astron Soc 395: 1795–1804

    ADS  Google Scholar 

  • Castanheira BG, Kepler SO (2008) Seismological studies of ZZ Ceti stars—I. The model grid and the application to individual stars. Mon Not R Astron Soc 385: 430–444

    ADS  Google Scholar 

  • Castanheira BG, Kepler SO (2009) Seismological studies of ZZ Ceti stars—II. Application to the ZZ Ceti class. Mon Not R Astron Soc 396: 1709–1731

    ADS  Google Scholar 

  • Castanheira BG, Kepler SO, Handler G, Koester D (2006) Analysis of IUE spectra of helium-rich white dwarf stars. Astron Astrophys 450: 331–337

    ADS  Google Scholar 

  • Castanheira BG, Kepler SO, Costa AFM et al (2007) Towards a pure ZZ Ceti instability strip. Astron Astrophys 462: 989–993

    ADS  Google Scholar 

  • Catalán S, Isern J, García-Berro E, Ribas I (2008) The initial-final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. Mon Not R Astron Soc 387: 1693–1706

    ADS  Google Scholar 

  • Chandrasekhar S (1931) The maximum mass of ideal white dwarfs. Astrophys J 74: 81–82

    ADS  MATH  Google Scholar 

  • Chandrasekhar S (1939) An introduction to the study of stellar structure. University of Cambridge, Cambridge

    Google Scholar 

  • Chanmugam G (1972) White dwarfs-pulsation periods explained in terms of non-radial oscillations and gravity modes. Nature 236: 83–86

    ADS  Google Scholar 

  • Charpinet S, Fontaine G, Brassard P (2009) Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage. Nature 461: 501–503

    ADS  Google Scholar 

  • Ciardullo R, Bond HE (1996) A survey for pulsations in O VI nuclei of planetary nebulae. Astron J 111: 2332–2348

    ADS  Google Scholar 

  • Clemens JC (1993) The pulsation properties of the DA white dwarf variables. Balt A 2: 407

    ADS  Google Scholar 

  • Clemens JC, van Kerkwijk MH, Wu Y (2000) Mode identification from time-resolved spectroscopy of the pulsating white dwarf G29-38. Mon Not R Astron Soc 314: 220–228

    ADS  Google Scholar 

  • Córsico AH, Althaus LG (2005) Can pulsating PG 1159 stars place constraints on the occurrence of core overshooting? Astron Astrophys 439: L31–L34

    ADS  Google Scholar 

  • Córsico AH, Althaus LG (2006) Asteroseismic inferences on GW Virginis variable stars in the frame of new PG 1159 evolutionary models. Astron Astrophys 458: 863–881

    Google Scholar 

  • Córsico AH, Althaus LG, Benvenuto OG, Serenelli AM (2001a) New DA white dwarf evolutionary models and their pulsational properties. Astron Astrophys 380: L17–L20

    ADS  Google Scholar 

  • Córsico AH, Benvenuto OG, Althaus LG, Isern J, García-Berro E (2001b) The potential of the variable DA white dwarf G117-B15A as a tool for fundamental physics. New Astron 6: 197–213

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Benvenuto OG, Serenelli AM (2002a) The mode trapping properties of full DA white dwarf evolutionary models. Astron Astrophys 387: 531–549

    ADS  Google Scholar 

  • Córsico AH, Benvenuto OG, Althaus LG, Serenelli AM (2002b) The effects of element diffusion on the pulsational properties of variable DA white dwarf stars. Mon Not R Astron Soc 332: 392–398

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Miller Bertolami MM (2006) New nonadiabatic pulsation computations on full PG 1159 evolutionary models: the theoretical GW Virginis instability strip revisited. Astron Astrophys 458: 259–267

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Miller Bertolami MM, Werner K (2007a) Asteroseismological constraints on the pulsating planetary nebula nucleus (PG 1159-type) RX J2117.1+3412. Astron Astrophys 461: 1095–1102

    ADS  Google Scholar 

  • Córsico AH, Miller Bertolami MM, Althaus LG, Vauclair G, Werner K (2007b) Asteroseismological constraints on the coolest GW Virginis variable star (PG 1159-type) PG 0122+200. Astron Astrophys 475: 619–627

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Kepler SO, Costa JES, Miller Bertolami MM (2008) Asteroseismological measurements on PG 1159-035, the prototype of the GW Virginis variable stars. Astron Astrophys 478: 869–881

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Miller Bertolami MM, García-Berro E (2009a) Revisiting the theoretical DBV (V777 Her) instability strip: the MLT theory of convection. J Phys Conf Ser 172: 12075–12079

    Google Scholar 

  • Córsico AH, Althaus LG, Miller Bertolami MM, García-Berro E (2009b) Asteroseismology of hot pre-white dwarf stars: the case of the DOV stars PG 2131+066é9 and PG 1707+427, and the PNNV star NGC 1501. Astron Astrophys 499: 257–266

    ADS  Google Scholar 

  • Córsico AH, Althaus LG, Miller Bertolami MM, González Pérez JM, Kepler SO (2009c) On the possible existence of short-period g-mode instabilities powered by nuclear-burning shells in post-asymptotic giant branch H-deficient (PG1159-Type) stars. Astrophys J 701: 1008–1014

    ADS  Google Scholar 

  • Córsico AH, Romero AD, Althaus LG, García-Berro E (2009d) Hot C-rich white dwarfs: testing the DB-DQ transition through pulsations. Astron Astrophys 506: 835–843

    ADS  Google Scholar 

  • Costa JES, Kepler SO (2008) The temporal changes of the pulsational periods of the pre-white dwarf PG 1159-035. Astron Astrophys 489: 1225–1232

    ADS  Google Scholar 

  • Costa JES, Kepler SO, Winget DE et al (2008) The pulsation modes of the pre-white dwarf PG 1159-035. Astron Astrophys 477: 627–640

    ADS  Google Scholar 

  • Cowling TG (1941) The non-radial oscillations of polytropic stars. Mon Not R Astron Soc 101: 367–375

    MathSciNet  ADS  Google Scholar 

  • Cowling TG, Newing RA (1949) The oscillations of a rotating star. Astrophys J 109: 149–158

    MathSciNet  ADS  Google Scholar 

  • Cox JP (1980) Theory of stellar pulsation. Princeton University Press, Princeton

    Google Scholar 

  • Cox AN (2003) A pulsation mechanism for GW virginis variables. Astrophys J 585: 975–982

    ADS  Google Scholar 

  • D’Antona F, Mazzitelli I (1989) The fastest evolving white dwarfs. Astrophys J 347: 934–949

    ADS  Google Scholar 

  • D’Antona F, Mazzitelli I (1990) Cooling of white dwarfs. Annu Rev Astron Astrophys 28: 139–181

    ADS  Google Scholar 

  • DeGennaro S, von Hippel T, Winget DE, Kepler SO, Nitta A, Koester D, Althaus LG (2008) White dwarf luminosity and mass functions from Sloan digital sky survey spectra. Astron J 135: 1–9

    ADS  Google Scholar 

  • Deloye CJ, Bildsten L (2002) Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys J 580: 1077–1090

    ADS  Google Scholar 

  • Díaz–Pinto A, García–Berro E, Hernanz M, Isern J, Mochkovitch R (1994) The luminosity function of massive white dwarfs. Astron Astrophys 282: 86–92

    ADS  Google Scholar 

  • Dolez N, Vauclair G (1981) Gravity modes instability in DA white dwarfs. Astron Astrophys 102: 375–385

    ADS  Google Scholar 

  • Domínguez I, Straniero O, Tornambe A, Isern J (1996) On the formation of massive C-O white dwarfs: the lifting effect of rotation. Astrophys J 472: 783–788

    ADS  Google Scholar 

  • Dreizler S, Heber U (1998) Spectral analyses of PG 1159 star: constraints on the GW Virginis pulsations from HST observations. Astron Astrophys 334: 618–632

    ADS  Google Scholar 

  • Dreizler S, Werner K (1996) Spectral analysis of hot helium-rich white dwarfs. Astron Astrophys 314: 217–232

    ADS  Google Scholar 

  • Dreizler S, Werner K, Heber U, Reid N, Hagen H (1997) The third conference on faint blue stars. L Davis, New York, p 303

    Google Scholar 

  • Driebe T, Schönberner D, Blöcker T, Herwig F (1998) The evolution of helium white dwarfs. I. The companion of the millisecond pulsar PSR J1012+5307. Astron Astrophys 339: 123–133

    ADS  Google Scholar 

  • Dufour P, Liebert J, Fontaine G, Behara N (2007) White dwarf stars with carbon atmospheres. Nature 450: 522–524

    ADS  Google Scholar 

  • Dufour P, Fontaine G, Liebert J, Schmidt GD, Behara N (2008a) Hot DQ white dwarfs: something different. Astrophys J 683: 978–989

    ADS  Google Scholar 

  • Dufour P, Fontaine G, Liebert J, Williams K, Lai DK (2008b) SDSS J142625.71+575218.3: the first pulsating white dwarf with a large detectable magnetic field. Astrophys J Lett 683: L167–L170

    ADS  Google Scholar 

  • Dufour P et al (2009a) A progress report on the carbon dominated atmosphere white dwarfs. J Phys Conf Ser 172: 12012

    ADS  Google Scholar 

  • Dufour P, Green EM, Fontaine G, Brassard P, Francoeur M, Latour M (2009b) Follow-up observations of the second and third known pulsating hot DQ white dwarfs. Astrophys J 703: 240–251

    ADS  Google Scholar 

  • Dziembowski W (1977) Light and radial velocity variations in a nonradially oscillating star. Acta Astron 27: 203–211

    ADS  Google Scholar 

  • Dziembowski W, Koester D (1981) Excitation of gravity modes in white dwarfs with chemically stratified envelopes. Astron Astrophys 97: 16–26

    ADS  Google Scholar 

  • Eisenstein DJ, Liebert J, Harris HC et al (2006) A catalog of spectroscopically confirmed white dwarfs from the Sloan digital sky survey data release 4. Astrophys J Supp 167: 40–58

    ADS  Google Scholar 

  • Faulkner J, Gribbin JR (1968) Stability and radial vibration periods of the Hamada-Salpeter white dwarf models. Nature 218: 734–736

    ADS  Google Scholar 

  • Fontaine G, Brassard P (1994) White dwarf seismology: modeling of the light curves of ZZ Ceti stars. Astron Soc Pac Conf Ser, San Francisco 57: 195–208

    ADS  Google Scholar 

  • Fontaine G, Brassard P (2008) The pulsating white dwarf stars. Pub Astron Soc Pac 120: 1043–1096

    ADS  Google Scholar 

  • Fontaine G, Brassard P, Bergeron P, Wesemael F (1992) The case of G226-29—evidence for a pulsating DA white dwarf with a thick hydrogen layer? Astrophys J 399: L91–L94

    ADS  Google Scholar 

  • Fontaine G, Brassard P, Bergeron P (2001) The potential of white dwarf cosmochronology. Pub Astron Soc Pac 113: 409–435

    ADS  Google Scholar 

  • Fontaine G, Brassard P, Dufour P (2008) Might carbon-atmosphere white dwarfs harbour a new type of pulsating star? Astron Astrophys 483: L1–L4

    ADS  Google Scholar 

  • Fowler RH (1926) On dense matter. Mon Not R Astron Soc 87: 114–122

    ADS  Google Scholar 

  • Fu J-N, Vauclair G, Solheim J-E et al (2007) Asteroseismology of the PG 1159 star PG 0122+200. Astron Astrophys 467: 237–248

    ADS  Google Scholar 

  • Fujimoto MY (1977) On the origin of R-Type carbon stars: possibility of hydrogen mixing during helium flicker. Pub Astron Soc Pac 29: 331–350

    MathSciNet  ADS  Google Scholar 

  • Gänsicke BT, Koester D, Girven J, Marsh TR, Steeghs D (2010) Two white dwarfs with oxygen-rich atmospheres. Science 327: 188–190

    ADS  Google Scholar 

  • García-Berro E, Hernanz M, Isern J, Mochkovitch R (1995) The rate of change of the gravitational constant and the cooling of white dwarfs. Mon Not R Astron Soc 277: 801–810

    ADS  Google Scholar 

  • García-Berro E, Hernanz M, Mochkovitch R, Isern J (1988a) Theoretical white-dwarf luminosity functions for two phase diagrams of the carbon-oxygen dense plasma. Astron Astrophys 193: 141–147

    ADS  Google Scholar 

  • García-Berro E, Hernanz M, Isern J, Mochkovitch R (1988b) Properties of high-density binary mixtures and the age of the universe from white dwarf stars. Nature 333: 642–644

    ADS  Google Scholar 

  • García–Berro E, Torres S, Isern J, Burkert A (1999) Monte Carlo simulations of the disc white dwarf population. Mon Not R Astron Soc 302: 173–188

    ADS  Google Scholar 

  • García–Berro E, Torres S, Isern J, Burkert A (2004) Monte Carlo simulations of the halo white dwarf population. Astron Astrophys 418: 53–65

    ADS  Google Scholar 

  • García-Berro E, Althaus LG, Córsico AH, Isern J (2008) Gravitational settling of 22Ne and white dwarf evolution. Astrophys J 677: 473–482

    ADS  Google Scholar 

  • García-Berro E, Torres S, Althaus LG, Renedo I, Lorén–Aguilar P, Córsico AH, Rohrmann R, Salaris M, Isern J (2010) A white dwarf cooling age of 8Gyr for NGC 6791 from physical separation processes. Nature 465: 194–196

    ADS  Google Scholar 

  • Gautschy A (1997) A further look into the pulsating PG 1159 stars. Astron Astrophys 320: 811–822

    ADS  Google Scholar 

  • Gautschy A, Saio H (1995) Stellar pulsations across the HR diagram: part 1. Annu Rev Astron Astrophys 33: 75–114

    ADS  Google Scholar 

  • Gautschy A, Saio H (1996) Stellar pulsations across the HR diagram: part 2. Annu Rev Astron Astrophys 34: 551–606

    ADS  Google Scholar 

  • Gautschy A, Althaus LG, Saio H (2005) On the excitation of PG 1159-type pulsations. Astron Astrophys 438: 1013–1020

    ADS  Google Scholar 

  • Gianninas A, Bergeron P, Fontaine G (2005) Toward an empirical determination of the ZZ Ceti instability strip. Astrophys J 631: 1100–1112

    ADS  Google Scholar 

  • Gianninas A, Bergeron P, Fontaine G (2006) Mapping the ZZ Ceti instability strip: discovery of six new pulsators. Astron J 132: 831–835

    ADS  Google Scholar 

  • Goldman B, Afonso C, Alard Ch (2002) EROS 2 proper motion survey: constraints on the halo white dwarfs . Astron Astrophys 389: L69–L73

    ADS  Google Scholar 

  • Goldreich P, Wu Y (1999) Gravity modes in ZZ Ceti stars. I. Quasi-adiabatic analysis of overstability. Astrophys J 511: 904–915

    ADS  Google Scholar 

  • González Pérez JM, Solheim J-E, Kamben R (2006) A search for photometric variability of hydrogen-deficient planetary-nebula nuclei. Astron Astrophys 454: 527–536

    ADS  Google Scholar 

  • Grauer AD, Bond HE, Liebert J, Fleming TA, Green RF (1987) A search for pulsating stars similar to PG 1159-035 and K1-16. Astrophys J 323: 271–279

    ADS  Google Scholar 

  • Green EM, Dufour P, Fontaine G, Brassard P (2009) Follow-up studies of the pulsating magnetic white dwarf SDSS J142625.71+575218.3. Astrophys J 702: 1593–1603

    ADS  Google Scholar 

  • Guerrero J, García-Berro E, Isern J (2004) Smoothed particle hydrodynamics simulations of merging white dwarfs. Astron Astrophys 413: 257–272

    ADS  Google Scholar 

  • Hansen BMS (1998) Old and blue white-dwarf stars as a detectable source of microlensing events. Nature 394: 860–862

    ADS  Google Scholar 

  • Hansen BMS, Liebert J (2003) Cool white dwarfs. Annu Rev Astron Astrophys 41: 465–515

    ADS  Google Scholar 

  • Hansen BMS, Phinney ES (1998) Stellar forensics. II—millisecond pulsar binaries. Mon Not R Astron Soc 294: 569–581

    ADS  Google Scholar 

  • Hansen CJ, Cox JP, van Horn HM (1977) The effects of differential rotation on the splitting of nonradial modes of stellar oscillation. Astrophys J 217: 151–159

    ADS  Google Scholar 

  • Hansen BMS, Brewer J, Fahlman GG et al (2002) The white dwarf cooling sequence of the globular cluster Messier 4. Astrophys J Lett 574: L155–158

    ADS  Google Scholar 

  • Hansen BMS, Anderson J, Brewer J et al (2007) The white dwarf cooling sequence of NGC 6397. Astrophys J 671: 380–401

    ADS  Google Scholar 

  • Harper RVR, Rose WK (1970) Nonradial oscillations of white wwarfs, hot white dwarfs, and \({10\, M_{\odot}}\) models. Astrophys J 162: 963–969

    ADS  Google Scholar 

  • Harris HC, Munn JA, Kilic M et al (2006) The white dwarf luminosity function from Sloan digital sky survey imaging data. Astron J 131: 571–581

    ADS  Google Scholar 

  • Hernanz M, García-Berro E, Isern J, Mochkovitch R, Segretain L, Chabrier G (1994) The influence of crystallization on the luminosity function of white dwarfs. Astrophys J 434: 652–661

    ADS  Google Scholar 

  • Herwig F, Blöcker T, Langer N, Driebe T (1999) On the formation of hydrogen-deficient post-AGB stars. Astron Astrophys 349: L5–L8

    ADS  Google Scholar 

  • Hügelmeyer SD, Dreizler S, Homeier D, Krzesiński J, Werner K, Nitta A, Kleinman SJ (2006) Spectral analyses of eighteen hot H-deficient (pre-) white dwarfs from the Sloan digital sky survey data release 4. Astron Astrophys 454: 617–624

    ADS  Google Scholar 

  • Ibata R, Richer HB, Gilliland RL, Scott D (1999) Faint, moving objects in the Hubble deep field: components of the dark halo? Astrophys J Lett 524: L95–L97

    ADS  Google Scholar 

  • Iben I Jr, MacDonald J (1985) The effects of diffusion due to gravity and due to composition gradients on the rate of hydrogen burning in a cooling degenerate dwarf. I - the case of a thick helium buffer layer. Astrophys J 296: 540–553

    ADS  Google Scholar 

  • Iben I Jr, MacDonald J (1986) The effects of diffusion due to gravity and due to composition gradients on the rate of hydrogen burning in a cooling degenerate dwarf. II - dependence on initial metallicity and on buffer mass. Astrophys J 301: 164–176

    ADS  Google Scholar 

  • Iben I Jr, Kaler JB, Truran JW, Renzini A (1983) On the evolution of those nuclei of planetary nebulae that experience a final helium shell flash. Astrophys J 264: 605–612

    ADS  Google Scholar 

  • Isern J, Hernanz M, Mochkovitch R, García-Berro E (1991) The role of the minor chemical species in the cooling of white dwarfs. Astron Astrophys 241: L29–L32

    ADS  Google Scholar 

  • Isern J, Hernanz M, García-Berro E (1992) Axion cooling of white dwarfs. Astrophys J Lett 392: L23–L25

    ADS  Google Scholar 

  • Isern J, Mochkovitch R, García-Berro E, Hernanz M (1997) The physics of crystallizing white dwarfs. Astrophys J 485: 308–312

    ADS  Google Scholar 

  • Isern J, García-Berro E, Hernanz M, Mochkovitch R, Torres S (1998) The halo white dwarf population. Astrophys J 503: 239–246

    ADS  Google Scholar 

  • Isern J, García–Berro E, Hernanz M, Chabrier G (2000) The energetics of crystallizing white dwarfs revisited again. Astrophys J 528: 397–400

    ADS  Google Scholar 

  • Isern J, García-Berro E, Torres S, Catalán S (2008) Axions and the cooling of white dwarf stars. Astrophys J Lett 682: L109–L112

    ADS  Google Scholar 

  • Isern J, García-Berro E, Althaus LG, Córsico AH (2010) Axions and the pulsation periods of variable white dwarfs revisited. Astron Astrophys (RN) 512: A86–A89

    ADS  Google Scholar 

  • Itoh N, Hayashi H, Nishikawa A, Kohyama Y (1996) Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, Bremsstrahlung, and recombination neutrino processes. Astrophys J Suppl 102: 411–424

    ADS  Google Scholar 

  • Jones PW, Hansen CJ, Pesnell WD, Kawaler SD (1989) On the possibility of detecting weak magnetic fields in variable white dwarfs. Astrophys J 336: 403–408

    ADS  Google Scholar 

  • Kanaan AN (1996) PhD Thesis. Univ Texas, Austin

  • Kawaler SD (1987) The stellar seismology of hot white dwarfs and planetary nebula nuclei. The second conference on Faint Blue Stars. IAU Colloquium, vol 95. Davis, Schenectady, pp 297–307

  • Kawaler SD (1988) The hydrogen shell game - pulsational instabilities in hydrogen shell-burning planetary nebula nuclei. Astrophys J 334: 220–228

    ADS  Google Scholar 

  • Kawaler SD (1993) Radial pulsations in DB white dwarfs? Astrophys J 404: 294–304

    ADS  Google Scholar 

  • Kawaler SD, Bradley PA (1994) Precision asteroseismology of pulsating PG 1159 stars. Astrophys J 427: 415–428

    ADS  Google Scholar 

  • Kawaler SD, Weiss P (1990) Mode trapping in pulsating white dwarfs. Lecture notes in physics. Springer, Heidelberg 367:431

  • Kawaler SD, Winget DE, Iben I Jr, Hansen CJ (1986a) Evolutionary period changes in variable helium-rich white dwarfs. Astrophys J 302: 530–535

    ADS  Google Scholar 

  • Kawaler SD, Winget DE, Hansen CJ, Iben I Jr (1986b) The helium shell game - Nonradial g-mode instabilities in hydrogen-deficient planetary nebula nuclei. Astrophys J 306: L41–L44

    ADS  Google Scholar 

  • Kawaler SD, O’Brien MS, Clemens JC et al (1995) Whole earth telescope observations and seismological analysis of the pre-white dwarf PG 2131+066. Astrophys J 450: 350–363

    ADS  Google Scholar 

  • Kawaler SD, Potter EM, Vuĉković M et al (2004) Whole earth telescope observations of the pulsating hot white dwarf PG 1707  +  427. Astron Astrophys 428: 969–981

    ADS  Google Scholar 

  • Kawka A, Vennes S (2009) A new extremely low-mass white dwarf in the NLTT catalogue. Astron Astrophys 506: L25–L28

    ADS  Google Scholar 

  • Kepler SO (2009) New advances in helio- and asteroseismology. IAU Joint Discussion 11 XXVII IAU General Assembly, Rio de Janeiro

  • Kepler SO, Nather RE, McGraw JT, Robinson EL (1982) The pulsation periods of the pulsating white dwarf G117-B15A. Astrophys J 254: 676–682

    ADS  Google Scholar 

  • Kepler SO, Robinson EL, Koester D, Clemens JC, Nather RE, Jiang XJ (2000) Mode identification of pulsating white dwarfs using the Hubble space telescope. Astrophys J 539: 379–391

    ADS  Google Scholar 

  • Kepler SO, Costa JES, Castanheira BG et al (2005) Measuring the evolution of the most stable optical clock G 117-B15A. Astrophys J 634: 1311–1318

    ADS  Google Scholar 

  • Kepler SO, Kleinman SJ, Nitta A, Koester D, Castanheira BG, Giovannini O, Costa AFM, Althaus LG (2007) White dwarf mass distribution in the SDSS. Mon Not R Astron Soc 375: 1315–1324

    ADS  Google Scholar 

  • Kilic M, Mendez RA, von Hippel T, Winget DE (2005) Faint blue objects in the Hubble deep field-south revealed: white dwarfs, subdwarfs, and quasars. Astrophys J 633: 1126–1141

    ADS  Google Scholar 

  • Kilkenny D, O’Donoghue D, Crause LA, Hambly N, MacGillivray H (2009) Two new pulsating DB Stars from the EC survey, EC 04207-4748 and EC 05221-4725. Mon Not R Astron Soc 397: 453–457

    ADS  Google Scholar 

  • Kippenhahn R, Weigert A (1990) Stellar structure and evolution. Springer, Berlin

    Google Scholar 

  • Kirshnitz DA (1960) Soviet Phys JETP 11: 365

    Google Scholar 

  • Kleinman SJ, Harris HC, Eisenstein DJ et al (2004) A catalog of spectroscopically identified white dwarf stars in the first data release of the Sloan digital sky survey. Astrophys J 607: 426–444

    ADS  Google Scholar 

  • Koester D (1972) Outer envelopes and cooling of white dwarfs. Astron Astrophys 16: 459–470

    ADS  Google Scholar 

  • Koester D (1978) Virial theorem, energy content, and mass-radius-relation for white dwarfs. Astron Astrophys 64: 289–294

    ADS  Google Scholar 

  • Koester D (2002) White dwarfs: recent developments. Astron Astrophys Rev 11: 33–66

    ADS  Google Scholar 

  • Koester D, Allard NF (2000) The ZZ Ceti instability strip revisited. Balt Astron 9: 119–124

    ADS  Google Scholar 

  • Koester D, Chanmugam G (1990) Physics of white dwarf stars. Rep Prog Phys 53: 837–915

    ADS  Google Scholar 

  • Koester D, Voss B, Napiwotzki R et al (2009) High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SNIa progenitor survey. III. DA white dwarfs. Astron Astrophys 505: 441–462

    ADS  Google Scholar 

  • Koesterke L, Dreizler S, Rauch T (1998) On the mass-loss of PG1159 stars. Astron Astrophys 330: 1041–1046

    ADS  Google Scholar 

  • Kotak R (2008) Progenitors of type Ia supernovae. Astron Soc Pac Conf Ser 401: 150

    ADS  Google Scholar 

  • Kotak R, van Kerkwijk MH, Clemens JC (2002a) Time-resolved optical spectroscopy of the pulsating DA white dwarf HS 0507  +  0434B. New constraints on mode identification and pulsation properties. Astron Astrophys 388: 219–234

    ADS  Google Scholar 

  • Kotak R, van Kerkwijk MH, Clemens JC, Bida TA (2002b) Pulsating or not? A search for hidden pulsations below the red edge of the ZZ Ceti instability strip. Astron Astrophys 391: 1005–1012

    ADS  Google Scholar 

  • Kotak R, van Kerkwijk MH, Clemens JC, Koester D (2003) A new look at the pulsating DB white dwarf GD 358: Line-of-sight velocity measurements and constraints on model atmospheres. Astron Astrophys 397: 1043–1055

    ADS  Google Scholar 

  • Kotak R, van Kerkwijk MH, Clemens JC (2004) A puzzling periodicity in the pulsating DA white dwarf G 117-B15A. Astron Astrophys 413: 301–308

    ADS  Google Scholar 

  • Lamb DQ, Van Horn HM (1975) Evolution of crystallizing pure C-12 white dwarfs. Astrophys J 200: 306–323

    ADS  Google Scholar 

  • Landolt AU (1968) A new short-period blue variable. Astrophys J 153: 151–164

    ADS  Google Scholar 

  • Lasker BM, Hesser JE (1969) High-frequency stellar oscillations. II. G44-32: a new short-period blue variable star. Astrophys J Lett 158: L171–L173

    ADS  Google Scholar 

  • Lasker BM, Hesser JE (1971) High-frequency stellar oscillations.VI. R548, a periodically variable white dwarf. Astrophys J Lett 163: L89–L93

    ADS  Google Scholar 

  • Lasserre T, Afonso C, Albert JN et al (2000) Not enough stellar mass Machos in the Galactic halo. Astron Astrophys 355: L39–L42

    ADS  Google Scholar 

  • Ledoux PJ (1951) The nonradial oscillations of gaseous stars and the problem of Beta Canis Majoris. Astrophys J 114: 373–384

    ADS  Google Scholar 

  • Ledoux PJ, Sauvenier-Goffin E (1950) The vibrational stability of white dwarfs. Astrophys J 111: 611–624

    ADS  Google Scholar 

  • Liebert J, Bergeron P, Holberg J (2005) The Formation rate and mass and luminosity functions of DA white dwarfs from the Palomar green survey. Astrophys J Supp 156: 47–68

    ADS  Google Scholar 

  • Lorén-Aguilar P, Isern J, García-Berro E (2009) High-resolution smoothed particle hydrodynamics simulations of the merger of binary white dwarfs. Astron Astrophys 500: 1193–1205

    ADS  MATH  Google Scholar 

  • Luyten WM (1922) The mean parallax of early-type stars of determined proper motion and apparent magnitude. Pub Astron Soc Pac 34: 156–160

    ADS  Google Scholar 

  • Madej J, Nalezyty M, Althaus LG (2004) Mass distribution of DA white dwarfs in the first data release of the Sloan digital sky survey. Astron Astrophys 419: L5–L8

    ADS  Google Scholar 

  • Marsh TR, Dhillon VS, Duck SR (1995) Low-mass white dwarfs need friends - five new double-degenerate close binary stars. Mon Not R Astron Soc 275: 828–840

    ADS  Google Scholar 

  • McGraw JT (1979) The physical properties of the ZZ Ceti stars and their pulsations. Astrophys J 229: 203–211

    ADS  Google Scholar 

  • McGraw JT, Robinson EL (1976) High-speed photometry of luminosity-variable DA dwarfs: R808, GD 99, and G 117-B15A. Astrophys J Lett 205: L155–L158

    ADS  Google Scholar 

  • McGraw JT, Liebert J, Starrfield SG, Green R (1979) A new, hot, non-DA pulsating degenerate. White dwarfs and variable degenerate stars. University of Rochester, Rochester, pp 377–381

    Google Scholar 

  • Méndez RA, Minniti D (2000) Faint blue objects on the Hubble deep field north and south as possible nearby old halo white dwarfs. Astrophys J 529: 911–916

    ADS  Google Scholar 

  • Méndez RA, Ruiz MT (2001) The luminosity function of magnitude and proper-motion-selected samples: the case of white dwarfs. Astrophys J 547: 252–262

    ADS  Google Scholar 

  • Mestel L (1952) On the theory of white dwarf stars. I. The energy sources of white dwarfs. Mon Not R Astron Soc 112: 583–597

    ADS  Google Scholar 

  • Metcalfe TS (2005) Lessons for asteroseismology from white dwarf stars. Astrophys J 26: 273–281

    Google Scholar 

  • Metcalfe TS, Nather RE, Winget DE (2000) Genetic-algorithm-based asteroseismological analysis of the DBV white dwarf GD 358. Astrophys J 545: 974–981

    ADS  Google Scholar 

  • Metcalfe TS, Winget DE, Charbonneau P (2001) Preliminary constraints on 12C(α, γ)16O from white dwarf seismology. Astrophys J 557: 1021–1027

    ADS  Google Scholar 

  • Metcalfe TS, Salaris ME, Winget DE (2002) Measuring 12C(α, γ)16O from white dwarf asteroseismology. Astrophys J 573: 803–811

    ADS  Google Scholar 

  • Miller Bertolami MM, Althaus LG (2006) Full evolutionary models for PG 1159 stars. Implications for the helium-rich O(He) stars. Astron Astrophys 454: 845–854

    ADS  Google Scholar 

  • Miller Bertolami MM, Althaus LG, Córsico AH (2005) The formation of DA white dwarfs with thin hydrogen envelopes through a late thermal pulse. Bol Asoc Arg Astron 48: 185–191

    ADS  Google Scholar 

  • Miller Bertolami MM, Althaus LG, Serenelli AM, Panei JA (2006) New evolutionary calculations for the born again scenario. Astron Astrophys 449: 313–326

    ADS  Google Scholar 

  • Mochkovitch R (1983) Freezing of a carbon-oxygen white dwarf. Astron Astrophys 122: 212–218

    ADS  Google Scholar 

  • Montgomery MH (2005) A new technique for probing convection in pulsating white dwarf stars. Astrophys J 633: 1142–1149

    ADS  Google Scholar 

  • Montgomery MH (2008) What we can learn from the light curves of GD 358 and PG 1351+489. Commun Asteroseismol 154: 38–48

    ADS  Google Scholar 

  • Montgomery MH, Metcalfe TS, Winget DE (2003) The core/envelope symmetry in pulsating stars. Mon Not R Astron Soc 344: 657–664

    ADS  Google Scholar 

  • Montgomery MH, Williams KA, Winget DE, Dufour P, DeGennaro S, Liebert J (2008) SDSS J142625.71+575218.3: a prototype for a new class of variable white dwarf. Astrophys J Lett 678: L51–L54

    ADS  Google Scholar 

  • Mukadam AS, Mullally F, Nather RE et al (2004) Thirty-five new pulsating DA white dwarf stars. Astrophys J 607: 982–998

    ADS  Google Scholar 

  • Mukadam AS, Montgomery MH, Winget DE, Kepler SO, Clemens JC (2006) Ensemble characteristics of the ZZ Ceti stars. Astrophys J 640: 956–965

    ADS  Google Scholar 

  • Mullally F, Winget DE, DeGennaro S, Jeffery E, Thompson SE, Chandler D, Kepler SO (2008) Limits on planets around pulsating white dwarf stars. Astrophys J 676: 573–583

    ADS  Google Scholar 

  • Muraki Y, Sumi T, Abe F et al (1999) Search for Machos by the MOA collaboration. Prog Theor Phys Suppl 133: 233–246

    ADS  Google Scholar 

  • Nagel T, Werner K (2004) Detection of non-radial g-mode pulsations in the newly discovered PG 1159 star HE 1429-1209. Astron Astrophys 426: L45–L48

    ADS  Google Scholar 

  • Nather RE, Winget DE, Clemens JC, Hansen CJ, Hine BP (1990) The whole earth telescope - a new astronomical instrument. Astrophys J 361: 309–317

    ADS  Google Scholar 

  • Nitta A, Kepler SO, Winget DE et al (1998) HST observation of GD 358. Balt Astron 7: 203–209

    ADS  Google Scholar 

  • Nitta A, Kleinman SJ, Krzesinski J et al (2009) New pulsating DB white dwarf stars from the Sloan digital sky survey. Astrophys J 690: 560–565

    ADS  Google Scholar 

  • O’Brien MS (2003) Old pulsators: white dwarfs and their immediate precursors. Astrophys Space Sci 284: 45–52

    ADS  Google Scholar 

  • O’Brien MS, Kawaler SD (2000) The predicted signature of neutrino emission in observations of pulsating pre-white dwarf stars. Astrophys J 539: 372–378

    ADS  Google Scholar 

  • Ostriker JP, Tassoul J-L (1968) Pulsation periods of rotating white dwarf models. Nature 219: 577–579

    ADS  Google Scholar 

  • Pekeris CL (1938) Nonradial oscillations of stars. Astrophys J 88: 189–199

    ADS  MATH  Google Scholar 

  • Pfeiffer B, Vauclair G, Dolez N et al (1996) Whole earth telescope observations and seismological analysis of the cool ZZ Ceti star GD 154. Astron Astrophys 314: 182–190

    ADS  Google Scholar 

  • Prada Moroni PG, Straniero O (2009) Very low-mass white dwarfs with a C-O core. Astron Astrophys 507: 1575–1583

    ADS  Google Scholar 

  • Quirion P-O, Fontaine G, Brassard P (2004) On the driving mechanism and the coexistence of variable and nonvariable stars in the domain of the pulsating PG 1159 stars. Astrophys J 610: 436–441

    ADS  Google Scholar 

  • Quirion P-O, Fontaine G, Brassard P (2007) Mapping the instability domains of GW Vir stars in the effective temperature-surface gravity diagram. Astrophys J Suppl 171: 219–248

    ADS  Google Scholar 

  • Raffelt GG (1996) Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago Press, Chicago

    Google Scholar 

  • Rauch T, Reiff E, Werner K, Herwig F, Koesterke L, Kruk JW (2006) On the Evolutionary status of extremely hot helium stars—are O(He) stars successors of RCrB stars? Astron Soc Pac Conf Ser, San Francisco 348: 194–196

    ADS  Google Scholar 

  • Reed MD, Kawaler SD, O’Brien MS (2000) PG 2131+066: a test of pre-white dwarf asteroseismology. Astrophys J 545: 429–434

    ADS  Google Scholar 

  • Renedo I, Althaus LG, Miller Bertolami MM, Romero AD, Córsico AH, Rohrmann RD, García-Berro E (2010) New cooling sequences for old white dwarfs. Astrophys J 717: 183–195

    ADS  Google Scholar 

  • Richer HB, Fahlman GG, Ibata RA et al (1997) White dwarfs in globular clusters: Hubble space telescope observations of M4. Astrophys J 484: 741–760

    ADS  Google Scholar 

  • Richer HB, Anderson J, Brewer J, Davis S, Fahlman GG (2006) Probing the faintest stars in a globular star cluster. Science 313: 936–940

    ADS  Google Scholar 

  • Ritossa C, García-Berro E, Iben I Jr (1996) n the evolution of stars that form electron-degenerate cores processed by carbon burning. II. Isotope abundances and thermal pulses in a \({10 M_{\odot}}\) model with an ONe core and applications to long-period variables, classical novae, and accretion-induced collapse. Astrophys J 460: 489–505

    ADS  Google Scholar 

  • Ritossa C, García-Berro E, Iben I Jr (1999) On the evolution of stars that form electron-degenerate cores processed by carbon burning. V. Shell convection sustained by helium burning, transient neon burning, dredge-out, URCA cooling, and other properties of an \({11 M_{\odot}}\) population I model star. Astrophys J 515: 381–397

    ADS  Google Scholar 

  • Robinson EL, Nather RE, McGraw JT (1976) The photometric properties of the pulsating white dwarf R548. Astrophys J 210: 211–219

    ADS  Google Scholar 

  • Robinson EL, Kepler SO, Nather RE (1982) Multicolor variations of the ZZ Ceti stars. Astrophys J 259: 219–231

    ADS  Google Scholar 

  • Robinson EL, Mailloux TM, Zhang E, Koester D, Stiening RF et al (1995) The pulsation index, effective temperature, and thickness of the hydrogen layer in the pulsating DA white dwarf G117-B15A. Astrophys J 438: 908–916

    ADS  Google Scholar 

  • Rohrmann RD (2001) Hydrogen-model atmospheres for white dwarf stars. Mon Not R Astron Soc 323: 699–712

    ADS  Google Scholar 

  • Rohrmann RD, Serenelli AM, Althaus LG, Benvenuto OG (2002) Improved synthetic spectra of helium-core white dwarf stars. Mon Not R Astron Soc 335: 499–511

    ADS  Google Scholar 

  • Russell HN (1914) Relations between the spectra and other characteristics of the stars. Pop Astron 22: 275–294

    ADS  Google Scholar 

  • Saio H (1996) Linear models for hydrogen-deficient star pulsations. Astron Soc Pac Conf Ser, San Francisco 96: 361–373

    ADS  Google Scholar 

  • Saio H, Jeffery CS (2000) The evolution of a rapidly accreting helium white dwarf to become a low-luminosity helium star. Mon Not R Astron Soc 313: 671–677

    ADS  Google Scholar 

  • Saio H, Winget DE, Robinson EL (1983) Pulsation properties of DA white dwarfs - radial mode instabilities. Astrophys J 265: 982–995

    ADS  Google Scholar 

  • Salaris M, Serenelli AM, Weiss A, Miller Bertolami MM (2009) Semi-empirical white dwarf initial-final mass relationships: a thorough analysis of systematic uncertainties due to stellar evolution models. Astrophys J 692: 1013–1032

    ADS  Google Scholar 

  • Salaris M, Domínguez I, García-Berro E, Hernanz M, Isern J, Mochkovitch R (1997) The cooling of CO white dwarfs: influence of the internal chemical distribution. Astrophys J 486: 413–419

    ADS  Google Scholar 

  • Salpeter EE (1961) Energy and pressure of a zero-temperature plasma. Astrophys J 134: 669–682

    MathSciNet  ADS  Google Scholar 

  • Sarna MJ, Antipova J, Ergma E (1999) Cooling curves and initial models for low-mass white dwarfs ( < \({0.25 M_{\odot}}\)) with helium core. Astron Soc Pac Conf Ser, San Franciso 169: 400–407

    ADS  Google Scholar 

  • Saumon D, Jacoboson SB (1999) Pure hydrogen model atmospheres for very cool white dwarfs. Astrophys J 511: L107–L110

    ADS  Google Scholar 

  • Saumon D, Bergeron P, Lunine JI, Hubbard WB, Burrows A (1994) Cool zero-metallicity stellar atmospheres. Astrophys J 424: 333–344

    ADS  Google Scholar 

  • Sauvenier-Goffin E (1949) La stabilité dynamique des Naines blanches. Annales d’Astrophysique 12: 39–51

    MathSciNet  ADS  Google Scholar 

  • Schmidt M (1959) The rate of star formation. Astrophys J 129: 243–258

    ADS  Google Scholar 

  • Schönberner D (1979) Asymptotic giant branch evolution with steady mass loss. Astrons Astrophys 79: 108–114

    ADS  Google Scholar 

  • Segretain L, Chabrier G, Hernanz M, García-Berro E, Isern J, Mochkovitch R (1994) Cooling theory of crystallized white dwarfs. Astrophys J 434: 641–651

    ADS  Google Scholar 

  • Shaviv G, Kovetz A (1976) The cooling of carbon-oxygen white dwarfs. Astron Astrophys 51: 383–391

    ADS  Google Scholar 

  • Siess L (2007) Evolution of massive AGB stars. II. Model properties at non-solar metallicity and the fate of Super-AGB stars. Astron Astrophys 476: 893–909

    ADS  Google Scholar 

  • Silvotti R, Dreizler S, Handler G, Jiang XJ (1999) The photometric behaviour of the peculiar PG 1159 star HS 2324+3944 at high frequency resolution. Astron Astrophys 342: 745–755

    ADS  Google Scholar 

  • Silvotti R, Fontaine G, Pavlov M, Marsh TR, Dhillon VS, Littlefair SP (2007) Search for p-mode pulsations in DA white dwarfs with VLT-ULTRACAM. Astron Soc Pac Conf Ser, San Francisco 372: 593

    ADS  Google Scholar 

  • Solheim J-E, Vauclair G, Mukadam AS, Janulis R, Dobrovolskas V (2007) Abell 43: longest period planetary nebula nucleus variable. Astron Astrophys 468: 1057–1061

    ADS  Google Scholar 

  • Stanghellini L, Cox AN, Starrfield S (1991) Post-asymptotic giant branch nonradial instability strips. Astrophys J 383: 766–778

    ADS  Google Scholar 

  • Starrfield S, Cox AN, Hodson SW, Pesnell WD (1983) The discovery of nonradial instability strips for hot, evolved stars. 268:L27–L32

  • Starrfield S, Cox AN, Kidman RB, Pesnell WD (1984) Nonradial instability strips based on carbon and oxygen partial ionization in hot, evolved stars. Astrophys J 281: 800–810

    ADS  Google Scholar 

  • Starrfield S, Cox AN, Kidman RB, Pesnell WD (1985) An analysis of nonradial pulsations of the central star of the planetary nebula K1-16. Astrophys J Lett 293: L23–L27

    ADS  Google Scholar 

  • Stevenson DJ (1980) A eutectic in carbon-oxygen white dwarfs? J Phys Colloq 41: C2/61–64

    ADS  Google Scholar 

  • Stoner EC (1930) The equilibrium of dense stars. Philos Mag 9: 944–963

    Google Scholar 

  • Straniero O, Domínguez I, Imbriani G, Piersanti L (2003) The chemical composition of white dwarfs as a test of convective efficiency during core helium burning. Astrophys J 583: 878–884

    ADS  Google Scholar 

  • Tassoul M (1980) Asymptotic approximations for stellar nonradial pulsations. Astrophys J Suppl 43: 469–490

    ADS  Google Scholar 

  • Tassoul M, Fontaine G, Winget DE (1990) Evolutionary models for pulsation studies of white dwarfs. Astrophys J Suppl 72: 335–386

    ADS  Google Scholar 

  • Thompson SE, van Kerkwijk MH, Clemens JC (2008) Deciphering the pulsations of G 29-38 with optical time series spectroscopy. Mon Not R Astron Soc 389: 93–101

    ADS  Google Scholar 

  • Tisserand P, Le Guillou L, Afonso C et al (2007) Limits on the Macho content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. Astron Astrophys 469: 387–404

    ADS  Google Scholar 

  • Torres S, García–Berro E, Isern J (1998) Neural network identification of halo white dwarfs. Astrophys J Lett 508: L71–L74

    ADS  Google Scholar 

  • Torres S, García–Berro E, Burkert A, Isern J (2001) The impact of a merger episode in the galactic disc white dwarf population. Mon Not R Astron Soc 328: 492–500

    ADS  Google Scholar 

  • Torres S, García–Berro E, Burkert A, Isern J (2002) High-proper-motion white dwarfs and halo dark matter. Mon Not R Astron Soc 336: 971–978

    ADS  Google Scholar 

  • Torres S, Camacho J, Isern J, García–Berro E (2008) The contribution of red dwarfs and white dwarfs to the halo dark matter. Astron Astrophys 486: 427–435

    ADS  Google Scholar 

  • Udalski A, Szymanski M, Kaluzny J, Kubiak M (1994) The optical gravitational lensing experiment. Journal of the 1993 Season Observatioin. Acta Astron 44: 1–20

    ADS  Google Scholar 

  • Unglaub K, Bues I (2000) The chemical evolution of hot white dwarfs in the presence of diffusion and mass loss. Astron Astrophys 359: 1042–1058

    ADS  Google Scholar 

  • Unno W, Osaki Y, Ando H, Saio H, Shibahashi H (1989) Non-radial oscillations of stars. University of Tokyo Press, Tokyo

    Google Scholar 

  • van Horn HM (1968) Crystallization of white dwarfs. Astrophy J 151: 227–238

    ADS  Google Scholar 

  • van Kerkwijk MH, Clemens JC, Wu Y (2000) Surface motion in the pulsating DA white dwarf G29-38. Mon Not R Astron Soc 314: 209–219

    ADS  Google Scholar 

  • van Kerkwijk MH et al (2005) Optical studies of companions to millisecond pulsars. Astron Soc Pac Conf Ser, San Franciso 328: 357–370

    ADS  Google Scholar 

  • Vauclair G (1971) Vibrational stability of DA white dwarfs. Astrophys Lett 9: 161–164

    ADS  Google Scholar 

  • Vauclair G, Moskalik P, Pfeiffer B et al (2002) Asteroseismology of RXJ 2117+3412, the hottest pulsating PG 1159 star. Astron Astrophys 381: 122–150

    ADS  Google Scholar 

  • Vauclair G, Solheim J-E, Østensen RH (2005) Abell 43, a second pulsating “hybrid-PG 1159” star. Astron Astrophys 433: 1097–1100

    ADS  Google Scholar 

  • Von Hippel T, Gilmore G (2000) The white dwarf cooling age of the open cluster NGC 2420. Astron J 120: 1384–1395

    ADS  Google Scholar 

  • Von Hippel T, Jefferys WH, Scott J et al (2006) Inverting color-magnitude diagrams to access precise star cluster parameters: a Bayesian approach. Astrophys J 645: 1436–1447

    ADS  Google Scholar 

  • Voss B, Koester D, Napiwotzki R, Christlieb N, Reimers D (2007) High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia progenitor survey. II. DB and DBA stars. Astron Astrophys 470: 1079–1088

    ADS  Google Scholar 

  • Vuille F (1998) PhD Thesis, Univ Capetown

  • Warner B, Robinson EL (1972) White dwarfs-more rapid variables. Nature 239: 2–7

    ADS  Google Scholar 

  • Weidemann V (2000) Revision of the initial-to-final mass relation. Astron Astrophys 363: 647–656

    ADS  Google Scholar 

  • Werner K (2001) Properties of atmospheres and winds of H-deficient central stars and related objects. Astrophys Space Sci 275: 27–39

    ADS  Google Scholar 

  • Werner K, Herwig F (2006) The elemental abundances in bare planetary nebula central stars and the shell burning in AGB stars. Publ Astron Soc Pac 118: 183–204

    ADS  Google Scholar 

  • Werner K, Rauch T, Kruk JW (2008a) KPD0005+5106: hottest DO white dwarf much hotter than assumed. Astron Soc Pac Conf Ser, San Franciso 391: 239–240

    ADS  Google Scholar 

  • Werner K, Rauch T, Kruk JW (2008b) Discovery of photospheric Ca X emission lines in the far-UV spectrum of the hottest known white dwarf (KPD 0005+5106). Astron Astrophys 492: L43–L47

    ADS  Google Scholar 

  • Winget DE (1988) Seismological investigations of compact stars. Advances in Helio- and Asteroseismology. Adv Helio-Asteroseismol IAU Symp 123: 305–324

    ADS  Google Scholar 

  • Winget DE, Kepler SO (2008) Pulsating white dwarf stars and precision asteroseismology. Annu Rev Astron Astrophys 46: 157–199

    ADS  Google Scholar 

  • Winget DE, van Horn HM, Hansen CJ (1981) The nature of the ZZ Ceti oscillations - trapped modes in compositionally stratified white dwarfs. Astrophys J Lett 245: L33–L36

    ADS  Google Scholar 

  • Winget DE, van Horn HM, Tassoul M, Fontaine G, Hansen CJ, Carroll BW (1982a) Hydrogen-driving and the blue edge of compositionally stratified ZZ Ceti star models. Astrophys J Lett 252: L65–L68

    ADS  Google Scholar 

  • Winget DE, Robinson EL, Nather RD, Fontaine G (1982b) Photometric observations of GD 358 - DB white dwarfs do pulsate. Astrophys J Lett 262: L11–L15

    ADS  Google Scholar 

  • Winget DE, Hansen CJ, van Horn HM (1983) Do pulsating PG1159-035 stars put constraints on stellar evolution? Nature 303: 781–782

    ADS  Google Scholar 

  • Winget DE, Hansen CJ, Liebert J, Van Horn HM, Fontaine G, Nather RE, Kepler SO, Lamb DQ (1987) An independent method for determining the age of the universe. Astrophys J Lett 315: L77–L81

    ADS  Google Scholar 

  • Winget DE, Nather RE, Clemens JC et al (1991) Asteroseismology of the DOV star PG 1159 - 035 with the whole earth telescope. Astrophys J 378: 326–346

    ADS  Google Scholar 

  • Winget DE, Nather RE, Clemens JC et al (1994) Whole earth telescope observations of the DBV white dwarf GD 358. Astrophys J 430: 839–849

    ADS  Google Scholar 

  • Winget DE, Sullivan DJ, Metcalfe TS, Kawaler SD, Montgomery MH (2004) A strong test of electroweak theory using pulsating DB white dwarf stars as plasmon neutrino detectors. Astrophys J Lett 602: L109–L112

    ADS  Google Scholar 

  • Winget DE, Kepler SO, Campos F, Montgomery MH, Girardi L, Bergeron P, Williams K (2009) The physics of crystallization from globular cluster white dwarf stars in NGC 6397. Astrophys J Lett 693: L6–L10

    ADS  Google Scholar 

  • Xu ZW, Van Horn HM (1992) Effects of Fe/C phase separation on the ages of white dwarfs. Astrophys J 387: 662–672

    ADS  Google Scholar 

  • Yoo J, Chanamé J, Gould A (2004) The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries. Astrophys J 601: 311–318

    ADS  Google Scholar 

  • York DG, Adelman J, Anderson JE Jr et al (2000) The Sloan digital sky survey: technical summary. Astron J 120: 1579–1587

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro G. Althaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althaus, L.G., Córsico, A.H., Isern, J. et al. Evolutionary and pulsational properties of white dwarf stars. Astron Astrophys Rev 18, 471–566 (2010). https://doi.org/10.1007/s00159-010-0033-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-010-0033-1

Keywords

Navigation