Skip to main content
Log in

Explicit structural topology optimization using moving wide Bezier components with constrained ends

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a structural topology optimization method using moving wide Bezier components with constrained ends. In the proposed method, components which are determined by using Bezier curves with a certain width are regarded as design units. These wide Bezier curves are represented by using level set functions. The control points of such wide Bezier curves are taken as design variables. In addition, based on that principle, in order to form one single connected load-bearing structure, the loading, supporting, and/or some other functional interactions must be connected. This is achieved by constraining the ends of the utilized wide Bezier curves which can essentially avoid any structurally invalid designs and thereby smooth the optimization process. The validity of the proposed method is tested on the stiffness and the compliant mechanisms design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16

    Article  MATH  Google Scholar 

  • Aulig N, Olhofer M (2016) Evolutionary computation for topology optimization of mechanical structures: an overview of representations. In: 2016 IEEE Congress on evolutionary computation (CEC). IEEE, pp 1948–1955

  • Bendsœ MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsœ M. P., Sigmund O (2003) Topology optimization, theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  • Boichot R, Fan Y (2016) A genetic algorithm for topology optimization of area-to-point heat conduction problem. Int J Therm Sci 108:209–217

    Article  Google Scholar 

  • Chen S, Wang M (2007) Designing distributed compliant mechanisms with characteristic stiffness. In: International design engineering technical conferences and computers and information in engineering conference, vol 48094. pp 33–45

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  • Dehghani T, Moghanlou FS, Vajdi M, Asl MS, Shokouhimehr M, Mohammadi M (2020) Mixing enhancement through a micromixer using topology optimization. Chem Eng Res Des 161:187–196

    Article  Google Scholar 

  • Ferrari F, Sigmund O (2020) A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Struct Multidiscip Optim 62:2211–2228

    Article  MathSciNet  Google Scholar 

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (mmc) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

    Article  MathSciNet  MATH  Google Scholar 

  • Hoang VN, Jang GW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Eng 317:153–173

    Article  MathSciNet  MATH  Google Scholar 

  • Hoang VN, Nguyen-Xuan H (2020) Extruded-geometric-component-based 3D topology optimization. Comput Methods Appl Mech Eng 371:113293

    Article  MathSciNet  MATH  Google Scholar 

  • Hoang VN, Tran P, Nguyen NL, Hackl K, Nguyen-Xuan H (2020a) Adaptive concurrent topology optimization of coated structures with nonperiodic infill for additive manufacturing. Comput-Aided Des 102918

  • Hoang VN, Tran P, Vu VT, Nguyen-Xuan H (2020b) Design of lattice structures with direct multiscale topology optimization. Compos Struct 252:112718

    Article  Google Scholar 

  • Jiang L, Chen S (2017) Parametric structural shape & topology optimization with a variational distance-regularized level set method. Comput Methods Appl Mech Eng 321:316–336

    Article  MathSciNet  MATH  Google Scholar 

  • Kim C, Jung M, Yamada T, Nishiwaki S, Yoo J (2020) Freefem++ code for reaction-diffusion equation–based topology optimization: for high-resolution boundary representation using adaptive mesh refinement. Struct Multidiscip Optim 1–17

  • Kumar P, Sauer RA, Saxena A (2020) On topology optimization of large deformation contact-aided shape morphing compliant mechanisms. Mech Mach Theory 156:104135

    Article  Google Scholar 

  • Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86:189–218

    Article  Google Scholar 

  • Liu J, Ma Y (2016) A survey of manufacturing oriented topology optimization methods. Adv Eng Softw 100:161–175

    Article  Google Scholar 

  • Nguyen TT, Bæ rentzen JA, Sigmund O, Aage N (2020) Efficient hybrid topology and shape optimization combining implicit and explicit design representations. Struct Multidiscipl Optim 62:1061–1069

    Article  Google Scholar 

  • Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces, vol 153. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Qu X, Pagaldipti N, Fleury R, Saiki J (2016) Thermal topology optimization in optistruct software. In: 17th AIAA/ISSMO Multidisciplinary analysis and optimization conference, p 3829

  • Rozvany GIN, Bendsœ M.P., Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48:41–119

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Schramm U, Zhou M (2006) Recent developments in the commercial implementation of topology optimization. In: IUTAM symposium on topological design optimization of structures, machines and materials. Springer, pp 239–248

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43:589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Tai K, Chee T (2000) Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J Mech Des 122:560–566

    Article  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472

    Article  MathSciNet  Google Scholar 

  • Wang N, Zhang X (2012) Compliant mechanisms design based on pairs of curves. Sci China Technol Sci 55:2099–2106

    Article  Google Scholar 

  • Wang M, Wang X, Guo D (2003a) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Wang XM, Guo DM (2003b) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang R, Zhang X, Zhu B (2019) Imposing minimum length scale in moving morphable component (mmc)-based topology optimization using an effective connection status (ecs) control method. Comput Methods Appl Mech Eng 351:667–693

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H, Liu J, Wen G (2020) An efficient evolutionary structural optimization method for multi-resolution designs. Struct Multidiscip Optim 1–17

  • Wein F, Dunning PD, Norato JA (2020) A review on feature-mapping methods for structural optimization. Struct Multidiscip Optim 62:1597–1638

    Article  MathSciNet  Google Scholar 

  • Xia L, Xia Q, Huang X, Xie YM (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng 25:437–478

    Article  MathSciNet  MATH  Google Scholar 

  • Xie X, Wang S, Xu M, Jiang N, Wang Y (2020) A hierarchical spline based isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Eng 360:112696

    Article  MathSciNet  MATH  Google Scholar 

  • Xu G, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically a new moving morphable components based framework. J Appl Mech 81:081009

    Article  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  • Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Methods Eng 83:1580–1624

    Article  MathSciNet  MATH  Google Scholar 

  • Yang H, Huang J (2020) An explicit structural topology optimization method based on the descriptions of areas. Struct Multidiscip Optim 61:1123–1156

    Article  MathSciNet  Google Scholar 

  • Yoshimura M, Shimoyama K, Misaka T, Obayashi S (2017) Topology optimization of fluid problems using genetic algorithm assisted by the kriging model. Int J Numer Methods Eng 109:514–532

    Article  MathSciNet  Google Scholar 

  • Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization of thermal-fluid problem using the mmc-based approach. Struct Multidiscip Optim 60:151–165

    Article  MathSciNet  Google Scholar 

  • Zhan J, Luo Y (2019) Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model. Front Mech Eng 14:201– 212

    Article  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016a) A new topology optimization approach based on moving morphable components (mmc) and the ersatz material model. Struct Multidiscip Optim 53:1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale control in structural topology optimization based on the moving morphable components (mmc) approach. Comput Methods Appl Mech Eng 311:327–355

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018a) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Methods Eng 113:1653–1675. Tex.ids: zhangtopology, zhangtopologya

    Article  MathSciNet  Google Scholar 

  • Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) (A moving morphable void (mmv)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018c) Topology optimization with multiple materials via moving morphable component (mmc) method. Int J Numer Methods Eng 113:1653–1675

    Article  MathSciNet  Google Scholar 

  • Zhang W, Li D, Kang P, Guo X, Youn SK (2019) Explicit topology optimization using iga-based moving morphable void (mmv) approach. Comput Methods Appl Mech Eng 360:112685

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou H, Ting K-L (2005) Shape and size synthesis of compliant mechanisms using wide curve theory. J Mech Des 128:551–558

    Article  Google Scholar 

  • Zhu B, Zhang X, Wang N (2013) Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method. Struct Multidiscip Optim 47:659–672

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu B, Zhang X, Fatikow S (2015) Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput Methods Appl Mech Eng 283:1214– 1239

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu J-H, Zhang W-H, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu B, Chen Q, Wang R, Zhang X (2018) Structural topology optimization using a moving morphable component-based method considering geometrical nonlinearity. J Mech Des 140

  • Zhu B, Zhang X, Zhang H, Liang J, Zang H, Li H, Wang R (2020a) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622

    Article  Google Scholar 

  • Zhu B, Zhang X, Li H, Liang J, Wang R, Li H, Nishiwaki S (2020b) An 89-line code for geometrically nonlinear topology optimization written in freefem. Struct Multidiscip Optim 1–13

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant No. 51975216, 51820105007), the scholarship provided by JSPS (The Japan Society for the Promotion of Science), the Pearl River Nova Program of Guangzhou (201906010061), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rixin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The current work has participated in some confidential projects. Although the specific codes cannot be disclosed at present, readers can contact meblzhu@scut.edu.cn to obtain the basic code for educational purpose only. The details of the proposed method and the necessary parameters are all included in the paper, so the readers may also reproduce the results by modifying the standard moving morphable component (MMC) program.

Additional information

Responsible Editor: Xu Guo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Wang, R., Wang, N. et al. Explicit structural topology optimization using moving wide Bezier components with constrained ends. Struct Multidisc Optim 64, 53–70 (2021). https://doi.org/10.1007/s00158-021-02853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02853-y

Keywords

Navigation