Skip to main content
Log in

An optimized, easy-to-use, open-source GPU solver for large-scale inverse homogenization problems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We propose a high-performance GPU solver for inverse homogenization problems to design high-resolution 3D microstructures. Central to our solver is a favorable combination of data structures and algorithms, making full use of the parallel computation power of today’s GPUs through a software-level design technology exploration. This solver is demonstrated to optimize homogenized stiffness tensors, such as bulk modulus, shear modulus, and Poisson’s ratio, under the constraint of bounded material volume. Practical high-resolution examples with \(512^3 \approx 134.2\) million finite elements run in less than 40 s per iteration with a peak GPU memory of 9 GB on an NVIDIA GeForce GTX 1080Ti GPU. Besides, our GPU implementation is equipped with an easy-to-use framework with less than 20 lines of code to support various objective functions defined by the homogenized stiffness tensors. Our open-source high-performance implementation is publicly accessible at https://github.com/lavenklau/homo3d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidisc Optim 51:565–572

    Article  MathSciNet  Google Scholar 

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    Book  MATH  Google Scholar 

  • Andreassen E, Andreasen CS (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495

    Article  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43:1–16

    Article  MATH  Google Scholar 

  • Ben Khalifa D, Martel M, Adjé A (2020) Pop: a tuning assistant for mixed-precision floating-point computations. In: International workshop on formal techniques for safety-critical systems, pp 77–94

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Borrvall T, Petersson J (2001) Large-scale topology optimization in 3d using parallel computing. Comput Methods Appl Mech Eng 190(46–47):6201–6229

    Article  MATH  Google Scholar 

  • Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial

  • Challis VJ, Roberts AP, Grotowski JF (2014) High resolution topology optimization using graphics processing units (GPUs). Struct Multidisc Optim 49(2):315–325

    Article  Google Scholar 

  • De Sturler E, Paulino GH, Wang S (2008) Topology optimization with adaptive mesh refinement. In: Proceedings of the 6th international conference on computation of shell and spatial structures IASS-IACM, pp 28–31

  • Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19(2):801–816

    Article  Google Scholar 

  • Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng 352:211–236

    Article  MathSciNet  MATH  Google Scholar 

  • Gao J, Xiao M, Gao L, Yan J, Yan W (2020) Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites. Comput Methods Appl Mech Eng 362:112876

    Article  MathSciNet  MATH  Google Scholar 

  • Gao J, Wang L, Luo Z, Gao L (2021) IgaTop: an implementation of topology optimization for structures using IGA in MATLAB. Struct Multidisc Optim 64(3):1669–1700

    Article  MathSciNet  Google Scholar 

  • Gibiansky LV, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  • Göddeke D, Strzodka R (2010) Cyclic reduction tridiagonal solvers on GPUs applied to mixed-precision multigrid. IEEE Trans Parallel Distrib Syst 22(1):22–32

    Article  Google Scholar 

  • Griewank A, Walther A (2008) Evaluating derivatives, 2nd edn. Society for Industrial and Applied Mathematics

  • Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng 113(8):1148–1163

    Article  MathSciNet  Google Scholar 

  • Haidar A, Tomov S, Dongarra J, Higham NJ (2018) Harnessing GPU tensor cores for fast fp16 arithmetic to speed up mixed-precision iterative refinement solvers. SC18: international conference for high performance computing. Networking, storage and analysis, IEEE, pp 603–613

  • Hosseini MT, Ghaffari A, Tahaei MS, Rezagholizadeh M, Asgharian M, Nia VP (2023) Towards fine-tuning pre-trained language models with integer forward and backward propagation. Find Assoc Comput Linguist: EACL 2023:1867–1876

    Google Scholar 

  • Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870

    Article  Google Scholar 

  • Huang X, Xie YM, Jia B, Li Q, Zhou S (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidisc Optim 46(3):385–398

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Luo Z, Gao L, Qin Q (2018) Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Comput Methods Appl Mech Eng 331:536–561

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Hu Y, Zhu B, Matusik W, Sifakis E (2018) Narrow-band topology optimization on a sparsely populated grid. ACM Trans Gr (TOG) 37(6):1–14

    Google Scholar 

  • Liu H, Hu Y, Zhu B, Matusik W, Sifakis E (2018) Narrow-band topology optimization on a sparsely populated grid. ACM Trans Gr 37(6):1–14

    Google Scholar 

  • McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E (2011) Efficient elasticity for character skinning with contact and collisions. In: ACM SIGGRAPH 2011 papers, pp 1–12

  • Morvaridi M, Carta G, Bosia F, Gliozzi AS, Pugno NM, Misseroni D, Brun M (2021) Hierarchical auxetic and isotropic porous medium with extremely negative Poisson’s ratio. Extreme Mech Lett 48:101405

    Article  Google Scholar 

  • Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42(3):535–559

    Article  MathSciNet  MATH  Google Scholar 

  • Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D (2015) Elastic textures for additive fabrication. ACM Trans Gr 34(4):1–12

    Article  MATH  Google Scholar 

  • Radman A, Huang X, Xie Y (2013) Topological optimization for the design of microstructures of isotropic cellular materials. Eng Optim 45(11):1331–1348

    Article  MathSciNet  Google Scholar 

  • Rong Y, Zhao ZL, Feng XQ, Xie YM (2022) Structural topology optimization with an adaptive design domain. Comput Methods Appl Mech Eng 389:114382

    Article  MathSciNet  MATH  Google Scholar 

  • Shan S, Kang SH, Zhao Z, Fang L, Bertoldi K (2015) Design of planar isotropic negative Poisson’s ratio structures. Extreme Mech Lett 4:96–102

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Struct Multidisc Optim 21(2):120–127

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Stainko R (2006) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Methods Eng 22(2):109–118

    Article  MathSciNet  MATH  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124

    Article  Google Scholar 

  • Sun J, Peterson GD, Storaasli OO (2008) High-performance mixed-precision linear solver for FPGAS. IEEE Trans Comput 57(12):1614–1623

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Theocaris P, Stavroulakis G, Panagiotopoulos P (1997) Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch Appl Mech 67(4):274–286

  • Träff EA, Rydahl A, Karlsson S, Sigmund O, Aage N (2023) Simple and efficient GPU accelerated topology optimisation: codes and applications. Comput Methods Appl Mech Eng 410:116043

  • Vogiatzis P, Chen S, Wang X, Li T, Wang L (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput-Aided Des 83:15–32

    Article  MathSciNet  Google Scholar 

  • Voigt W (1928) Lehrbuch der kristallphysik (textbook of crystal physics). BG Teubner, Leipzig

    Google Scholar 

  • Wu J, Dick C, Westermann R (2015) A system for high-resolution topology optimization. IEEE Trans Vis Comput Gr 22(3):1195–1208

    Article  Google Scholar 

  • Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in MATLAB. Struct Multidisc Optim 52(6):1229–1241

    Article  MathSciNet  Google Scholar 

  • Zhang D, Zhai X, Fu XM, Wang H, Liu L (2022) Large-scale worst-case topology optimization. Comput Gr Forum 41(7)

  • Zhang H, Chen D, Ko SB (2019) Efficient multiple-precision floating-point fused multiply-add with mixed-precision support. IEEE Trans Comput 68(7):1035–1048

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu Y, Sifakis E, Teran J, Brandt A (2010) An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans Gr (TOG) 29(2):1–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Provincial Natural Science Foundation of Anhui (2208085QA01), the Fundamental Research Funds for the Central Universities (WK0010000075), the National Natural Science Foundation of China (61972368 and 62025207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoya Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

Important details for replication of results have been described in the manuscript. Code for this paper is at https://github.com/lavenklau/homo3d.

Additional information

Responsible Editor: Ole Sigmund.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 151 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhai, X., Liu, L. et al. An optimized, easy-to-use, open-source GPU solver for large-scale inverse homogenization problems. Struct Multidisc Optim 66, 207 (2023). https://doi.org/10.1007/s00158-023-03657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03657-y

Keywords

Navigation