Acar E, Bayrak G, Jung Y, Lee I, Ramu P, Ravichandran SS (2021) Modeling, analysis, and optimization under uncertainties: a review. Struct Multidisc Optim 64(5):2909–2945
MathSciNet
Article
Google Scholar
Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: an overview. IEEE Signal Process Mag 35(1):53–65
Article
Google Scholar
Douzas G, Bacao F (2018) Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst Appl 91:464–471
Article
Google Scholar
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
Article
Google Scholar
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27
Haghighat E, Raissi M, Moure A, Gomez H, Juanes R (2021) A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng 379:113741
MathSciNet
Article
Google Scholar
Han T, Liu C, Wu R, Jiang D (2021) Deep transfer learning with limited data for machinery fault diagnosis. Appl Soft Comput 103:107150
Article
Google Scholar
Islam Z, Abdel-Aty M, Cai Q, Yuan J (2021) Crash data augmentation using variational autoencoder. Accid Anal Prev 151:105950
Article
Google Scholar
Kaur K, Garg A, Cui X, Singh S, Panigrahi BK (2021) Deep learning networks for capacity estimation for monitoring SOH of Li-ion batteries for electric vehicles. Int J Energy Res 45(2):3113–3128
Article
Google Scholar
Kohar CP, Greve L, Eller TK, Connolly DS, Inal K (2021) A machine learning framework for accelerating the design process using CAE simulations: an application to finite element analysis in structural crashworthiness. Comput Methods Appl Mech Eng 385:114008
MathSciNet
Article
Google Scholar
Laubscher R, Rousseau P (2021) An integrated approach to predict scalar fields of a simulated turbulent jet diffusion flame using multiple fully connected variational autoencoders and MLP networks. Appl Soft Comput 101:107074
Article
Google Scholar
Li X, Yang Y, Li L, Zhao G, He N (2020) Uncertainty quantification in machining deformation based on Bayesian network. Reliab Eng Syst Saf 203:107113
Article
Google Scholar
Lv JJ, Shao XH, Huang JS, Zhou XD, Zhou X (2019) Data augmentation for face recognition. Neurocomputing 230:184–196
Article
Google Scholar
Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
Article
Google Scholar
Ray MH, Mongiardini M, Plaxico CA (2012) Quantitative methods for assessing similarity between computational results and full-scale crash tests. In: Proceedings of the 91th Annual Meeting of the Transportation Research Board, Washington, pp 1–21
Salamon J, Bello JP (2017) Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process Lett 24(3):279–283
Article
Google Scholar
Shin W, Bu SJ, Cho SB (2020) 3D-convolutional neural network with generative adversarial network and autoencoder for robust anomaly detection in video surveillance. Int J Neural Syst 30(6):2050034
Article
Google Scholar
Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48
Article
Google Scholar
Srivastava N, Hinton G, Krizhevsky A, Sustskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
MathSciNet
MATH
Google Scholar
Wang C, Xu C, Yao X, Tao D (2019) Evolutionary generative adversarial networks. IEEE Trans Evol Comput 23(6):921–934
Article
Google Scholar
Xu X, Li J, Yang Y, Shen F (2020) Toward effective intrusion detection using log-cosh conditional variational autoencoder. IEEE Internet Things J 8(8):6187–6196
Article
Google Scholar
Yang Y, Perdikaris P (2019) Adversarial uncertainty quantification in physics-informed neural networks. J Comput Phys 394:136–152
MathSciNet
Article
Google Scholar
Yang Y, Zheng K, Wu C, Yang Y (2019) Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors 19(11):2528
Article
Google Scholar
Yang S, Zhang Y, Wang H, Li P, Hu X (2020) Representation learning via serial robust autoencoder for domain adaption. Expert Syst Appl 160:113635
Article
Google Scholar
Yılmaz İ, Yelek İ, Özcanan S, Atahan AO, Hiekmann JM (2021) Artificial neural network metamodeling-based design optimization of a continuous motorcyclists protection barrier system. Struct Multidisc Optim 64(6):4305–4323
Article
Google Scholar
Yonekura K, Suzuki K (2021) Data-driven design exploration method using conditional variational autoencoder for airfoil design. Struct Multidisc Optim 64(2):613–624
Article
Google Scholar
Yoo Y, Jung UJ, Han YH, Lee J (2021) Data augmentation-based prediction of system level performance under model and parameter uncertainties: role of designable generative adversarial networks (DGAN). Reliab Eng Syst Saf 206:107316
Article
Google Scholar
Zavrak S, Iskefiyeli M (2020) Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access 8:108346–108358
Article
Google Scholar
Zhong SS, Fu S, Lin L (2019) A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement 137:435–453
Article
Google Scholar
Zhu L, Chen Y, Ghamisi P, Benediktsson JA (2018) Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(9):5046–5063
Article
Google Scholar