Skip to main content
Log in

A bi-level methodology for solving large-scale mixed categorical structural optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this work, large-scale structural optimization problems involving non-ordinal categorical design variables and continuous variables are investigated. The aim is to minimize the weight of a structure with respect to cross-section areas, with materials and stiffening principles selection. First, the problem is formulated using a bi-level decomposition involving master and slave problems. The master problem is given by a first-order-like approximation that helps to drastically reduce the combinatorial explosion raised by the categorical variables. Continuous variables are handled in a slave problem solved using a gradient-based approach, where the categorical variables are driven by the master problem. The proposed algorithm is tested on three different structural optimization test cases. A comparison to state-of-the-art algorithms emphasize efficiency of the proposed algorithm in terms of the optimum quality, the computation cost, and the scaling with respect to the problem dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramson MA, Audet C, Chrissis JW, Walston JG (2009) Mesh adaptive direct search algorithms for mixed variable optimization. Optim Lett 3(1):35–47

    Article  MathSciNet  Google Scholar 

  • Allaire G, Delgado G (2015) Stacking sequence and shape optimization of laminated composite plates via a level-set method. arXiv:1–33

  • Audet C, Dennis JE (2001) Pattern search algorithms for mixed variable programming. SIAM J Optim 11 (3):573–594

    Article  MathSciNet  Google Scholar 

  • Audet C, Kokkolaras M, Le Digabel S, Talgorn B (2018) Order-based error for managing ensembles of surrogates in mesh adaptive direct search. J Glob Optim 70(3):645–675

    Article  MathSciNet  Google Scholar 

  • Barjhoux PJ, Diouane Y, Grihon S, Bettebghor D, Morlier J (2017) Mixed variable structural optimization: toward an efficient hybrid algorithm. In: WCSMO12

  • Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252

    Article  MathSciNet  Google Scholar 

  • Bettebghor D, Bartoli N, Grihon S, Morlier J, Samuelides M (2011) Approche en paramètres de stratification pour l’optimisation biniveau de structures composites. In: 10e colloque national en calcul des structures. Giens

  • Bettebghor D, Grihon S, Morlier J (2018) Bilevel optimization of large composite structures based on lamination parameters and post-optimal sensitivities. Part 1: Theoretical aspects. ISAE-SUPAERO, Toulouse

  • Deb K, Goyal M (1998) A flexible optimization procedure for mechanical component design based on genetic adaptive search. J Mech Des 120(2):162

    Article  Google Scholar 

  • Duran MA, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36(3):307–339

    Article  MathSciNet  Google Scholar 

  • Filomeno Coelho R (2014) Metamodels for mixed variables based on moving least squares: application to the structural analysis of a rigid frame. Optim Eng 15(2):311–329

    Article  MathSciNet  Google Scholar 

  • Fister I, Yang XS, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektrotehniski Vestnik/Electrotechnical Review 80(3):116–122

    Google Scholar 

  • Fortin FA, De Rainville FM, Gardner M, Parizeau M, Gagné C (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res, 2171–2175

  • Gallard F, Vanaret C, Guenot D, Gachelin V, Lafage R, Pauwels B, Barjhoux PJ, Gazaix A (2018) GEMS: a python library for automation of multidisciplinary design optimization process generation. In: 2018 AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference American institute of aeronautics and astronautics. Reston

  • Gallard F, Barjhoux PJ, Olivanti R, Gazaix A (2019) GEMS, an open-source generic engine for MDO scenarios: key features in application. In: AIAA aviation

  • Gao H, Breitkopf P, Coelho RF, Xiao M (2018) Categorical structural optimization using discrete manifold learning approach and custom-built evolutionary operators. Struct Multidiscip Optim 58(1):215–228

    Article  MathSciNet  Google Scholar 

  • Garrido-Merchán EC, Hernández-Lobato D (2020) Dealing with integer-valued variables in Bayesian Optimization with Gaussian Processes. Neurocomputing 380:20–35

    Article  Google Scholar 

  • Gazaix A, Gallard F, Ambert V, Guénot D, Hamadi M, Sarouille P, Grihon S, Druot T, Brezillon J, Thierry L, Bartoli N, Lafage R, Gachelin V, Plakoo J, Desfachelles N, Gurol S, Pauwels B, Vanaret C (2019) Application of an advanced bi-level mdo formulation to an aircraft engine pylon optimization. American Institute of Aeronautics and Astronautics, Dallas

    Book  Google Scholar 

  • Geoffrion AM (1972) Generalized benders decomposition. J Optim Theory Appl 10(4):237–260

    Article  MathSciNet  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning volume Addison-We, Addison-Wesley Longman Publishing Co., Inc

  • Grihon S (2012) PRESTO: a rapid sizing tool for airframe conceptual design studies. In: LMS European aeronautical conference. Toulouse, 25

  • Grihon S (2018) Structure sizing optimization capabilities at airbus. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization. Springer International Publishing, Cham, pp 719–737

  • Haftka RT, Gürdal Z (1992) Elements of structural optimization volume 11 of solid mechanics and its applications. Springer, Netherlands

    MATH  Google Scholar 

  • Haftka RT, Watson LT (2005) Multidisciplinary design optimization with quasiseparable subsystems. Optim Eng 6:9–20

    Article  MathSciNet  Google Scholar 

  • Haftka RT, Watson LT, Haftka RT, Watson LT (2006) Decomposition theory for multidisciplinary design optimization problems with mixed integer quasiseparable subsystems. Optim Eng 7(7):135– 149

    Article  MathSciNet  Google Scholar 

  • Herrera M, Guglielmetti A, Xiao M, Filomeno Coelho R (2014) Metamodel-assisted optimization based on multiple kernel regression for mixed variables. Struct Multidiscip Optim 49(6):979–991

    Article  Google Scholar 

  • Hijazi H, Bonami P, Ouorou A (2014) An outer-inner approximation for separable mixed-integer nonlinear programs. Informs J Comput 26(1):31–44

    Article  MathSciNet  Google Scholar 

  • Ivanov VV, Zadiraka VK (1975) Numerical optimization. Cybernetics 9(4):714–715

    Article  Google Scholar 

  • Johnson SG (2008) The nlopt nonlinear-optimization package

  • Krogh C, Jungersen MH, Lund E, Lindgaard E (2017) Gradient-based selection of cross sections: a novel approach for optimal frame structure design. Struct Multidiscip Optim 56(5):959–972

    Article  Google Scholar 

  • Liao T, Socha K, Montes de Oca MA, Stutzle T, Dorigo M (2014) Ant colony optimization for mixed-variable optimization problems. IEEE Trans Evol Comput 18(4):503–518

    Article  Google Scholar 

  • Lindroth P, Patriksson M (2011) Pure categorical optimization: a global descent approach. Chalmers University of Technology, Technical report

    Google Scholar 

  • Merval A (2008) L’Optimisation Multiniveaux D’une Structure. PhD Thesis

  • Müller J, Shoemaker CA, Piché R (2013) SO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems. Comput Oper Res 40(5):1383–1400

    Article  MathSciNet  Google Scholar 

  • Nouaouria N, Boukadoum M (2011) A particle swarm optimization approach to mixed attribute data-set classification. In: 2011 IEEE symposium on swarm intelligence. IEEE, pp 1–8

  • Pelamatti J, Brevault L, Balesdent M, Talbi EG, Guerin Y (2019) Efficient global optimization of constrained mixed variable problems. J Glob Optim 73(3):583–613

    Article  MathSciNet  Google Scholar 

  • Roy S, Moorey K, Hwang J, Gray J, Crossley W, Martins J (2017) A mixed integer efficient global optimization algorithm for the simultaneous aircraft allocation-mission-design problem. In: 58th AIAA/ASCE/AHS/ASC Structures, structural dynamics, and materials conference, 2017, pp 1–18

  • Roy S, Crossley WA, Stanford B, Moore KT, Gray JS (2019) A mixed integer efficient global optimization algorithm with multiple infill strategy - applied to a wing topology optimization problem. In: AIAA Scitech 2019 Forum

  • Saka M, Ulker M (1992) Optimum design of geometrically nonlinear space trusses. Comput Struct 42 (3):289–299

    Article  Google Scholar 

  • Samuelides M, Bettebghor D, Grihon S, Merval A, Morlier J (2009) Modèles rėduits en optimisation multiniveau de structures aéronautiques. In: 9e Colloque national en calcul des structures CSMA. Giens

  • Schutte JF, Haftka RT, Watson LT (2004) Decomposition and two-level optimization of structures with discrete sizing variables. 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. California

  • Shahabsafa M, Mohammad-Nezhad A, Terlaky T, Zuluaga L, He S, Hwang JT, Martins JRRA (2018) A novel approach to discrete truss design problems using mixed integer neighborhood search. Struct Multidiscip Optim 58(6):2411–2429

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589– 596

    Article  MathSciNet  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    Article  Google Scholar 

  • Stolpe M (2011) To bee or not to bee—comments on “Discrete optimum design of truss structures using artificial bee colony algorithm”. Struct Multidiscip Optim 44(5):707–711

    Article  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  Google Scholar 

  • Turner M (1959) The direct stiffness method of structural analysis. In: Structural and materials panel paper. AGARD Meeting. Aachen

  • Turner MJ, Martin HC, Leible RC (1964) Further development and applications of stiffness methods. In: Matrix methods of structural analysis. 1st edn., vol 1. Macmillian, New York, pp 203–266

Download references

Acknowledgments

This work is part of the MDA-MDO project of the French Institute of Technology IRT Saint Exupery. We wish to acknowledge the PIA framework (CGI, ANR) and the project industrial members for their support, financial backing and/or own knowledge: Airbus, Airbus Group Innovations, SOGETI High Tech, Altran Technologies, CERFACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Jean Barjhoux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

This section is intended to help readers to replicate the results provided in this paper. A supplementary material allows to replicate the 3-bar truss example detailed in section 4.2. In order to replicate the scalable 2D cantilever (Section 4.4) and 120-bar truss (Section 4.5), the reader needs to adapt the 3-bar truss physical model consequently. The geometries are depicted on Fig. 6 and Fig. 8, material data is provided in Table 4, and the solution of the 120-bar truss is given in Table 5.

Additional information

Responsible Editor: Seonho Cho

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Materials definition

Table 4 Numerical details on materials attributes

1.2 120-bar solution

Table 5 Solution of 120-bar truss mixed categorical-continuous optimization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barjhoux, PJ., Diouane, Y., Grihon, S. et al. A bi-level methodology for solving large-scale mixed categorical structural optimization. Struct Multidisc Optim 62, 337–351 (2020). https://doi.org/10.1007/s00158-020-02491-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02491-w

Keywords

Navigation