Skip to main content
Log in

Topology optimization of elastic contact problems with maximum contact pressure constraint

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this work, we develop a topology optimization method for linear elastic contact problems with maximum contact pressure constraint. First, the Kreisselmeier–Steinhauser (KS) function is adopted as an aggregated measure of the maximum contact pressure over specific contact regions. Then, the maximum contact pressure constraint is introduced into the standard volume-constrained compliance minimization problem and formulated in the framework of B-spline parameterization method. Two geometric constraints are further extended to suppress the intermediate densities and control minimum length scale. The adjoint method is employed for deriving design sensitivities analytically. Finally, both frictionless and frictional problems are tested to demonstrate the effectiveness of the proposed method. It is shown that the maximum contact pressure can be effectively controlled using the contact pressure constraint and thus avoiding the concentration of contact pressure. The influence of maximum contact pressure constraint on the optimization result is discussed in comparison with the standard maximum stiffness design. Effects of friction behavior upon optimized results and contact pressure are also highlighted. It concludes that the maximum contact pressure can be reduced at the cost of the structural stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Behrou R, Lawry M, Maute K (2017) Level set topology optimization of structural problems with interface cohesion. Int J Numer Meth Eng 112(8):990–1016

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, New York

    MATH  Google Scholar 

  • Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidisc Optim 56(5):1147–1155

    Article  MathSciNet  Google Scholar 

  • Collins JA, Busby HR, Staab GH (2009) Mechanical design of machine elements and machines: a failure prevention perspective. Wiley, New York

    Google Scholar 

  • Desmorat B (2007) Structural rigidity optimization with frictionless unilateral contact. Int J Solids Struct 44(3–4):1132–1144

    Article  MathSciNet  Google Scholar 

  • Fancello EA, Feijóo RA (1994) Shape optimization in frictionless contact problems. Int J Numer Meth Eng 37(13):2311–2335

    Article  MathSciNet  Google Scholar 

  • Fernandez F, Puso MA, Solberg J, Tortorelli DA (2020) Topology optimization of multiple deformable bodies in contact with large deformations. Comput Methods Appl Mech Eng 371:113288

    Article  MathSciNet  Google Scholar 

  • Hilding D (2000) The equilibrium state of a structure subject to frictional contact. Eur J Mech A Solids 19(6):1029–1040

    Article  MathSciNet  Google Scholar 

  • Hilding D, Klarbring A (2012) Optimization of structures in frictional contact. Comput Methods Appl Mech Eng 205–208:83–90

    Article  MathSciNet  Google Scholar 

  • Hilding D, Klarbring A, Petersson J (1999) Optimization of structures in unilateral contact. Appl Mech Rev 52(4):139–160

    Article  Google Scholar 

  • Jeong GE, Youn SK, Park K (2018) Topology optimization of deformable bodies with dissimilar interfaces. Comput Struct 198:1–11

    Article  Google Scholar 

  • Klarbring A (1992) On the problem of optimizing contact force distributions. J Optim Theory Appl 74(1):131–150

    Article  MathSciNet  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1980) Systematic control design by optimizing a vector performance index. Computer aided design of control systems. Elsevier, New York, pp 113–117

    Chapter  Google Scholar 

  • Kristiansen H, Poulios K, Aage N (2020) Topology optimization for compliance and contact pressure distribution in structural problems with friction. Comput Methods Appl Mech Eng 364:112915

    Article  MathSciNet  Google Scholar 

  • Lawry M, Maute K (2018) Level set shape and topology optimization of finite strain bilateral contact problems. Int J Numer Meth Eng 113(8):1340–1369

    Article  MathSciNet  Google Scholar 

  • Li W, Li Q, Steven GP, Xie Y (2003) An evolutionary approach to elastic contact optimization of frame structures. Finite Elem Anal Des 40(1):61–81

    Article  Google Scholar 

  • Li H, Yamada T, Jolivet P, Furuta K, Kondoh T, Izui K, Nishiwaki S (2021a) Full-scale 3d structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elem Anal Des 194:103561

    Article  MathSciNet  Google Scholar 

  • Li J, Zhang W, Niu C, Gao T (2021b) Topology optimization of elastic contact problems using b-spline parameterization. Struct Multidisc Optim 63(4):1669–1686

    Article  MathSciNet  Google Scholar 

  • Lohan DJ, Allison JT (2017) Temperature constraint formulations for heat conduction topology optimization. In: Proceedings of the 12th world congress on structural and multidisciplinary optimization, Braunschweig, Germany

  • Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81:373–382

    Article  Google Scholar 

  • Mulaik SA (2009) Foundations of factor analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Myśliński A (2008) Level set method for optimization of contact problems. Eng Anal Boundary Elem 32(11):986–994

    Article  Google Scholar 

  • Myśliński A (2015) Piecewise constant level set method for topology optimization of unilateral contact problems. Adv Eng Softw 80:25–32

    Article  Google Scholar 

  • Niu C, Zhang W, Gao T (2019) Topology optimization of continuum structures for the uniformity of contact pressures. Struct Multidisc Optim 60(1):185–210

    Article  MathSciNet  Google Scholar 

  • Niu C, Zhang W, Gao T (2020) Topology optimization of elastic contact problems with friction using efficient adjoint sensitivity analysis with load increment reduction. Comput Struct 238:106296

    Article  Google Scholar 

  • Ou H, Lu B, Cui Z, Lin C (2013) A direct shape optimization approach for contact problems with boundary stress concentration. J Mech Sci Technol 27(9):2751–2759

    Article  Google Scholar 

  • Popov VL (2010) Contact mechanics and friction. Springer, New York

    Book  Google Scholar 

  • Qian X (2013) Topology optimization in b-spline space. Comput Methods Appl Mech Eng 265:15–35

    Article  MathSciNet  Google Scholar 

  • Qian X, Sigmund O (2013) Topological design of electromechanical actuators with robustness toward over-and under-etching. Comput Methods Appl Mech Eng 253:237–251

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Strömberg N (2013) The influence of sliding friction on optimal topologies. Recent advances in contact mechanics. Springer, New York, pp 327–336

    Chapter  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  Google Scholar 

  • Wang M, Qian X (2015) Efficient filtering in topology optimization via b-splines. J Mech Des 137(3):031402

    Article  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784

    Article  Google Scholar 

  • Wriggers P (2006) Computational contact mechanics. Springer, New York

    Book  Google Scholar 

  • Yang K, Fernandez E, Niu C, Duysinx P, Zhu J, Zhang W (2019) Note on spatial gradient operators and gradient-based minimum length constraints in simp topology optimization. Struct Multidisc Optim 60(1):393–400

    Article  MathSciNet  Google Scholar 

  • Zhang W, Niu C (2018) A linear relaxation model for shape optimization of constrained contact force problem. Comput Struct 200:53–67

    Article  Google Scholar 

  • Zhou M, Lazarov BS, Wang F, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Lin Q, Hong J, Yang N (2020) Combined interface shape and material stiffness optimization for uniform distribution of contact stress. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1860086

    Article  Google Scholar 

  • Zhu J, Zhou H, Wang C, Zhou L, Yuan S, Zhang W (2020) A review of topology optimization for additive manufacturing: status and challenges. Chin J Aeronaut 34(1):91–110

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (12032018, 11620101002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Replication of results

The necessary information for replication of the results is present in the manuscript. The interested reader may contact the corresponding author for further implementation details.

Additional information

Responsible Editor: Mathias Stolpe

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, J. & Gao, T. Topology optimization of elastic contact problems with maximum contact pressure constraint. Struct Multidisc Optim 65, 106 (2022). https://doi.org/10.1007/s00158-022-03195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03195-z

Keywords

Navigation