Advertisement

The Astronomy and Astrophysics Review

, Volume 18, Issue 1–2, pp 1–65 | Cite as

Radio and millimeter continuum surveys and their astrophysical implications

  • Gianfranco De ZottiEmail author
  • Marcella Massardi
  • Mattia Negrello
  • Jasper Wall
Review Article

Abstract

We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determinations of local luminosity functions are presented and compared with earlier estimates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-milli-Jansky (mJy) levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distributions of star-forming galaxies, match the radio source counts at flux-density levels of tens of μJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of γ-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large-scale structure through studies of clustering and the Integrated Sachs–Wolfe effect. Finally, we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in Supplementary Material.

Keywords

Radio continuum: galaxies Galaxies: active Galaxies: starburst Galaxies: statistics Quasars: general 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

159_2009_26_MOESM1_ESM.pdf (59 kb)
ESM (PDF 59 kb)
159_2009_26_MOESM2_ESM.pdf (18 kb)
ESM (PDF 17.5 kb)

References

  1. Afshordi N, Tolley AJ (2008) Primordial non-Gaussianity, statistics of collapsed objects, and the integrated Sachs–Wolfe effect. Phys Rev D 78: 123507ADSGoogle Scholar
  2. Afshordi N, Geshnizjani G, Khoury J (2008) Observational evidence for cosmological-scale extra dimensions. ArXiv e-prints 0812.2244Google Scholar
  3. Aghanim N, Balland C, Silk J (2000) Sunyaev–Zel’dovich constraints from black hole-seeded proto-galaxies. Astron Astrophys 357: 1–6ADSGoogle Scholar
  4. Agol E (2000) Sagittarius A* polarization: no advection-dominated accretion flow, low accretion rate, and nonthermal synchrotron emission. Astrophys J Lett 538: L121–L124ADSGoogle Scholar
  5. Aitken DK, Greaves J, Chrysostomou A et al (2000) Detection of polarized millimeter and submillimeter emission from Sagittarius A*. Astrophys J Lett 534: L173–L176ADSGoogle Scholar
  6. Aller MF, Aller HD, Hughes PA (2003) Survey of variability. In: Zensus JA, MH Cohen MH, Ros E (eds) Radio astronomy at the Fringe. Astronomical Society of the Pacific Conference Series, vol 300. Astronomical Society of the Pacific, San Francisco, pp 159–168Google Scholar
  7. Antón S, Browne IWA (2005) The recognition of blazars and the blazar spectral sequence. Mon Not R Astron Soc 356: 225–231ADSGoogle Scholar
  8. Antonucci R, Miller J (1985) Spectropolarimetry and the nature of NGC. Astrophys J 297: 621–632ADSGoogle Scholar
  9. Arnaboldi M, Neeser MJ, Parker LC et al (2007) ESO public surveys with the VST and VISTA. The Messenger 127: 28ADSGoogle Scholar
  10. Auriemma C, Perola GC, Ekers RD et al (1977) A determination of the local radio luminosity function of elliptical galaxies. Astron Astrophys 57: 41ADSGoogle Scholar
  11. Austermann JE, Dunlop JS, Perera TA et al (2009) AzTEC half square degree survey of the SHADES fields—I. Maps, catalogues, and source counts. ArXiv e-prints 0907.1093Google Scholar
  12. Avni Y, Bahcall JN (1980) On the simultaneous analysis of several complete samples: the V/Vmax and Ve/Va variables, with applications to quasars. Astrophys J 235: 694–716ADSGoogle Scholar
  13. Baganoff FK, Maeda Y, Morris M et al (2003) Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. Astrophys J 591: 891–915ADSGoogle Scholar
  14. Barger AJ, Cowie LL, Mushotzky RF et al (2005) The cosmic evolution of hard X-ray-selected active galactic nuclei. Astron J 129: 578–609ADSGoogle Scholar
  15. Barthel P (1989) Quasars and radio galaxies may BE two of a kind. Sci Am 260: 20ADSGoogle Scholar
  16. Becker RH, White RL, Helfand DJ (1995) The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys J 450: 559ADSGoogle Scholar
  17. Begelman MC (1996) Baby Cygnus A’s. Carilli CL, Harris DE (eds) Cygnus A—study of a radio galaxy. Cambridge University Press, Cambridge, pp 209–214Google Scholar
  18. Begelman MC (1999) Young radio galaxies and their environments. In: Röttgering HJA, Best PN, Lehnert MD (eds) The most distant radio galaxies. pp 173Google Scholar
  19. Begelman MC, Blandford RD, Rees MJ (1984) Theory of extragalactic radio sources. Rev Modern Phys 56: 255–351ADSGoogle Scholar
  20. Benn CR, Rowan-Robinson M, McMahon RG, Broadhurst TJ, Lawrence A (1993) Spectroscopy of faint radio sources: the nature of the sub-mJy radio-source population. Mon Not R Astron Soc 263: 98–122ADSGoogle Scholar
  21. Bennett AS (1962) The revised 3C catalogue of radio sources. Mon Not R Astron Soc 68: 163ADSGoogle Scholar
  22. Bennett CL, Halpern M, Hinshaw G et al (2003) First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys J 148(Suppl): 1–27ADSGoogle Scholar
  23. Benson BA, ChurchSE Ade PAR et al (2004) Measurements of Sunyaev–Zel’dovich effect scaling relations for clusters of galaxies. Astrophys J 617: 829–846ADSGoogle Scholar
  24. Best PN, Kauffmann G, Heckman TM, Ivezić Ž (2005) A sample of radio-loud active galactic nuclei in the sloan digital sky survey. Mon Not R Astron Soc 362: 9–24ADSGoogle Scholar
  25. Best PN, Kaiser CR, Heckman TM, Kauffmann G (2006) AGN-controlled cooling in elliptical galaxies. Mon Not R Astron Soc 368: L67–L71ADSGoogle Scholar
  26. Bird J, Martini P, Kaiser C (2008) The lifetime of FR II sources in groups and clusters: implications for radio-mode feedback. Astrophys J 676: 147–162ADSGoogle Scholar
  27. Birkinshaw M (1999) The Sunyaev–Zel’dovich effect. Phys Rep 310: 97–195ADSGoogle Scholar
  28. Blain AW, Longair MS (1993) Submillimetre cosmology. Mon Not R Astron Soc 264: 509ADSGoogle Scholar
  29. Blain AW, Longair MS (1996) Observing strategies for blank-field surveys in the submillimetre waveband. Mon Not R Astron Soc 279: 847–858ADSGoogle Scholar
  30. Blake C, Wall J (2002a) Measurement of the angular correlation function of radio galaxies from the NRAO VLA sky survey. Mon Not R Astron Soc 329: L37–L41ADSGoogle Scholar
  31. Blake C, Wall J (2002b) Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey. Mon Not R Astron Soc 337: 993–1003ADSGoogle Scholar
  32. Blake C, Ferreira PG, Borrill J (2004a) The angular power spectrum of NVSS radio galaxies. Mon Not R Astron Soc 351: 923–934ADSGoogle Scholar
  33. Blake C, Mauch T, Sadler EM (2004b) Angular clustering in the Sydney University Molonglo sky survey. Mon Not R Astron Soc 347: 787–794ADSGoogle Scholar
  34. Blandford R (1993) Black holes, accretion disks, and relativistic jets in active galactic nuclei. In: Akerlof CW, Srednicki MA (eds) Texas/PASCOS ’92: relativistic astrophysics and particle cosmology. New York Academy of Sciences Annals, vol 688. Wiley, New York, p 311Google Scholar
  35. Blandford R, Rees M (1974) Pittsburgh conference on BL Lac objects. MNRAS 169: 395ADSGoogle Scholar
  36. Blandford RD, Begelman MC (1999) On the fate of gas accreting at a low rate on to a black hole. Mon Not R Astron Soc 303: L1–L5ADSGoogle Scholar
  37. Blandford RD, Begelman MC (2004) Two-dimensional adiabatic flows on to a black hole—I. Fluid accretion. Mon Not R Astron Soc 349: 68–86ADSGoogle Scholar
  38. Bloom SD, Marscher AP (1993) Examining the synchrotron self-Compton model for blazars. In: Friedlander M, Gehrels N, Macomb DJ (eds) Compton Gamma-ray observatory. American Institute of Physics Conference Series, vol 280. American Institute of Physics, New York, pp 578–582Google Scholar
  39. Blundell KM, Rawlings S, Willott CJ (1999) The nature and evolution of classical double radio sources from complete samples. Astron J 117: 677–706ADSGoogle Scholar
  40. Bolton JG, Stanley GJ, Slee OB (1949) Positions of three discrete sources of Galactic radio frequency radiation. Nature 164: 101ADSGoogle Scholar
  41. Bolton RC, Cotter G, Pooley GG et al (2004) The radio source population at high frequency: follow-up of the 15-GHz 9C survey. Mon Not R Astron Soc 354: 485–521ADSGoogle Scholar
  42. Bonamente M, Joy MK, LaRoque SJ et al (2006) Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys J 647: 25–54ADSGoogle Scholar
  43. Bonamente M, Joy M, LaRoque SJ et al (2008) Scaling relations from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys J 675: 106–114ADSGoogle Scholar
  44. Bondi H (1952) On spherically symmetrical accretion. Mon Not R Astron Soc 112: 195MathSciNetADSGoogle Scholar
  45. Bondi H, Gold T (1948) The steady-state theory of the expanding universe. Mon Not R Astron Soc 108: 252zbMATHADSGoogle Scholar
  46. Bondi M, Ciliegi P, Zamorani G et al (2003) The VLA-VIRMOS deep field. I. Radio observations probing the mu Jy source population. Astron Astrophys 403: 857–867ADSGoogle Scholar
  47. Bondi M, Ciliegi P, Venturi T et al (2007) The VVDS-VLA deep field. III. GMRT observations at 610 MHz and the radio spectral index properties of the sub-mJy population. Astron Astrophys 463: 519ADSGoogle Scholar
  48. Bondi M, Ciliegi P, Schinnerer E et al (2008) The VLA-COSMOS survey. III. Further catalog analysis and the radio source counts. Astrophys J 681: 1129ADSGoogle Scholar
  49. Boughn S, Crittenden R (2004) A correlation between the cosmic microwave background and large-scale structure in the Universe. Nature 427: 45–47ADSGoogle Scholar
  50. Boughn SP, Crittenden RG (2005) A detection of the integrated Sachs Wolfe effect. New Astron Rev 49: 75–78ADSGoogle Scholar
  51. Bower RG, Benson AJ, Malbon R et al (2006) Breaking the hierarchy of galaxy formation. Mon Not R Astron Soc 370: 645–655ADSGoogle Scholar
  52. Bressan A, Silva L, Granato GL (2002) Far infrared and radio emission in dusty starburst galaxies. Astron Astrophys 392: 377–391ADSGoogle Scholar
  53. Bridle AH (1967) The spectrum of the radio background between 13 and 404 MHz. Mon Not R Astron Soc 136: 219ADSGoogle Scholar
  54. Bridle AH, Davis MM, Fomalont EB, Lequeux J (1972) Flux densities, positions, and structures for a complete sample of intense radio sources at 1400 MHz. Astron J 77: 405–443ADSGoogle Scholar
  55. Brookes MH, Best PN, Peacock JA, Röttgering HJA, Dunlop JS (2008) A combined EIS-NVSS survey of radio sources (CENSORS)—III. Spectroscopic observations. Mon Not R Astron Soc 385: 1297–1326ADSGoogle Scholar
  56. Brown JC, Haverkorn M, Gaensler BM et al (2007) Rotation measures of extragalactic sources behind the southern galactic plane: new insights into the large-scale magnetic field of the inner milky way. Astrophys J 663: 258–266ADSGoogle Scholar
  57. Burbidge GR (1959) Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys J 129: 849ADSGoogle Scholar
  58. Burke BF, Graham-Smith F (1997) An introduction to radio astronomy. Cambridge University Press, CambridgeGoogle Scholar
  59. Caccianiga A, Marchã MJM (2004) The CLASS blazar survey: testing the blazar sequence. Mon Not R Astron Soc 348: 937–954ADSGoogle Scholar
  60. Cara M, Lister ML (2008) The CLASS blazar survey: testing the blazar sequence. Astrophys J 674: 111–121ADSGoogle Scholar
  61. Carilli CL, Rawlings S (2004) Science with the square kilometre array. New Astron Rev 48: 1Google Scholar
  62. Carlstrom JE, Holder GP, Reese ED (2002) Cosmology with the Sunyaev–Zel’dovich effect. Annu Rev Astron Astrophys 40: 643–680ADSGoogle Scholar
  63. Carlstrom JE, Ade PAR, Aird KA et al (2009) The 10 meter south pole telescope. ArXiv e-prints 0907.4445Google Scholar
  64. Cavaliere A, Giallongo E, Vagnetti F (1985) From local active galactic nuclei to early quasars. Astrophys J 296: 402–415ADSGoogle Scholar
  65. Chamballu A, Bartlett JG, Melin J, Arnaud M (2008) An SZ/X-ray galaxy cluster model and the X-ray follow-up of the Planck clusters. ArXiv e-prints 0805.4361Google Scholar
  66. Chatterjee S, Kosowsky A (2007) The Sunyaev–Zel’dovich Effect from Quasar Feedback. Astrophys J Lett 661: L113–L116ADSGoogle Scholar
  67. Chatterjee S, di Matteo T, Kosowsky A, Pelupessy I (2008) Simulations of the Sunyaev–Zel’dovich effect from quasars. Mon Not R Astron Soc 390: 535–544ADSGoogle Scholar
  68. Choloniewski J (1987) On Lynden–Bell’s method for the determination of the luminosity function. Mon Not R Astron Soc 226: 273–280ADSGoogle Scholar
  69. Ciaramella A, Bongardo C, Aller HD et al (2004) A multifrequency analysis of radio variability of blazars. Astron Astrophys 419: 485–500ADSGoogle Scholar
  70. Ciardi B, Loeb A (2000) Expected number and flux distribution of gamma-ray burst afterglows with high redshifts. Astrophys J 540: 687–696ADSGoogle Scholar
  71. Ciliegi P, Zamorani G, Hasinger G et al (2003) A deep VLA survey at 6 cm in the Lockman Hole. Astron Astrophys 398: 901–918ADSGoogle Scholar
  72. Cirasuolo M, Magliocchetti M, Celotti A (2005) Faint radio-loud quasars: clues to their evolution. Mon Not R Astron Soc 357: 1267–1280ADSGoogle Scholar
  73. Cirasuolo M, Magliocchetti M, Gentile G et al (2006) On the radio properties of the highest redshift quasars. Mon Not R Astron Soc 371: 695–702ADSGoogle Scholar
  74. Clark TA, Brown LW, Alexander JK (1970) Spectrum of the extra-galactic background radiation at low radio frequencies. Nature 228: 847–849ADSGoogle Scholar
  75. Cleary KA, Taylor AC, Waldram E et al (2005) Source subtraction for the extended very small array and 33-GHz source count estimates. Mon Not R Astron Soc 360: 340–353ADSGoogle Scholar
  76. Clemens MS, Vega O, Bressan A et al (2008) Modeling the spectral energy distribution of ULIRGs. I. The radio spectra. Astron Astrophys 477: 95–104ADSGoogle Scholar
  77. Clewley L, Jarvis MJ (2004) The cosmic evolution of low-luminosity radio sources from the Sloan digital sky survey data release 1. Mon Not R Astron Soc 352: 909–914ADSGoogle Scholar
  78. Cohen AS, Lane WM, Cotton WD et al (2007) The VLA low-frequency sky survey. Astron J 134: 1245–1262ADSGoogle Scholar
  79. Cohen MH, Cannon W, Purcell GH et al (1971) The small-scale structure of radio galaxies and quasi-stellar sources at 3.8 centimeters. Astrophys J 170: 207ADSGoogle Scholar
  80. Colafrancesco S, Mazzotta P, Rephaeli Y, Vittorio N (1997) Intracluster comptonization of the cosmic microwave background: mean spectral distortion and cluster number counts. Astrophys J 479: 1ADSGoogle Scholar
  81. Condon JJ (1984a) Cosmological evolution of radio sources. Astrophys J 287: 461–474ADSGoogle Scholar
  82. Condon JJ (1984b) Cosmological evolution of radio sources found at 1.4 GHz. Astrophys J 284: 44–53ADSGoogle Scholar
  83. Condon JJ (1989) The 1.4 gigahertz luminosity function and its evolution. Astrophys J 338: 13–23ADSGoogle Scholar
  84. Condon JJ (1992) Radio emission from normal galaxies. ARA&A 30: 575–611ADSGoogle Scholar
  85. Condon JJ (2007) Deep radio surveys. In: Afonso J, Ferguson HC, Mobasher B, Norris R (eds) Sky Surveys. Protostars to Protogalaxies. Astronomical Society of the Pacific Conference Series, vol 380. Deepest Astronomical Surveys. Astronomical Society of the Pacific, San Francisco, p 189Google Scholar
  86. Condon JJ, Mitchell KJ (1984) A deeper VLA survey of the alpha = 08h52m15s, delta = +17 deg 16 arcmin field. Astron J 89: 610–617ADSGoogle Scholar
  87. Condon JJ, Anderson ML, Helou G (1991) Correlations between the far-infrared, radio, and blue luminosities of spiral galaxies. Astrophys J 376: 95–103ADSGoogle Scholar
  88. Condon JJ, Cotton WD, Broderick JJ (2002) Radio Sources and Star Formation in the Local Universe. Astron J 124: 675–689ADSGoogle Scholar
  89. Condon JJ, Cotton WD, Greisen EW et al (1998) The NRAO VLA sky survey. Astron J 115: 1693–1716ADSGoogle Scholar
  90. Cook M, Lapi A, Granato GL (2009) Two-phase galaxy formation. Mon Not R Astron Soc 397: 534–547ADSGoogle Scholar
  91. Coppin K, Chapin EL, Mortier AMJ et al (2006) The SCUBA half-degree extragalactic survey—II. Submillimetre maps, catalogue and number counts. Mon Not R Astron Soc 372: 1621–1652ADSGoogle Scholar
  92. Cotton WD, Wittels JJ, Shapiro II et al (1980) The very flat radio spectrum of 0735 plus 178: a cosmic conspiracy. Astrophys J Lett 238: L123–L128ADSGoogle Scholar
  93. Cowie LL, Songaila A, Hu EM, Cohen JG (1996) New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii deep fields. Astron J 112: 839ADSGoogle Scholar
  94. Cress CM, Kamionkowski M (1998) Interpreting the clustering of radio sources. Mon Not R Astron Soc 297: 486–492ADSGoogle Scholar
  95. Crittenden RG, Turok N (1996) Looking for a cosmological constant with the Rees–Sciama effect. Phys Rev Lett 76: 575–578ADSGoogle Scholar
  96. Croom S, Boyle B, Shanks T et al (2004) AGN physics from QSO clustering. In: Richards GT, Hall PB (eds) AGN physics with the sloan digital sky survey. Astronomical Society of the Pacific Conference Series, vol 311. Astronomical Society of the Pacific, Princeton, p 457Google Scholar
  97. Croton DJ, Springel V, White SDM et al (2006) The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon Not R Astron Soc 365: 11–28ADSGoogle Scholar
  98. Cruz MJ, Jarvis MJ, Rawlings S, Blundell KM (2007) The 6C** sample of steep-spectrum radio sources - II. Redshift distribution and the space density of high-redshift radio galaxies. Mon Not R Astron Soc 375: 1349–1363ADSGoogle Scholar
  99. Dallacasa D, Stanghellini C, Centonza M, Fanti R (2000) High frequency peakers. I. The bright sample. Astron Astrophys 363: 887–900ADSGoogle Scholar
  100. Dallacasa D, Stanghellini C, Centonza M, Furnari G (2002) High frequency peakers. New Astron Rev 46: 299–302ADSGoogle Scholar
  101. Danese L, de Zotti G (1984) Differential information on the evolution of extragalactic sources from spectral index distributions. Astron Astrophys 131: L1–L4ADSGoogle Scholar
  102. Danese L, Franceschini A, de Zotti G (1985) A comparative study of cosmological evolution in the radio, optical and X-ray bands. Astron Astrophys 143: 277–291ADSGoogle Scholar
  103. Danese L, Franceschini A, Toffolatti L, de Zotti G (1987) Interpretation of deep counts of radio sources. Astrophys J Lett 318: L15–L20ADSGoogle Scholar
  104. de Bruyn G, Miley G, Rengelink R et al (2000) The Westerbork Northern Sky Survey (Leiden, 1998). VizieR Online Data Catalog 8: 62Google Scholar
  105. de Luca A, Desert FX, Puget JL (1995) Source counts for the thermal and kinetic Sunyaev–Zel’dovich effects in clusters of galaxies. Astron Astrophys 300: 335ADSGoogle Scholar
  106. De Lucia G, Blaizot J (2007) The hierarchical formation of the brightest cluster galaxies. Mon Not R Astron Soc 375: 2–14ADSGoogle Scholar
  107. De Zotti G, Toffolatti L, Argüeso F et al (1999) The planck surveyor mission: astrophysical prospects. In: Maiani L, Melchiorri F, Vittorio N (eds) 3K cosmology. American Institute of Physics Conference Series, vol 476. American Institute of Physics, Woodbury, p 204Google Scholar
  108. De Zotti G, Granato GL, Silva L, Maino D, Danese L (2000) An evolutionary model for GHz peaked spectrum sources. Predictions for high frequency surveys. Astron Astrophys 354: 467–472ADSGoogle Scholar
  109. De Zotti G, Burigana C, Cavaliere A et al (2004) The Sunyaev–Zeldovich effect as a probe of the galaxy formation process. In: Bertin G, Farina D, Pozzoli R (eds) Plasmas in the laboratory and in the universe: new insights and new challenges. American Institute of Physics Conference Series, vol 703. American Institute of Physics, Melville, pp 375–384Google Scholar
  110. De Zotti G, Ricci R, Mesa D et al (2005) Predictions for high-frequency radio surveys of extragalactic sources. Astron Astrophys 431: 893–903ADSGoogle Scholar
  111. Dekel A, Birnboim Y (2006) Galaxy bimodality due to cold flows and shock heating. Mon Not R Astron Soc 368: 2–20ADSGoogle Scholar
  112. de Matteo T, Fabian AC, Rees MJ, Carilli CL, Ivison RJ (1999) Strong observational constraints on advection-dominated accretion in the cores of elliptical galaxies. Mon Not R Astron Soc 305: 492–504ADSGoogle Scholar
  113. Di Matteo T, Carilli CL, Fabian AC (2001) Limits on the accretion rates onto massive black holes in nearby galaxies. Astrophys J 547: 731–739ADSGoogle Scholar
  114. Dicke RH, Peebles PJE, Roll PG, Wilkinson DT (1965) Cosmic black-body radiation. Astrophys J 142: 414–419ADSGoogle Scholar
  115. Dobbs M, Halverson NW, Ade PAR et al (2006) APEX-SZ first light and instrument status. New Astron Rev 50: 960–968ADSGoogle Scholar
  116. Doroshkevich AG, Longair MS, Zeldovich YB (1970) The evolution of radio sources at large redshifts. Mon Not R Astron Soc 147: 139–148ADSGoogle Scholar
  117. Drinkwater MJ, Webster RL, Francis PJ et al (1997) The Parkes half-jansky flat-spectrum sample. Mon Not R Astron Soc 284: 85–125ADSGoogle Scholar
  118. Dunlop JS, Peacock JA (1990) The redshift cut-off in the luminosity function of radio galaxies and quasars. Mon Not R Astro Soc 247: 19ADSGoogle Scholar
  119. Dunlop JS, McLure RJ, Kukula MJ et al (2003) Quasars, their host galaxies and their central black holes. Mon Not R Astron Soc 340: 1095–1135ADSGoogle Scholar
  120. Eales S (1993) Direct construction of the galaxy luminosity function as a function of redshift. Astrophys J 404: 51–62ADSGoogle Scholar
  121. Edge DO, Shakeshaft JR, McAdam WB, Baldwin JE, Archer S (1959) A survey of radio sources at a frequency of 159 Mc/s. Mon Not R Astron Soc 68: 37–60ADSGoogle Scholar
  122. Edge AC, Pooley G, Jones M, Grainge K, Saunders R (1998) GPS sources with high peak frequencies. In: Zensus JA, Taylor GB, Wrobel JM (eds) IAU Colloq. 164: radio emission from galactic and extragalactic compact sources. Astronomical Society of the Pacific Conference Series, vol 144. Astronomical Society of the Pacific, San Francisco, p 187Google Scholar
  123. Fabian AC, Rees MJ (1995) The accretion luminosity of a massive black hole in an elliptical galaxy. Mon Not R Astron Soc 277: L55–L58ADSGoogle Scholar
  124. Fan X, Hennawi JF, Richards GT et al (2004) A survey of z ≥  5.7 quasars in the sloan digital sky survey. III. Discovery of five additional quasars. Astron J 128: 515–522ADSGoogle Scholar
  125. Fanaroff BL, Riley JM (1974) The morphology of extragalactic radio sources of high and low luminosity. Mon Not R Astron Soc 167: 31P–36PADSGoogle Scholar
  126. Fanti C, Fanti R, Dallacasa D et al (1995) Are compact steep-spectrum sources young?. Astron Astrophys 302: 317ADSGoogle Scholar
  127. Felten JE (1976) On Schmidt’s Vm estimator and other estimators of luminosity functions. Astrophys J 207: 700–709ADSGoogle Scholar
  128. Feretti L (2008) Radio emission in clusters and connection to X-ray emission. Memorie della Societa Astronomica Italiana 79: 176ADSGoogle Scholar
  129. Ferrarese L, Ford H (2005) Supermassive black holes in galactic nuclei: past, present and future research. Space Sci Rev 116: 523–624ADSGoogle Scholar
  130. Fixsen DJ, Kogut A, Levin S et al (2009) ARCADE 2 measurement of the extra-galactic sky temperature at 3–90 GHz. ArXiv e-prints 0901.0555Google Scholar
  131. Fomalont EB, Kellermann KI, Wall JV, Weistrop D (1984) A deep 6-centimeter radio source survey. Science 225: 23–28ADSGoogle Scholar
  132. Fomalont EB, Kellermann KI, Cowie LL et al (2006) The radio/optical catalog of the SSA 13 field. Astrophys J 167(Suppl): 103–160Google Scholar
  133. Fossati G, Maraschi L, Celotti A, Comastri A, Ghisellini G (1998) A unifying view of the spectral energy distributions of blazars. Mon Not R Astron Soc 299: 433–448ADSGoogle Scholar
  134. Friedman RB, QUaD Collaboration (2009) Small angular scale CMB temperature anisotropy observations from the QUaD telescope. In American Astronomical Society Meeting Abstracts, vol 213. American Astronomical Society, p 340.06Google Scholar
  135. Garrett MA (2002) The FIR/radio correlation of high redshift galaxies in the region of the HDF-N. Astron Astrophys 384: L19–L22ADSGoogle Scholar
  136. Gavazzi G, Cocito A, Vettolani G (1986) On the dependence of far-infrared and radio continuum luminosities on Hubble type in spiral galaxies. Astrophys J Lett 305: L15–L18ADSGoogle Scholar
  137. Gear WK, Stevens JA, Hughes DH et al (1994) A comparison of the radio/submillimetre spectra of Bl-lacertae objects and flat spectrum radio quasars. Mon Not R Astron Soc 267: 167ADSGoogle Scholar
  138. Geisbüsch J, Kneissl R, Hobson M (2005) Sunyaev-Zel’dovich cluster survey simulations for Planck. Mon Not R Astron Soc 360: 41–59ADSGoogle Scholar
  139. Gendre MA, Wall JV (2008) The combined NVSS-FIRST galaxies (CoNFIG) sample—I. Sample definition, classification and evolution. Mon Not R Astro Soc 390: 819–828ADSGoogle Scholar
  140. Gervasi M, Tartari A, Zannoni M, Boella G, Sironi G (2008) The contribution of the unresolved extragalactic radio sources to the brightness temperature of the sky. Astrophys J 682: 223–230ADSGoogle Scholar
  141. Ghisellini G, Celotti A, Fossati G, Maraschi L, Comastri A (1998) A theoretical unifying scheme for gamma-ray bright blazars. Mon Not R Astron Soc 301: 451–468ADSGoogle Scholar
  142. Giannantonio T, Scranton R, Crittenden RG et al (2008) Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications. Phys Rev D 77: 123520ADSGoogle Scholar
  143. Ginzburg VL (1951) Cosmic rays as the source of galactic radio emission. Dokl Akad Nauk SSSR 76: 377Google Scholar
  144. Giommi P, Massaro E, Chiappetti L et al (1999) Synchrotron and inverse Compton variability in the BL Lacertae object S5 0716+714. Astron Astrophys 351: 59–64ADSGoogle Scholar
  145. Gower JFR (1966) The source counts from the 4C survey. Mon Not R Astro Soc 133: 151ADSGoogle Scholar
  146. Granato GL, De Zotti G, Silva L, Bressan A, Danese L (2004) A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys J 600: 580–594ADSGoogle Scholar
  147. Gregory PC, Scott WK, Douglas K, Condon JJ (1996) The GB6 catalog of radio sources. Astrophys J 103(Suppl): 427ADSGoogle Scholar
  148. Griffith MR, Wright AE (1993) The Parkes-MIT-NRAO (PMN) surveys. I: the 4850 MHz surveys and data reduction. Astron J 105: 1666–1679ADSGoogle Scholar
  149. Grueff G, Vigotti M (1977) On the cosmological evolution of extragalactic radio sources. Astron Astrophys 54: 475–484ADSGoogle Scholar
  150. Gruppioni C, Mignoli M, Zamorani G (1999) Optical identifications and spectroscopy of a faint radio source sample: the nature of the sub-mJy population. Mon Not R Astro Soc 304: 199–217ADSGoogle Scholar
  151. Gruppioni C, Pozzi F, Zamorani G et al (2003) The radio-mid-infrared correlation and the contribution of 15-μm galaxies to the 1.4-GHz source counts. Mon Not R Astro Soc 341: L1–L6ADSGoogle Scholar
  152. Guo Q, Whit SDM (2008) Galaxy growth in the concordance ΛCDM cosmology. Mon Not R Astron Soc 384: 2–10ADSGoogle Scholar
  153. Hales SEG, Baldwin JE, Warner PJ (1993) The 6C survey of radio sources. VI—the continuous zone delta between 30 deg and 51 deg, alpha between 0 H and 09 H 05 M and alpha between 22 H 35 M and 24 H. Mon Not R Astron Soc 263: 25–30ADSGoogle Scholar
  154. Hales SEG, Waldram EM, Rees N, Warner PJ (1995) A revised machine-readable source list for the Rees 38-MHz survey. Mon Not R Astron Soc 274: 447–451ADSGoogle Scholar
  155. Hales SEG, Riley JM, Waldram EM, Warner PJ, Baldwin JE (2007) A final non-redundant catalogue for the 7C 151-MHz survey. Mon Not R Astron Soc 382: 1639–1642ADSGoogle Scholar
  156. Halverson NW, Lanting T, Ade PAR et al (2009) Sunyaev–Zel’Dovich effect observations of the bullet cluster (1E 0657–56) with APEX-SZ. Astrophys J 701: 42–51ADSGoogle Scholar
  157. Hasinger G, Miyaji T, Schmidt M (2005) Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron Astrophys 441: 417–434ADSGoogle Scholar
  158. Haslam CGT, Salter CJ, Stoffel H, Wilson WE (1982) A 408 MHz all-sky continuum survey. II: the atlas of contour maps. Astron Astrophys 47(Suppl): 1ADSGoogle Scholar
  159. Hazard C, Mackey MB, Shimmins AJ (1963) Investigation of the radio source 3C 273 by the method of lunar occultations. Nature 197: 1037–1039ADSGoogle Scholar
  160. Helou G, Soifer BT, Rowan-Robinson M (1985) Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies. Astrophys J Lett 298: L7–L11ADSGoogle Scholar
  161. Hinshaw G, Naeye R (2008) Decoding the oldest light in the universe. Sky Telesc 115: 050000Google Scholar
  162. Hinshaw G, Nolta MR, Bennett CL et al (2007) Three-year Wilkinson microwave anisotropy probe (WMAP) observations: temperature analysis. Astrophys J 170(Suppl): 288–334Google Scholar
  163. Ho S, Hirata C, Padmanabhan N, Seljak U, Bahcall N (2008) Correlation of CMB with large-scale structure. I. Integrated Sachs–Wolfe tomography and cosmological implications. Phys Rev D 78: 043519ADSGoogle Scholar
  164. Hodapp KW, Siegmund WA, Kaiser N, et al (2004) Optical design of the Pan-STARRS telescopes. In: Oschmann JM Jr (eds) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference, vol 5489. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 667–678Google Scholar
  165. Holdaway MA, Rupen MP, Knapp GR, West S, Burton WB (1994) Arcminute resolution VLA imaging of high latitude HI. In: Bulletin of the American Astronomical Society, vol 26. American Astronomical Society, p 1328Google Scholar
  166. Hook IM, Shaver PA, McMahon RG (1998) The evolution of radio-loud quasars at high redshift. In: D’Odorico S, Fontana A, Giallongo E (eds) The young universe: galaxy formation and evolution at intermediate and high redshift. Astronomical Society of the Pacific Conference Series, vol 146. Astronomical Society of the Pacific, p 17Google Scholar
  167. Hopkins AM, Mobasher B, Cram L, Rowan-Robinson M (1998) The PHOENIX deep survey: 1.4-GHz source counts. Mon Not R Astro Soc 296: 839–846ADSGoogle Scholar
  168. Hopkins A, Windhorst R, Cram L, Ekers R (2000) What will the next generation radio telescope detect at 1.4 GHz?. Exp Astron 10: 419–437ADSGoogle Scholar
  169. Hopkins AM, Afonso J, Chan B et al (2003) The phoenix deep survey: the 1.4 GHz Microjansky catalog. Astron J 125: 465–477ADSGoogle Scholar
  170. Hovatta T, Lehto HJ, Tornikoski M (2008) Wavelet analysis of a large sample of AGN at high radio frequencies. Astron Astrophys 488: 897–903ADSGoogle Scholar
  171. Hoyle F (1948) A new model for the expanding universe. Mon Not R Astro Soc 108: 372zbMATHADSGoogle Scholar
  172. Hoyle F, Fowler WA (1963) On the nature of strong radio sources. Mon Not R Astro Soc 125: 169ADSGoogle Scholar
  173. Huynh MT, Jackson CA, Norris RP, Prandoni I (2005) Radio observations of the hubble deep field-south region. II. The 1.4 GHz catalog and source counts. Astron J 130: 1373–1388ADSGoogle Scholar
  174. Huynh MT, Jackson CA, Norris RP, Fernandez-Soto A (2008) Radio observations of the hubble deep field-south region. IV. Optical properties of the faint radio population. Astron J 135: 2470–2495ADSGoogle Scholar
  175. Impey CD, Neugebauer G (1988) Energy distributions of blazars. Astron J 95: 307–351ADSGoogle Scholar
  176. Ivison RJ, Chapman SC, Faber SM et al (2007) AEGIS20: a radio survey of the extended groth strip. Astrophys J Lett 660: L77–L80ADSGoogle Scholar
  177. Jackson CA, Wall JV (1999) Extragalactic radio-source evolution under the dual-population unification scheme. Mon Not R Astro Soc 304: 160–174ADSGoogle Scholar
  178. Jackson CA, Wall JV (2001) Extragalactic radio source evolution and unification: clues to the demographics of blazars. In: Padovani P, Urry CM (eds) Blazar demographics and physics. Astronomical Society of the Pacific Conference Series, vol 227. Astronomical Society of the Pacific, p 242Google Scholar
  179. Jarvis MJ, Rawlings S (2000) On the redshift cut-off for flat-spectrum radio sources. Mon Not R Astro Soc 319: 121–136ADSGoogle Scholar
  180. Jarvis MJ, Rawlings S, Willott CJ et al (2001) On the redshift cut-off for steep-spectrum radio sources. Mon Not R Astro Soc 327: 907–917ADSGoogle Scholar
  181. Jarvis MJ, Teimourian H, Simpson C et al (2009) The discovery of a typical radio galaxy at z = 4.88. ArXiv e-prints 0907.1447Google Scholar
  182. Jennison RC, Das Gupta MK (1953) Fine structure of the extra-terrestrial radio source Cygnus 1. Nature 172: 996ADSGoogle Scholar
  183. Johnston S, Taylor R, Bailes M et al (2008) Science with ASKAP. The Australian square-kilometre-array pathfinder. Exp Astron 22: 151–273ADSGoogle Scholar
  184. Jones ME, Edge AC, Grainge K et al (2005) H 0 from an orientation-unbiased sample of Sunyaev–Zel’dovich and X-ray clusters. Mon Not R Astro Soc 357: 518–526ADSGoogle Scholar
  185. Kapahi VK (1981) Westerbork observations of radio sources in the 5 GHz ‘S4’ survey. Astron Astrophys 43(Suppl): 381–393ADSGoogle Scholar
  186. Kellermann KI (1964) The spectra of non-thermal radio sources. Astrophys J 140: 969ADSGoogle Scholar
  187. Kellermann KI (1966) On the interpretation of radio-source spectra and the evolution of radio galaxies and quasi-stellar sources. Astrophys J 146: 621ADSGoogle Scholar
  188. Kellermann KI, Pauliny-Toth IIK (1969) The spectra of opaque radio sources. Astrophys J Lett 155: L71ADSGoogle Scholar
  189. Kellermann KI, Wall JV (1987) Radio source counts and their interpretation. In: Hewitt A, Burbidge G, Fang LZ (eds) Observational cosmology. IAU Symposium, vol 124. Reidel, Dordrecht, pp 545–562Google Scholar
  190. Kellermann KI, Pauliny-Toth IIK, Williams PJS (1969) The spectra of radio sources in the revised 3c catalogue. Astrophys J 157: 1ADSGoogle Scholar
  191. King AJ, Rowan-Robinson M (2004) Linking radio to infrared: a radio source count model. Mon Not R Astro Soc 349: 1353–1360ADSGoogle Scholar
  192. Klamer IJ, Ekers RD, Bryant JJ et al (2006) A search for distant radio galaxies from SUMSS and NVSS—III. Radio spectral energy distributions and the z-α correlation. Mon Not R Astro Soc 371: 852–866ADSGoogle Scholar
  193. Kosowsky A (2006) The atacama cosmology telescope project: a progress report. New Astron Rev 50: 969–976ADSGoogle Scholar
  194. Kovac JM, Leitch EM, Pryke C et al (2002) Detection of polarization in the cosmic microwave background using DASI. Nature 420: 772–787ADSGoogle Scholar
  195. Krolik JH, Chen W (1991) Steep radio spectra in high-redshift radio galaxies. Astron J 102: 1659–1662ADSGoogle Scholar
  196. Lacy M, Hill GJ, Kaiser ME, Rawlings S (1993) A complete sample of sources in the north ecliptic CAP selected at 38-MHZ—part 2: CCD observations and their implications. Mon Not R Astro Soc 263: 707ADSGoogle Scholar
  197. Lagache G, Puget J-L, Dole H (2005) Dusty infrared galaxies: sources of the cosmic infrared background. Annu Rev Astron Astrophys 43: 727–768ADSGoogle Scholar
  198. Laing RA, Peacock JA (1980) The relation between radio luminosity and spectrum for extended extragalactic radio sources. Mon Not R Astron Soc 190: 903–923ADSGoogle Scholar
  199. Laing RA, Riley JM, Longair MS (1983) Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon Not R Astro Soc 204: 151–187ADSGoogle Scholar
  200. Lancaster K, Birkinshaw M, Gawroński MP et al (2007) Preliminary Sunyaev–Zel’dovich observations of galaxy clusters with OCRA-p. Mon Not R Astro Soc 378: 673–680ADSGoogle Scholar
  201. Landt H, Perlman ES, Padovani P (2006) VLA observations of a new population of blazars. Astrophys J 637: 183–199ADSGoogle Scholar
  202. Lapi A, Cavaliere A, De Zotti G (2003) Sunyaev–Zel’dovich effects from quasars in galaxies and groups. Astrophys J Lett 597: L93–L96ADSGoogle Scholar
  203. Lapi A, Shankar F, Mao J et al (2006) Quasar luminosity functions from joint evolution of black holes and host galaxies. Astrophys J 650: 42–56ADSGoogle Scholar
  204. Leahy JP, Muxlow TWB, Stephens PW (1989) 151-MHz and 1.5-GHz observations of bridges in powerful extragalactic radio sources. Mon Not R Astro Soc 239: 401–440ADSGoogle Scholar
  205. Ledlow MJ, Owen FN (1996) 20 cm VLA survey of Abell clusters of galaxies. VI. Radio/optical luminosity functions. Astron J 112: 9ADSGoogle Scholar
  206. Limber DN (1953) The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. Astrophys J 117: 134MathSciNetADSGoogle Scholar
  207. Lister ML (2008) Parsec-scale jet-environment interactions in AGN. In: Rector TA, De Young DS (eds) Extragalactic jets: theory and observation from radio to gamma ray. Astronomical Society of the Pacific Conference Series, vol 386. Astronomical Society of the Pacific, p 240Google Scholar
  208. Liu Y, Zhang SN (2007) The Lorentz factor distribution and luminosity function of relativistic jets in AGNs. Astrophys J 667: 724–730ADSGoogle Scholar
  209. Lo KY, Chiueh TH, Martin RN et al (2001) AMiBA: array for microwave background anistropy. In: Wheeler JC, Martel H (eds) 20th Texas Symposium on relativistic astrophysics. American Institute of Physics Conference Series, vol 586, p 172Google Scholar
  210. Longair MS (1966) On the interpretation of radio source counts. Mon Not R Astro Soc 133: 421ADSGoogle Scholar
  211. Longair MS, Scheuer PAG (1970) The luminosity-volume test for quasi-stellar objects. Mon Not R Astro Soc 151: 45ADSGoogle Scholar
  212. López-Caniego M, González-Nuevo J, Herranz D et al (2007) Nonblind catalog of extragalactic point sources from the Wilkinson microwave anisotropy probe (WMAP) first 3 year survey data. Astrophys J 170(Suppl): 108–125Google Scholar
  213. Lovell JEJ, Jauncey DL, Senkbeil C et al (2007) MASIV: the microarcsecond scintillation-induced variability survey. In: Haverkorn M, Goss WM (eds) SINS: small ionized and neutral structures in the diffuse interstellar medium. Astronomical Society of the Pacific Conference Series, vol 365. Astronomical Society of the Pacific, San Francisco, p 279Google Scholar
  214. Lynden-Bell D (1969) Nature 223: 690ADSGoogle Scholar
  215. Lynden-Bell D (1971) A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon Not R Astro Soc 155: 95ADSGoogle Scholar
  216. Machalski J, Godlowski W (2000) 1.4 GHz luminosity function of galaxies in the Las Campanas redshift survey and its evolution. Astron Astrophys 360: 463–471ADSGoogle Scholar
  217. Mack K-H, Klein U, O’Dea CP, Willis AG (1997) Multi-frequency radio continuum mapping of giant radio galaxies. Astron Astrophys Suppl 123: 423–444ADSGoogle Scholar
  218. Magliocchetti M, Maddox SJ, Lahav O, Wall JV (1998) Variance and skewness in the FIRST survey. Mon Not R Astro Soc 300: 257–268ADSGoogle Scholar
  219. Magliocchetti M, Maddox SJ, Lahav O, Wall JV (1999) Constraints on the clustering, biasing and redshift distribution of radio sources. Mon Not R Astron Soc 306: 943–953ADSGoogle Scholar
  220. Magliocchetti M, Maddox SJ, Jackson CA et al (2002) The 2dF galaxy redshift survey: the population of nearby radio galaxies at the 1-mJy level. Mon Not R Astro Soc 333: 100–120ADSGoogle Scholar
  221. Magliocchetti M, Maddox SJ, Hawkins E et al (2004) The 2dF galaxy redshift survey: clustering properties of radio galaxies. Mon Not R Astro Soc 350: 1485–1494ADSGoogle Scholar
  222. Majumdar S, Nath BB, Chiba M (2001) Sunyaev–Zel’dovich distortion from early galactic winds. Mon Not R Astro Soc 324: 537–546ADSGoogle Scholar
  223. Maraschi L, Ghisellini G, Celotti A (1992) A jet model for the gamma-ray emitting blazar 3C 279. Astrophys J Lett 397: L5–L9ADSGoogle Scholar
  224. Mason BS, Pearson TJ, Readhead ACS et al (2003) The anisotropy of the microwave background to l = 3500: deep field observations with the cosmic background imager. Astrophys J 591: 540–555ADSGoogle Scholar
  225. Mason BS, Weintraub LC, Sievers JL et al (2009) A 31 GHz survey of low-frequency selected radio sources. ArXiv e-prints 0901.4330Google Scholar
  226. Massardi M, Ekers RD, Murphy T et al (2008a) The Australia telescope 20-GHz (AT20G) survey: the bright source sample. Mon Not R Astro Soc 384: 775–802ADSGoogle Scholar
  227. Massardi M, Lapi A, de Zotti G, Ekers RD, Danese L (2008b) Observability of the virialization phase of spheroidal galaxies with radio arrays. Mon Not R Astro Soc 384: 701–710ADSGoogle Scholar
  228. Massardi M, Bonaldi A, Negrello M, Ricciardi S, Raccanelli A, De Zotti G (2009a) A model for the cosmological evolution of low frequency radio sources. Mon Not R Astron Soc (submitted)Google Scholar
  229. Massardi M, López-Caniego M, González-Nuevo J et al (2009b) Blind and non-blind source detection in WMAP 5-year maps. Mon Not R Astro Soc 392: 733–742ADSGoogle Scholar
  230. Masson CR, Wall JV (1977) The cosmological evolution of flat-spectrum quasars. Mon Not R Astro Soc 180: 193–206ADSGoogle Scholar
  231. Matarrese S, Coles P, Lucchin F, Moscardini L (1997) Redshift evolution of clustering. Mon Not R Astro Soc 286: 115–132ADSGoogle Scholar
  232. Mather JC, Fixsen DJ, Shafer RA, Mosier C, Wilkinson DT (1999) Calibrator design for the COBE far-infrared absolute spectrophotometer (FIRAS). Astrophys J 512: 511–520ADSGoogle Scholar
  233. Mauch T, Sadler EM (2007) Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN. Mon Not R Astro Soc 375: 931–950ADSGoogle Scholar
  234. Mauch T, Murphy T, Buttery HJ et al (2003) SUMSS: a wide-field radio imaging survey of the southern sky—II. The source catalogue. Mon Not R Astro Soc 342: 1117–1130ADSGoogle Scholar
  235. McEwen JD, Vielva P, Hobson MP, Martínez-González E, Lasenby AN (2007) Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. Mon Not R Astro Soc 376: 1211–1226ADSGoogle Scholar
  236. McEwen JD, Wiaux Y, Hobson MP, Vandergheynst P, Lasenby AN (2008) Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures. Mon Not R Astron Soc 384: 1289–1300ADSGoogle Scholar
  237. McGreer ID, Becker RH, Helfand DJ, White RL (2006) Discovery of a z = 6.1 radio-loud quasar in the NOAO deep wide field survey. Astrophys J 652: 157–162ADSGoogle Scholar
  238. McLure RJ, Willott CJ, Jarvis MJ et al (2004) A sample of radio galaxies spanning three decades in radio luminosity—I. The host galaxy properties and black hole masses. Mon Not R Astro Soc 351: 347–367ADSGoogle Scholar
  239. Mesa D, Baccigalupi C, De Zotti G et al (2002) Polarization properties of extragalactic radio sources and their contribution to microwave polarization fluctuations. Astron Astrophys 396: 463–471ADSGoogle Scholar
  240. Mészáros P (1999) Gamma-ray burst afterglows and their implications. Astron Astrophys 138(Suppl): 533–536Google Scholar
  241. Miley G, De Breuck C (2008) Distant radio galaxies and their environments. Astron Astrophys Rev 15: 67–144ADSGoogle Scholar
  242. Mills BY, Slee OB, Hill ER (1958) A catalogue of radio sources between declinations +10° and −20°. Aust J Phys 11: 360ADSGoogle Scholar
  243. Minkowski R (1960) A new distant cluster of galaxies. PASP 72: 354ADSGoogle Scholar
  244. Mitchell KJ, Condon JJ (1985) A confusion-limited 1.49-GHz VLA survey centered on alpha = 13 H 00 M 37 s, delta = +30 deg 34 arcmin. Astron J 90: 1957–1966ADSGoogle Scholar
  245. Moffet AT, Gubbay J, Robertson DS, Legg AJ (1972) High resolution observations of variable radio sources. In: Evans DS, Wills D, Wills BJ (eds) External galaxies and quasi-stellar objects. IAU Symposium, vol 44. Reidel, Dordrecht, p 228Google Scholar
  246. Moscardini L, Coles P, Lucchin F, Matarrese S (1998) Modelling galaxy clustering at high redshift. Mon Not R Astro Soc 299: 95–110ADSGoogle Scholar
  247. Moss D, Seymour N, McHardy IM et al (2007) A deep giant metre-wave radio telescope 610-MHz survey of the 1H XMM-Newton/Chandra survey field. Mon Not R Astro Soc 378: 995–1006ADSGoogle Scholar
  248. Muchovej S, Mroczkowski T, Carlstrom JE et al (2007) Observations of high-redshift X-ray selected clusters with the Sunyaev–Zel’dovich array. Astrophys J 663: 708ADSGoogle Scholar
  249. Murphy T, Mauch T, Green A et al (2007) The second epoch Molonglo galactic plane survey: compact source catalogue. Mon Not R Astro Soc 382: 382–392ADSGoogle Scholar
  250. Muxlow TWB, Richards AMS, Garrington ST et al (2005) High-resolution studies of radio sources in the hubble deep and flanking fields. Mon Not R Astro Soc 358: 1159–1194ADSGoogle Scholar
  251. Natarajan P, Sigurdsson S (1999) Sunyaev–Zeldovich decrements with no clusters?. Mon Not R Astro Soc 302: 288–292ADSGoogle Scholar
  252. Negrello M, Magliocchetti M, De Zotti G (2006) The large-scale clustering of radio sources. Mon Not R Astro Soc 368: 935–942ADSGoogle Scholar
  253. Negrello M, Perrotta F, González-Nuevo J et al (2007) Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources. Mon Not R Astro Soc 377: 1557–1568ADSGoogle Scholar
  254. Nieppola E, Tornikoski M, Valtaoja E (2006) Spectral energy distributions of a large sample of BL Lacertae objects. Astron Astrophys 445: 441–450ADSGoogle Scholar
  255. Nieppola E, Valtaoja E, Tornikoski M, Hovatta T, Kotiranta M (2008) Blazar sequence: an artefact of Doppler boosting. Astron Astrophys 488: 867–872ADSGoogle Scholar
  256. O’Dea CP (1998) The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ Astron Soc Pacific 110: 493–532ADSGoogle Scholar
  257. Oh SP (1999) Observational signatures of the first luminous objects. Astrophys J 527: 16–30ADSGoogle Scholar
  258. Oh SP, Cooray A, Kamionkowski M (2003) Sunyaev–Zeldovich fluctuations from the first stars?. Mon Not R Astro Soc 342: L20–L24ADSGoogle Scholar
  259. Orienti M, Dallacasa D (2008) Constraining the nature of high frequency peakers. II. Polarization properties. Astron Astrophys 479: 409–415ADSGoogle Scholar
  260. Orienti M, Dallacasa D, Tinti S, Stanghellini C (2006) VLBA images of high frequency peakers. Astron Astrophys 450: 959–970ADSGoogle Scholar
  261. Orienti M, Dallacasa D, Stanghellini C (2007) Constraining the nature of high frequency peakers. The spectral variability. Astron Astrophys 475: 813–820ADSGoogle Scholar
  262. Orr MJL, Browne IWA (1982) Relativistic beaming and quasar statistics. Mon Not R Astro Soc 200: 1067–1080ADSGoogle Scholar
  263. Overzier RA, Röttgering HJA, Rengelink RB, Wilman RJ (2003) The spatial clustering of radio sources in NVSS and FIRST: implications for galaxy clustering evolution. Astron Astrophys 405: 53–72ADSGoogle Scholar
  264. Owen FN, Morrison GE (2008) The deep swire field. I. 20 cm continuum radio observations: a crowded sky. Astron J 136: 1889–1900ADSGoogle Scholar
  265. Pace F, Maturi M, Bartelmann M et al (2008) Statistical properties of SZ and X-ray cluster detections. Astron Astrophys 483: 389–400ADSGoogle Scholar
  266. Padovani P (2007) The blazar sequence: validity and predictions. APSS 309: 63–71ADSGoogle Scholar
  267. Padovani P, Urry CM (1992) Luminosity functions, relativistic beaming, and unified theories of high-luminosity radio sources. Astrophys J 387: 449–457ADSGoogle Scholar
  268. Padovani P, Perlman ES, Landt H, Giommi P, Perri M (2003) What types of jets does nature make? A new population of radio quasars. Astrophys J 588: 128–136ADSGoogle Scholar
  269. Padovani P, Giommi P, Landt H, Perlman ES (2007) The deep X-ray radio blazar survey. III. Radio number counts, evolutionary properties, and luminosity function of blazars. Astrophys J 662: 182–192ADSGoogle Scholar
  270. Padovani P, Mainieri V, Tozzi P, Kellermann KI, Fomalont EB, Miller N, Rosati P, Shaver P (2009) The very large array survey of the Chandra Deep Field South. IV. Source population. Astrophys J 694: 235–246ADSGoogle Scholar
  271. Pauliny-Toth IIK, Wade CM, Heeschen DS (1966) Positions and flux densities of radio sources. Astrophys J 13(Suppl): 65ADSGoogle Scholar
  272. Peacock JA (1985) The high-redshift evolution of radio galaxies and quasars. Mon Not R Astro Soc 217: 601–631ADSGoogle Scholar
  273. Peacock JA, Gull SF (1981) Multifrequency models for the cosmological evolution of extragalactic radio sources. Mon Not R Astro Soc 196: 611–633ADSGoogle Scholar
  274. Peacock JA, Wall JV (1982) Bright extragalactic radio sources at 2.7 GHz. II—observations with the Cambridge 5-km telescope. Mon Not R Astro Soc 198: 843–860ADSGoogle Scholar
  275. Peacock JA, Nicholson D (1991) The large-scale clustering of radio galaxies. Mon Not R Astro Soc 253: 307–319ADSGoogle Scholar
  276. Peebles PJE (1980) The large-scale structure of the universe Research supported by the National Science Foundation. Princeton University Press, Princeton, p 435Google Scholar
  277. Peebles PJE, Page LA, Partridge RB (2009) Finding the Big Bang. Cambridge University Press, CambridgeGoogle Scholar
  278. Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142: 419ADSGoogle Scholar
  279. Pérez-González PG, Rieke GH, Villar V et al (2008) The stellar mass assembly of galaxies from z = 0 to z = 4: analysis of a sample selected in the rest-frame near-infrared with spitzer. Astrophys J 675: 234–261ADSGoogle Scholar
  280. Pierpaoli E, Perna R (2004) Radio emission from early-type galaxies and cosmic microwave background experiments. Mon Not R Astro Soc 354: 1005–1010ADSGoogle Scholar
  281. Pietrobon D, Balbi A, Marinucci D (2006) Integrated Sachs–Wolfe effect from the cross correlation of WMAP 3-year and the NRAO VLA sky survey data: new results and constraints on dark energy. Phys Rev D 74: 043524ADSGoogle Scholar
  282. Platania P, Burigana C, De Zotti G, Lazzaro E, Bersanelli M (2002) Sunyaev–Zel’dovich effect from quasar-driven blast waves. Mon Not R Astro Soc 337: 242–246ADSGoogle Scholar
  283. Polatidis A, Wilkinson PN, Xu W et al (1999) Compact symmetric objects in a complete flux density limited sample. New Astron Rev 43: 657–661ADSGoogle Scholar
  284. Porciani C, Magliocchetti M, Norberg P (2004) Cosmic evolution of quasar clustering: implications for the host haloes. Mon Not R Astro Soc 355: 1010–1030ADSGoogle Scholar
  285. Prandoni I, Parma P, Wieringa MH et al (2006) The ATESP 5 GHz radio survey. I. Source counts and spectral index properties of the faint radio population. Astron Astrophys 457: 517–529ADSGoogle Scholar
  286. Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys J 187: 425–438ADSGoogle Scholar
  287. Quataert E, Narayan R (1999) Spectral models of advection-dominated accretion flows with winds. Astrophys J 520: 298–315ADSGoogle Scholar
  288. Raccanelli A, Bonaldi A, Negrello M et al (2008) A reassessment of the evidence of the integrated Sachs–Wolfe effect through the WMAP-NVSS correlation. Mon Not R Astro Soc 386: 2161–2166ADSGoogle Scholar
  289. Readhead ACS, Taylor GB, Pearson TJ, Wilkinson PN (1996) Compact symmetric objects and the evolution of powerful extragalactic radio sources. Astrophys J 460: 634ADSGoogle Scholar
  290. Rees MJ (1967) Studies in radio source structure-I. A relativistically expanding model for variable quasi-stellar radio sources. Mon Not R Astro Soc 135: 345ADSGoogle Scholar
  291. Rees N (1990) A deep 38-MHz radio survey of the area delta greater than +60 degrees. Mon Not R Astro Soc 244: 233–246ADSGoogle Scholar
  292. Rees MJ, Ostriker JP (1977) Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon Not R Astro Soc 179: 541–559ADSGoogle Scholar
  293. Rees MJ, Begelman MC, Blandford RD, Phinney ES (1982) Ion-supported tori and the origin of radio jets. Nature 295: 17–21ADSGoogle Scholar
  294. Rengelink R (1999) Clustering evolution in the radio surveys WENSS and GB6. In: Röttgering HJA, Best PN, Lehnert MD (eds) The most distant radio galaxies. Royal Netherlands Academy of Arts and Sciences, The Netherlands, p 399Google Scholar
  295. Rengelink RB, Tang Y, de Bruyn AG et al (1997) The westerbork northern sky survey (WENSS), I. A 570 square degree mini-survey around the north ecliptic pole. Astron Astrophys 124(Suppl): 259–280ADSGoogle Scholar
  296. Ricci R, Sadler EM, Ekers RD et al (2004) First results from the Australia telescope compact array 18-GHz pilot survey. Mon Not R Astron Soc 354: 305–320ADSGoogle Scholar
  297. Richards EA (2000) The nature of radio emission from distant galaxies: the 1.4 GHz observations. Astrophys J 533: 611–630ADSGoogle Scholar
  298. Rigby EE, Best PN, Snellen IAG (2008) A sample of mJy radio sources at 1.4 GHz in the Lynx and Hercules fields—II. Cosmic evolution of the space density of FR I radio sources. Mon Not R Astro Soc 385: 310–334ADSGoogle Scholar
  299. Robertson JG (1978) Free-form analysis of the cosmological evolution of radio sources. Mon Not R Astron Soc 182: 617–628ADSGoogle Scholar
  300. Robertson JG (1980) Free-form analysis of the cosmological evolution of radio sources. II—use of the luminosity distribution as data for a self-consistent luminosity function. Mon Not R Astro Soc 190: 143–161ADSGoogle Scholar
  301. Rosa-González D, Terlevich R, Terlevich E, Friaça A, Gaztaņaga E (2004) On the detectability of the Sunyaev–Zel’dovich effect of massive young galaxies. Mon Not R Astro Soc 348: 669–678ADSGoogle Scholar
  302. Rottgering HJA, Braun R, Barthel PD et al (2006) LOFAR—opening up a new window on the Universe. ArXiv Astrophysics e-prints arXiv:astro-ph/0610596Google Scholar
  303. Rowan-Robinson M (1968) The determination of the evolutionary properties of quasars by means of the luminosity-volume test. Mon Not R Astro Soc 138: 445ADSGoogle Scholar
  304. Rowan-Robinson M (1970) Extra-galactic radio source-1. The interpretation of radio source-counts. Mon Not R Astro Soc 149: 365ADSGoogle Scholar
  305. Rowan-Robinson M, Benn CR, Lawrence A, McMahon RG, Broadhurst TJ (1993) The evolution of faint radio sources. Mon Not R Astro Soc 263: 123–130ADSGoogle Scholar
  306. Ryle M, Scheuer PAG (1955) Spatial distribution and the nature of radio stars. R Soc Lond Proc Ser A 230: 448–462ADSGoogle Scholar
  307. Ryle M, Clarke RW (1961) An examination of the steady-state model in the light of some recent observations of radio sources. Mon Not R Astro Soc 122: 349ADSGoogle Scholar
  308. Ryle M, Smith FG, Elsmore B (1950) A preliminary survey of the radio stars in the Northern Hemisphere. Mon Not R Astron Soc 110: 508ADSGoogle Scholar
  309. Sadler EM, Jackson CA, Cannon RD et al (2002) Radio sources in the 2dF galaxy redshift survey—II. Local radio luminosity functions for AGN and star-forming galaxies at 1.4 GHz. Mon Not R Astro Soc 329: 227–245ADSGoogle Scholar
  310. Sadler EM, Ricci R, Ekers RD et al (2006) The properties of extragalactic radio sources selected at 20GHz. Mon Not R Astro Soc 371: 898–914ADSGoogle Scholar
  311. Sadler EM, Cannon RD, Mauch T et al (2007) Radio galaxies in the 2SLAQ luminous red galaxy survey—I. The evolution of low-power radio galaxies to z˜ 0.7. Mon Not R Astro Soc 381: 211–227ADSGoogle Scholar
  312. Sadler EM, Ricci R, Ekers RD et al (2008) The extragalactic radio-source population at 95GHz. Mon Not R Astron Soc 385: 1656–1672ADSGoogle Scholar
  313. Saunders W, Rowan-Robinson M, Lawrence A et al (1990) The 60-micron and far-infrared luminosity functions of IRAS galaxies. Mon Not R Astro Soc 242: 318–337ADSGoogle Scholar
  314. Scheuer PAG (1957) A statistical method for analysing observations of faint radio stars. In: Proceedings of the Cambridge Philosophical Society, vol 53, pp 764–773Google Scholar
  315. Scheuer PAG (1974) Models of extragalactic radio sources with a continuous energy supply from a central object. Mon Not R Astro Soc 166: 513–528ADSGoogle Scholar
  316. Scheuer PAG (1987) Tests of beaming models. In: Zensus JA, Pearson TJ (eds) Superluminal radio sources. Cambridge University Press, Cambridge, pp 104–113Google Scholar
  317. Scheuer PAG, Readhead ACS (1979) Superluminally expanding radio sources and the radio-quiet QSOs. Nature 277: 182–185ADSGoogle Scholar
  318. Schmidt M (1963) 3C 273 : a star-like object with large red-shift. Nature 197: 1040ADSGoogle Scholar
  319. Schmidt M (1965) Large redshifts of five quasi-stellar sources. Astrophys J 141: 1295ADSGoogle Scholar
  320. Schmidt M (1968) Space distribution and luminosity functions of quasi-stellar radio sources. Astrophys J 151: 393ADSGoogle Scholar
  321. Schmidt M (1976) On the apparent absence of evolution of quasi-stellar radio sources with flat radio spectra. Astrophys J Lett 209: L55ADSGoogle Scholar
  322. Schmidt M, Schneider DP, Gunn JE (1995) Spectrscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron J 110: 68ADSGoogle Scholar
  323. Scott SE, Dunlop JS, Serjeant S (2006) A combined re-analysis of existing blank-field SCUBA surveys: comparative 850-μm source lists, combined number counts, and evidence for strong clustering of the bright submillimetre galaxy population on arcminute scales. Mon Not R Astro Soc 370: 1057–1105ADSGoogle Scholar
  324. Seaton DB, Partridge RB (2001) Possible radio afterglow of a 1989 gamma-ray burst. Publ Astron Soc Pacific 113: 6–9ADSGoogle Scholar
  325. Seldner M., Peebles PJE (1981) Clustering of 4C radio sources. Mon Not R Astron Soc 194: 251–260ADSGoogle Scholar
  326. Seymour N, McHardy IM, Gunn KF (2004) Radio observations of the 13hXMM-Newton/ROSAT deep X-ray survey area. Mon Not R Astron Soc 352: 131–141ADSGoogle Scholar
  327. Seymour N, Dwelly T, Moss D et al (2008) The star formation history of the Universe as revealed by deep radio observations. Mon Not R Astron Soc 386: 1695–1708ADSGoogle Scholar
  328. Shakeshaft JR, Ryle M, Baldwin JE, Elsmore B, Thomson JH (1955) A survey of radio sources between declinations −38 and +83. Mon Not R Astron Soc 67: 106–154ADSGoogle Scholar
  329. Shaver PA, Pierre M (1989) Large-scale anisotropy in the sky distribution of extragalactic radio sources. Astron Astrophys 220: 35–41ADSGoogle Scholar
  330. Shaver PA, Wall JV, Kellermann KI, Jackson CA, Hawkins MRS (1996) Decrease in the space density of quasars at high redshift. Nature 384: 439–441ADSGoogle Scholar
  331. Shaver PA, Hook IM, Jackson CA, Wall JV, Kellermann KI (1999) The redshift cutoff and the quasar epoch. In: Carilli CL, Radford SJE, Menten KM, Langston GI (eds) Highly redshifted radio lines. Astronomical Society of the Pacific Conference Series, vol 156. Astronomical Society of the Pacific, p 163Google Scholar
  332. Sheth RK, Tormen G (1999) Large-scale bias and the peak background split. Mon Not R Astron Soc 308: 119–126ADSGoogle Scholar
  333. Shklovskii IS (1952) On the nature of Galactic radio emission. Astron Zh 29: 418Google Scholar
  334. Sikora M, Begelman MC, Rees MJ (1994) Comptonization of diffuse ambient radiation by a relativistic jet: the source of gamma rays from blazars?. Astrophys J 421: 153–162ADSGoogle Scholar
  335. Silverman JD, Green PJ, Barkhouse WA et al (2005) Comoving space density of X-ray-selected active galactic nuclei. Astrophys J 624: 630–637ADSGoogle Scholar
  336. Simpson C, Martínez-Sansigre A, Rawlings S et al (2006) Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population. Mon Not R Astron Soc 372: 741–757ADSGoogle Scholar
  337. Smith FG (1952) The determination of the position of a radio star. Mon Not R Astron Soc 112: 497–513ADSGoogle Scholar
  338. Smolčić V, Schinnerer E, Scodeggio M et al (2008) A new method to separate star-forming from AGN galaxies at intermediate redshift: the submillijansky radio population in the VLA-COSMOS survey. Astrophys J 177(Suppl): 14–38Google Scholar
  339. Snellen IAG (2008) GPS & CSS radio sources and space-VLBI. ArXiv e-prints 0802.1976Google Scholar
  340. Snellen IAG, Best PN (2001) Distant FR I radio galaxies in the hubble deep field: implications for the cosmological evolution of radio-loud AGN. Mon Not R Astron Soc 328: 897ADSGoogle Scholar
  341. Snellen IAG, Schilizzi RT, Miley GK et al (2000) On the evolution of young radio-loud AGN. Mon Not R Astron Soc 319: 445–456ADSGoogle Scholar
  342. Staniszewski Z, Ade PAR, Aird KA et al (2009) Galaxy clusters discovered with a Sunyaev–Zel’dovich effect survey. Astrophys J 701: 32–41ADSGoogle Scholar
  343. Steidel CC, Giavalisco M, Dickinson M, Adelberger KL (1996) Spectroscopy of Lyman break galaxies in the hubble deep field. Astron J 112: 352ADSGoogle Scholar
  344. Stern D (2000) Probing the dark ages: observations of the high-redshift universe. Publ Astron Soc Pacific 112: 1411ADSGoogle Scholar
  345. Subrahmanya CR, Harnett JI (1987) The local radio luminosity function of galaxies at 843 MHz. Mon Not R Astron Soc 225: 297–305ADSGoogle Scholar
  346. Sullivan W III (2009) Cosmic noise. Cambridge University Press (in press)Google Scholar
  347. Sunyaev RA, Zeldovich YB (1972) The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comm Astrophys Space Phys 4: 173ADSGoogle Scholar
  348. Takeuchi TT, Yoshikawa K, Ishii TT (2003) The luminosity function of IRAS point source catalog redshift survey galaxies. Astrophys J Lett 587: L89–L92ADSGoogle Scholar
  349. Taylor GB, Marr JM, Pearson TJ, Readhead ACS (2000) Kinematic age estimates for four compact symmetric objects from the Pearson–Readhead survey. Astrophys J 541: 112–119ADSGoogle Scholar
  350. Taylor AC, Grainge K, Jones ME et al (2001) The radio source counts at 15 GHz and their implications for cm-wave CMB imaging. Mon Not R Astron Soc 327: L1–L4ADSGoogle Scholar
  351. Taylor AR, Stil JM, Grant JK et al (2007) Radio polarimetry of the ELAIS N1 field: polarized compact sources. Astrophys J 666: 201–211ADSGoogle Scholar
  352. The Planck Collaboration (2006) The scientific programme of Planck. ArXiv Astrophysics e-prints, arXiv:astro-ph/0604069Google Scholar
  353. Tinti S, Dallacasa D, de Zotti G, Celotti A, Stanghellini C (2005) High frequency peakers: young radio sources or flaring blazars?. Astron Astrophys 432: 31–43ADSGoogle Scholar
  354. Tinti S, de Zotti G (2006) Constraints on evolutionary properties of GHz Peaked Spectrum galaxies. Astron Astrophys 445: 889–899ADSGoogle Scholar
  355. Toffolatti L, Franceschini A, Danese L, de Zotti G (1987) The local radio luminosity function of galaxies. Astron Astrophys 184: 7–15ADSGoogle Scholar
  356. Toffolatti L, Argueso Gomez F, de Zotti G et al (1998) Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission. Mon Not R Astron Soc 297: 117–127ADSGoogle Scholar
  357. Toffolatti L, De Zotti G, Argüeso F, Burigana C (1999) Extragalactic radio sources and CMB anisotropies. In: de Oliveira-Costa A, Tegmark M (eds) Microwave foregrounds. Astronomical Society of the Pacific Conference Series, vol 181. Astronomical Society of the Pacific, p 153Google Scholar
  358. Torniainen I, Tornikoski M, Teräsranta H, Aller MF, Aller HD (2005) Long term variability of gigahertz-peaked spectrum sources and candidates. Astron Astrophys 435: 839–856ADSGoogle Scholar
  359. Trushkin SA (2003) Radio spectra of the WMAP catalog sources. Bull Spec Astrophys Obs 55: 90–132ADSGoogle Scholar
  360. Tschager W, Schilizzi RT, Röttgering HJA, Snellen IAG, Miley GK (2000) The GHz-peaked spectrum radio galaxy 2021+614: detection of slow motion in a compact symmetric object. Astron Astrophys 360: 887–895ADSGoogle Scholar
  361. Tucci M, Martínez-González E, Toffolatti L, González-Nuevo J, De Zotti G (2004) Predictions on the high-frequency polarization properties of extragalactic radio sources and implications for polarization measurements of the cosmic microwave background. Mon Not R Astron Soc 349: 1267–1277ADSGoogle Scholar
  362. Turtle AJ, Pugh JF, Kenderdine S, Pauliny-Toth IIK (1962) The spectrum of the galactic radio emission—I. Observations of low resolving power. Mon Not R Astron Soc 124: 297ADSGoogle Scholar
  363. Urry CM, Padovani P (1995) Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pacific 107: 803ADSGoogle Scholar
  364. Valtonen MJ, Lehto HJ, Nilsson K et al (2008) A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452: 851–853ADSGoogle Scholar
  365. van Breugel W, De Breuck C, Stanford SA et al (1999) A radio galaxy at Z = 5.19. Astrophys J Lett 518: L61–L64ADSGoogle Scholar
  366. Verheijen MAW, Oosterloo TA, van Cappellen WA et al (2008) Apertif, a focal plane array for the WSRT. In: Minchin R, Momjian E (eds) The evolution of galaxies through the neutral hydrogen window. American Institute of Physics Conference Series, vol 1035. American Institute of Physics, New York, pp 265–271Google Scholar
  367. Vigotti M, Carballo R, Benn CR et al (2003) Decline of the space density of quasars between z = 2 and z = 4. Astrophys J 591: 43–52ADSGoogle Scholar
  368. Voss H, Bertoldi F, Carilli C et al (2006) Quasars in the MAMBO blank field survey. Astron Astrophys 448: 823–829ADSGoogle Scholar
  369. Waddington I, Dunlop JS, Peacock JA, Windhorst RA (2001) The LBDS Hercules sample of mJy radio sources at 1.4 GHz—II. Redshift distribution, radio luminosity function, and the high-redshift cut-off. Mon Not R Astron Soc 328: 882–896ADSGoogle Scholar
  370. Waizmann J-C, Bartelmann M (2009) Impact of early dark energy on the Planck SZ cluster sample. Astron Astrophys 493: 859–870zbMATHADSGoogle Scholar
  371. Waldram EM, Yates JA, Riley JM, Warner PJ (1996) The 7C survey of radio sources at 151 MHz - a region covering RA 9h to 16h and Dec. 20 deg to 35 deg. Mon Not R Astron Soc 282: 779–787ADSGoogle Scholar
  372. Waldram EM, Pooley GG, Grainge KJB et al (2003) 9C: a survey of radio sources at 15 GHz with the Ryle Telescope. Mon Not R Astron Soc 342: 915–925ADSGoogle Scholar
  373. Waldram EM, Bolton RC, Pooley GG, Riley JM (2007) Some estimates of the source counts at Planck Surveyor frequencies, using the 9C survey at 15 GHz. Mon Not R Astron Soc 379: 1442–1452ADSGoogle Scholar
  374. Waldram EM, Pooley GG, Davies ML, Grainge KJB, Scott PF (2009) 9C continued: a radio-source survey at 15 GHz. ArXiv e-prints: arXiv:astro-ph/0304275Google Scholar
  375. Wall JV (1980) Evidence for the cosmological evolution of active galaxies. R Soc Lond Phil Trans Ser A 296: 367–383ADSGoogle Scholar
  376. Wall JV (1994) Populations of extragalactic radio sources. Aust J Phys 47: 625–655ADSGoogle Scholar
  377. Wall JV, Jackson CA (1997) Dual-population radio source unification. Mon Not R Astron Soc 290: L17–L22ADSGoogle Scholar
  378. Wall JV, Pearson TJ, Longair MS (1980) Models of the cosmological evolution of extragalactic radio sources. I—the 408-MHz source count. Mon Not R Astron Soc 193: 683–706ADSGoogle Scholar
  379. Wall JV, Pearson TJ, Longair MS (1981) Models of radio source evolution. II—the 2700-MHz source count. Mon Not R Astron Soc 196: 597–610ADSGoogle Scholar
  380. Wall JV, Jackson CA, Shaver PA, Hook IM, Kellermann KI (2005) The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs. Astron Astrophys 434: 133–148ADSGoogle Scholar
  381. Wall JV, Pope A, Scott D (2008) The evolution of submillimetre galaxies: two populations and a redshift cut-off. Mon Not R Astron Soc 383: 435–444ADSGoogle Scholar
  382. Waxman E (1997) Gamma-ray–burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions. Astrophys J Lett 485: L5ADSGoogle Scholar
  383. Webster A (1976) The clustering of radio sources. I—the theory of power-spectrum analysis. II: the 4C, GB and MC1 surveys. Mon Not R Astron Soc 175: 61–83ADSGoogle Scholar
  384. White SDM, Rees MJ (1978) A catalog of 1.4 GHz radio sources from the FIRST survey. Mon Not R Astron Soc 183: 341ADSGoogle Scholar
  385. White RL, Becker RH, Helfand DJ, Gregg MD (1997) A catalog of 1.4 GHz radio sources from the FIRST survey. Astrophys J 475: 479ADSGoogle Scholar
  386. Wijers RAMJ, Galama TJ (1999) Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission. Astrophys J 523: 177–186ADSGoogle Scholar
  387. Willmer CNA (1997) Estimating galaxy luminosity functions. Astron J 114: 898–912ADSGoogle Scholar
  388. Willott CJ, Rawlings S, Blundell KM, Lacy M, Eales SA (2001) The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples. Mon Not R Astron Soc 322: 536–552ADSGoogle Scholar
  389. Wilman RJ, Miller L, Jarvis MJ et al (2008) A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon Not R Astron Soc 388: 1335–1348ADSGoogle Scholar
  390. Windhorst RA, van Heerde GM, Katgert P (1984) A deep Westerbork survey of areas with multicolor Mayall 4 M plates. I—the 1412 MHz catalogue, source counts and angular size statistics. Astron Astrophys 58(Suppl): 1–37ADSGoogle Scholar
  391. Windhorst RA, Miley GK, Owen FN, Kron RG, Koo DC (1985) Sub-millijansky 1.4 GHz source counts and multicolor studies of weak radio galaxy populations. Astrophys J 289: 494–513ADSGoogle Scholar
  392. Windhorst RA, Hopkins A, Richards EA, Waddington I (1999) The vigor of radio astronomy at Hy age: a review of faint radio source population. In: Bunker AJ, Breugel WJM (eds) The Hy-redshift universe: galaxy formation and evolution at high redshift. Astronomical Society of the Pacific Conference Series, vol 193. Astronomical Society of the Pacific, San Francisco, p 55Google Scholar
  393. Woltjer L (1966) Inverse Compton radiation in quasi-stellar objects. Astrophys J 146: 597ADSGoogle Scholar
  394. Wright A, Otrupcek R (1990) Parkes catalog, 1990, Australia telescope national facility. PKS Catalog (1990), AustraliaGoogle Scholar
  395. Wright EL, Chen X, Odegard N et al (2009) Five-year Wilkinson microwave anisotropy probe observations: source catalog. Astrophys J 180(Suppl): 283–295Google Scholar
  396. Yamada M, Sugiyama N, Silk J (1999) The Sunyaev–Zeldovich effect by cocoons of radio galaxies. Astrophys J 522: 66–73ADSGoogle Scholar
  397. York DG, Adelman J, Anderson JE Jr. et al (2000) The sloan digital sky survey: technical summary. Astron J 120: 1579–1587ADSGoogle Scholar
  398. Yun MS, Reddy NA, Condon JJ (2001) Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys J 554: 803–822ADSGoogle Scholar
  399. Zwart JTL, Barker RW, Biddulph P et al (2008) The arcminute microkelvin imager. Mon Not R Astron Soc 391: 1545–1558ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gianfranco De Zotti
    • 1
    • 2
    Email author
  • Marcella Massardi
    • 1
    • 2
  • Mattia Negrello
    • 3
  • Jasper Wall
    • 4
  1. 1.INAF – Osservatorio Astronomico di PadovaPadovaItaly
  2. 2.SISSA/ISASTriesteItaly
  3. 3.Department of Physics and AstronomyOpen UniversityMilton KeynesUK
  4. 4.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations