Skip to main content
Log in

Combined parameterization of material distribution and surface mesh for stiffener layout optimization of complex surfaces

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Stiffener layout optimization of complex surfaces is fulfilled within the framework of topology optimization. A combined parameterization method is developed in two aspects. One is to parameterize the material distribution of the stiffener layout by means of B-spline. The other is to build the mapping relationship from the known 3D surface mesh of the thin-walled structure to its parametric domain by means of mesh parameterization. The influence of mesh parameterization upon the stiffener layout is discussed to reveal the matching issue of the combined parameterization. 3D complex surfaces represented by the triangular mesh can be dealt with even though analytical parametric equations are not available. Some numerical examples are solved to demonstrate the direct advantage and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Afonso S, Sienz J, Belblidia F (2005) Structural optimization strategies for simple and integrally stiffened plates and shells. Eng Comput 22(4):429–452

    Article  Google Scholar 

  • Bennis C, Vézien J, Iglésias G (1991) Piecewise surface flattening for non-distorted texture mapping. ACM SIGGRAPH Comput Gr 25(4):237–246

    Article  Google Scholar 

  • Cheng K, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MathSciNet  Google Scholar 

  • Cheng K, Olhoff N (1982) Regularized formulation for optimal design of axisymmetric plates. Int J Solids Struct 18(2):153–169

    Article  Google Scholar 

  • Ding X, Yamazaki K (2004) Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Struct Multidisc Optim 26(1–2):99–110

    Article  Google Scholar 

  • Eck M, Rose T, Duchamp T, Hoppe H, Lounsbery M, Stuetzle W (1995) Multiresolution analysis of arbitrary meshes. Springer, Berlin, pp 173–182

    Google Scholar 

  • Feng S, Zhang W, Meng L, Xu Z, Chen L (2021) Stiffener layout optimization of shell structures with B-spline parameterization method. Struct Multidisc Optim 63:2637–2651

    Article  MathSciNet  Google Scholar 

  • Floater M (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14(3):231–250

    Article  MathSciNet  Google Scholar 

  • Hao P, Wang B, Tian K, Li G, Du K, Niu F (2016) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54(4):1350–1363

    Article  Google Scholar 

  • Hormann K, Lévy B, Sheffer A (2007) Mesh parameterization: theory and practice. In: Proceedings of the SIGGRAPH Asia ACM SIGGRAPH ASIA Courses. ACM Press, New York, pp 12:1−12:87

  • Ji J, Ding X, Xiong M (2014) Optimal stiffener layout of plate/shell structures by bionic growth method. Comput Struct 135:88–99

    Article  Google Scholar 

  • Kiendl J, Schmidt R, Wüchner R, Bletzinger K (2014) Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput Methods Appl Mech Eng 274:148–167

    Article  MathSciNet  Google Scholar 

  • Kang P, Youn S (2016) Isogeometric shape optimization of trimmed shell structures. Struct Multidisc Optim 53(4):825–845

    Article  MathSciNet  Google Scholar 

  • Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. ACM Trans Gr (TOG) 21(3):362–371

    Article  Google Scholar 

  • Liang K, Yang C, Sun Q (2020) A smeared stiffener based reduced-order modelling method for buckling analysis of isogrid-stiffened cylinder. Appl Math Model 77:756–772

    Article  MathSciNet  Google Scholar 

  • Liu L, Zhang L, Xu Y, Gotsman C, Gortler S (2008) A local/global approach to mesh parameterization. Computer Gr Forum 27(5):1495–1504

    Article  Google Scholar 

  • Liu S, Li Q, Chen W, Hu R, Tong L (2015) H-dgtpa heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures. Struct Multidisc Optim 52(5):903–913

    Article  Google Scholar 

  • Maillot J, Yahia H, Verroust A (1993) Interactive texture mapping. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp 27–34

  • Pinkall U, Polthier K (1993) Computing discrete minimal surfaces and their conjugates. Exp Math 2(1):15–36

    Article  MathSciNet  Google Scholar 

  • Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35

    Article  MathSciNet  Google Scholar 

  • Seo Y, Kim H, Youn S (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49–52):3270–3296

    Article  MathSciNet  Google Scholar 

  • Sander P, Snyder J, Gortler S, Hoppe H (2001) Texture mapping progressive meshes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp 409–416

  • Sander P, Justine W, Gortler S, Snyder J, Hoppe H (2003) Multi-chart geometry images. In: Proceedings of the 1st symposium on geometry processing, pp 138–145

  • Sheffer A, Sturler E (2000) Surface parameterization for meshing by triangulation flattening. In: Proceedings of the 9th international meshing roundtable, sandia national laboratories, pp 161–172

  • Sheffer A, Praun E, Rose K (2006) Mesh parameterization methods and their applications. Found Trends Comput Graph Vis 2(2):105–171

    Article  Google Scholar 

  • Sorkine O, Cohen-Or D, Goldenthal R, Lischinski D (2002) Bounded-distortion piecewise mesh parameterization. Proc IEEE Vis 2002:355–362

    Google Scholar 

  • Tian K, Li H, Huang L, Huang H, Zhao H, Wang B (2020) Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces. Struct Multidisc Optim 62(6):3249–3269

    Article  Google Scholar 

  • Tutte W (1960) Convex representations of graphs. Proc Lond Math Soc 3(1):304–320

    Article  MathSciNet  Google Scholar 

  • Wang D, Zhang W (2012) A bispace parameterization method for shape optimization of thin-walled curved shell structures with openings. Int J Numer Meth Eng 90(13):1598–1617

    Article  MathSciNet  Google Scholar 

  • Wang D, Abdalla M, Zhang W (2017) Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Compos Struct 159:656–666

    Article  Google Scholar 

  • Wang D, Abdalla M, Wang Z, Su Z (2019) Streamline stiffener path optimization (sspo) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (ncgc) structures. Comput Methods Appl Mech Eng 344:1021–1050

    Article  MathSciNet  Google Scholar 

  • Wang D, Yeo S, Su Z, Wang Z, Abdalla M (2020) Data-driven streamline stiffener path optimization (SSPO) for sparse stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures. Comput Methods Appl Mech Eng 365:113001

    Article  MathSciNet  Google Scholar 

  • Zhu J, Li Y, Zhang W, Hou J (2016) Shape preserving design with structural topology optimization. Struct Multidisc Optim 53(4):893–906

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (12032018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All the results and datasets in this paper are generated using our in-house MATLAB codes. The source codes can be available only for academic use from the corresponding author with a reasonable request.

Additional information

Responsible Editor: Seonho Cho

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Feng, S. Combined parameterization of material distribution and surface mesh for stiffener layout optimization of complex surfaces. Struct Multidisc Optim 65, 103 (2022). https://doi.org/10.1007/s00158-022-03191-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03191-3

Keywords

Navigation