A dual mesh method with adaptivity for stress-constrained topology optimization

Abstract

This paper is concerned with the topological optimization of elastic structures, with the goal of minimizing the compliance and/or mass of the structure, subject to a stress constraint. It is well known that depending upon the geometry and the loading conditions, the stress field can exhibit singularities, if these singularities are not adequately resolved, the topological optimization process will be ineffective. For computational efficiency, adaptive mesh refinement is required to adequately resolve the stress field. This poses a challenge for the traditional Solid Isotropic Material with Penalization (SIMP) method that employs a one-to-one correspondence between the finite element mesh and the optimization design variables because as the mesh is refined, the optimization process must somehow be re-started with a new set of design variables. The proposed solution is a dual mesh approach, one finite element mesh defines the material distribution, a second finite element mesh is used for the computation of the displacement and stress fields. This allows for stress-based adaptive mesh refinement without modifying the definition of the optimization design variables. A second benefit of this dual mesh approach is that there is no need to apply a filter to the design variables to enforce a length scale, instead the length scale is determined by the design mesh. This reduces the number of design variables and allows the designer to apply spatially varying length scale if desired. The efficacy of this dual mesh approach is established via several stress-constrained topology optimization problems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Notes

  1. 1.

    We introduce a lower bound, i.e., 𝜖 > 0, on the Berstein coefficients to avoid singularity in the analysis. However, this may ignore a globally optimal design as discussed in Cheng and Jiang (1992, 1997), Bruggi (2008), Le et al. (2010). We apply the relaxed stress indicator method to alleviate this issue as in Le et al. (2010).

References

  1. Amrosio L, Buttazaro G (1993) An optimal-design problem with perimeter penalization. Calc Var 1(1):55–69

    MathSciNet  Google Scholar 

  2. Amstutz S, Novotny A (2010) Topological optimization of structures subject to Von Mises stress constraints. Struct Multidisc Optim 41(3):407–420

    MathSciNet  MATH  Google Scholar 

  3. Bendsoe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Google Scholar 

  4. Bendsoe M, Sigmund O (2003) Topology optimization theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  5. Biswas A, Shapiro V, Tsukanov I (2004) Heterogeneous material modeling with distance fields. Comp Aided Geom Des 21:215–232

    MathSciNet  MATH  Google Scholar 

  6. Bourdin B (2001) Filters in topology optimization. Int J Num Meth Eng 50:2143–2158

    MathSciNet  MATH  Google Scholar 

  7. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141

    MathSciNet  MATH  Google Scholar 

  8. Bruggi M, Verani M (2011) A fully adaptive topology optimization algorithm with goal oriented error control. Comp Struct 89:1481–1493

    Google Scholar 

  9. Bruns T, Tortorelli D (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:26–27

    MATH  Google Scholar 

  10. Bruns T, Tortorelli D (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    MATH  Google Scholar 

  11. Chen J, Shapiro V (2008) Optimization of continuous heterogenous models. Heterogen Object Model Appl Lect Notes Comput Sci 4889:193–213

    Google Scholar 

  12. Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148

    Google Scholar 

  13. Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266

    Google Scholar 

  14. Duysinx P, Bendsoe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Meth Eng 43:1453–1478

    MathSciNet  MATH  Google Scholar 

  15. Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93(2):216–231

    Google Scholar 

  16. Gomes A, Suleman A (2006) Application of spectral level set methodology in topology optimization. Struct Multi Optim 31:430–443

    MathSciNet  MATH  Google Scholar 

  17. Guest TBJK, Prevost JH (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254

    MathSciNet  MATH  Google Scholar 

  18. Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Meth Eng 81(8):1019–1045

    MATH  Google Scholar 

  19. Guo X, Zhang W, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47-48):3439–3452

    MathSciNet  MATH  Google Scholar 

  20. Guo X, Zhang W, Zhong W (2014a) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal Of Applied Mechanics-Transactions Of The ASME 81(8):081009

  21. Guo X, Zhang W, Zhong W (2014b) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655

    MathSciNet  MATH  Google Scholar 

  22. Gupta DK, Langelaar M, van Keulen F (2018) Qr-patterns: artefacts in multiresolution topology optimization. Struct Multidiscip Optim 58(4):1335–1350

    Google Scholar 

  23. Haber R, Jog C, Bendsoe M (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12

    Google Scholar 

  24. Jensen KE (2016) Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes, and a global p-norm. Struct Mult Optim 54:831–841

    MathSciNet  Google Scholar 

  25. Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comp Meth Appl Mech Eng 200(49-52):3515–3525

    MathSciNet  MATH  Google Scholar 

  26. Kang Z, Wang YQ (2012) A nodal variable method of structural optimization based on shepard interpolant. Struct Mult Opt 90:329–342

    MathSciNet  MATH  Google Scholar 

  27. Karp SN, Karal FC (1962) The elastic-field behavior in the neighborhood of a crack of arbitrary angle. Comm Pure Appl Math XV:413–421

    MathSciNet  MATH  Google Scholar 

  28. Kim Y, Yoon G (2000) Multi-resolution multi-scale topology optimization - a new paradigm. Int J Solids Struct 37(39):5529–5559

    MathSciNet  MATH  Google Scholar 

  29. Körner TW (1988) Fourier analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Lazarov B, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Meth Eng 86:765–781

    MathSciNet  MATH  Google Scholar 

  31. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidisc Optim 41:605–620

    Google Scholar 

  32. Lieu QX, Lee J (2017) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112(13):2025–2047

    MathSciNet  Google Scholar 

  33. Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X (2018) An efficient moving morphable component (mmc)-based approach for multi-resolution topology optimization. Struct Multidiscip Optim 58(6):2455–2479

    MathSciNet  Google Scholar 

  34. Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Meth Eng 93(4):443–464

    MathSciNet  MATH  Google Scholar 

  35. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Meth Eng 59:1925–1944

    MathSciNet  MATH  Google Scholar 

  36. Maute K, Ramm E (1995) Adaptive topology optimization. Struct Opt 10:100–112

    MATH  Google Scholar 

  37. MFEM (2019) Modular finite element methods, mfem.org

  38. Nana A, Cuilliere JC, Francois V (2016) Towards adaptive topology optimization. Adv Eng Soft 100:290–307

    Google Scholar 

  39. Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (mtop). Struct Multidiscip Optim 41(4):525–539

    MathSciNet  MATH  Google Scholar 

  40. Nguyen TH, Le CH, Hajjar JF (2017) Topology optimization using the p-version of the finite element method. Struct Multidiscip Optim 56(3):571–586

    MathSciNet  Google Scholar 

  41. Niordson F (1983) Optimal-design Of elastic plates with a constraint on the slope of the thickness function. Int J Solids Struct 19(2):141–151

    MATH  Google Scholar 

  42. Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comp Meth App Mech Eng 293:306–327

    MathSciNet  MATH  Google Scholar 

  43. Panesar A, Brackett D, Ashcroft I, Wildman R, Hague R (2017) Hierarchical remeshing strategies with mesh mapping for topology optimization. Int J Numer Meth Eng 111:676–700

    Google Scholar 

  44. Picelli R, Townsend S, Brampton C, Norato J, Kim H (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23

    MathSciNet  Google Scholar 

  45. Poulsen T (2002) Topology optimization in wavelet space. Int J Numer Meth Eng 53:567–582

    MathSciNet  MATH  Google Scholar 

  46. Qian X (2013) Topology optimization in b-spline space. Comp Meth Appl Mech Eng 265:15–35

    MathSciNet  MATH  Google Scholar 

  47. Rahmatalla S, Swan C (2004) A Q4/Q4 continuum structural topology implementation. Struct Mult Optim 27:130–135

    Google Scholar 

  48. Rozvany G (2001) Aims, scope, methods, history, and unified terminology of computer aided optimization in structural mechanics. Struct Multidiscip Opt 21(2):90–108

    MathSciNet  Google Scholar 

  49. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1): 68–75

    Google Scholar 

  50. Salazar de Troya MA, Tortorelli D (2018) Adaptive mesh refinement in stress-constrained topology opotimization. Struct Mult Opt 58:2369–2386

    Google Scholar 

  51. Sayood K (2012) Introduction to data compression. Morgan Kaufmann

  52. Sidmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Google Scholar 

  53. Suresh K, Takalloozadeh M (2013) Stress-constrained topology optimizatioin: a topilogical level-set approach. Struct Mult Optim 48:295–309

    Google Scholar 

  54. Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Program 106(1):5–57

    MATH  Google Scholar 

  55. Wang Y, Kang Z, He Q (2013) An adaptive refinement approach for topology optimization based on separated density field description. Comput Struct 117:10–22

    Google Scholar 

  56. Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61

    Google Scholar 

  57. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J App Mech ASME 19(4):526–528

    Google Scholar 

  58. White DA, Stowell MS (2018) Topological optimization of structures using Fourier representations. Struct Multidisp Opt 58:1205–1220

    Google Scholar 

  59. Yang R, Chen C (1996) Stress-based topology optimization. Struct Optim 12:98–105

    Google Scholar 

  60. Yosibash Z (2012) Singularities in elliptic boundary value problems and elasticity and their connection with failure initiation. Springer, Berlin

    MATH  Google Scholar 

  61. Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5, SI):1173–1190

    MathSciNet  Google Scholar 

  62. Zhang W, Liu Y, Weng P, Zhu Y, Guo X (2017) Explicit control of structural complexity in topology optimization. Comp Meth Appl Mech Engrg 324:149–169

    MathSciNet  Google Scholar 

  63. Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018) A moving morphable void (Mmv)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel A. White.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prepared by LLNL under Contract DE-AC52-07NA27344

Responsible Editor: Xu Guo

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

White, D.A., Choi, Y. & Kudo, J. A dual mesh method with adaptivity for stress-constrained topology optimization. Struct Multidisc Optim 61, 749–762 (2020). https://doi.org/10.1007/s00158-019-02393-6

Download citation

Keywords

  • Topopolgy optimization
  • Stress
  • Adaptive mesh refinement and Bernstein polynomials