Mixed projection- and density-based topology optimization with applications to structural assemblies

Abstract

In this paper, we present a mixed projection- and density-based topology optimization approach. The aim is to combine the benefits of both parametrizations: the explicit geometric representation provides specific controls on certain design regions while the implicit density representation provides the ultimate design freedom elsewhere. While mixing projection and density representations in one formulation can serve many applications, our focus herein is only on the particular case of structural assemblies: the optimization of the structural topology is coupled with the optimization of the shape of the interface between the sub-components in a unified formulation. The interface between the assemblies is defined by a segmented profile made of linear geometric entities. The geometric coordinates of the nodes connecting the profile segments are used as shape variables in the problem, together with density variables as in conventional topology optimization. The variable profile is used to locally impose specific geometric constraints or to project particular material properties. Examples of the properties considered herein are a local volume constraint, a local maximum length scale control, a variable Young’s modulus for the distributed solid material, and spatially variable minimum and maximum length scale. The resulting optimization approach is general and various geometric entities can be used. The potential for complex design manipulations is demonstrated through several numerical examples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

References

  1. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Math 334 (12):1125–1130

    MathSciNet  MATH  Google Scholar 

  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  MATH  Google Scholar 

  3. Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382

    MathSciNet  Google Scholar 

  4. Allaire G, Dapogny C, Estevez R, Faure A, Michailidis G (2017) Structural optimization under overhang constraints imposed by additive manufacturing technologies. J Computs Phys 351:295–328

    MathSciNet  MATH  Google Scholar 

  5. Amir O, Lazarov BS (2018) Achieving stress-constrained topological design via length scale control. Struct Multidiscip Optim 58(5):2053–2071

    MathSciNet  Google Scholar 

  6. Amir O, Shakour E (2018) Simultaneous shape and topology optimization of prestressed concrete beams. Struct Multidiscip Optim 57(5):1831–1843

    MathSciNet  Google Scholar 

  7. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1 (4):193–202

    Google Scholar 

  8. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech 71(2):197–224

    MathSciNet  MATH  Google Scholar 

  9. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  10. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    MathSciNet  MATH  Google Scholar 

  11. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459

    MATH  Google Scholar 

  12. Cheng G, Mei Y, Wang X (2006) A feature-based structural topology optimization method. In: IUTAM symposium on topological design optimization of structures, machines and materials. Springer, pp 505–514

  13. Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147–1155

    MathSciNet  Google Scholar 

  14. Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    MathSciNet  Google Scholar 

  15. Edwards CS, Kim HA, Budd CJ (2007) Smooth boundary based optimisation using fixed grid. In: 7th world congress on structural and multidisciplinary optimization

  16. Gaynor AT, Guest JK (2016) Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct Multidiscip Optim 54(5):1157–1172

    MathSciNet  Google Scholar 

  17. Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37 (5):463–473

    MathSciNet  MATH  Google Scholar 

  18. Guest JK (2015) Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach. Comput Methods Appl Mech Eng 283:330–351

    Google Scholar 

  19. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    MathSciNet  MATH  Google Scholar 

  20. Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically?a new moving morphable components based framework. J Appl Mech 81(8):081009

    Google Scholar 

  21. Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63

    MathSciNet  Google Scholar 

  22. Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng, https://doi.org/10.1016/j.cma.2012.11.006

    MathSciNet  MATH  Google Scholar 

  23. Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidiscip Optim 55(3):871–883

    MathSciNet  Google Scholar 

  24. Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218

    Google Scholar 

  25. Lee SB, Kim IY, Kwak BM (2004) Continuum topology optimization. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4525

  26. Li Y, Wei P, Ma H (2017) Integrated optimization of heat-transfer systems consisting of discrete thermal conductors and solid material. J Heat Mass Transf, https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.018

    Google Scholar 

  27. Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media

  28. Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    MathSciNet  MATH  Google Scholar 

  29. Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111(3):247–272

    MathSciNet  Google Scholar 

  30. Qian Z, Ananthasuresh GK (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32(2):165–193. https://doi.org/10.1081/SME-120030555

    Article  Google Scholar 

  31. Schmidt MP, Pedersen CB, Gout C (2019) On structural topology optimization using graded porosity control. Struct Multidiscip Optim 1–17

  32. Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49-52):3270–3296

    MathSciNet  MATH  Google Scholar 

  33. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25(2):227–239

    MATH  Google Scholar 

  34. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  35. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    MathSciNet  Google Scholar 

  36. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    MathSciNet  MATH  Google Scholar 

  37. Tavlovich B, Shirizly A, Katz R (2018) EBW and lLBW of additive manufactured Ti6Al4V products. Weld J 97(6):179S–190S

    Google Scholar 

  38. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    MATH  Google Scholar 

  39. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1-2):227–246

    MathSciNet  MATH  Google Scholar 

  40. Wein F, Stingl M (2018) A combined parametric shape optimization and ersatz material approach. Struct Multidiscip Optim 57(3):1297–1315. https://doi.org/10.1007/s00158-017-1812-3

    MathSciNet  Article  Google Scholar 

  41. Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing: approaching bone-like porous structures. IEEE Trans Vis Comput Graph 24(2):1127–1140

    Google Scholar 

  42. Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng, https://doi.org/10.1016/j.cma.2013.01.008

    MathSciNet  MATH  Google Scholar 

  43. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505

    MathSciNet  MATH  Google Scholar 

  44. Yoely YM, Amir O, Hanniel I (2018) Topology and shape optimization with explicit geometric constraints using a spline-based representation and a fixed grid. Procedia Manufacturing 21:189–196

    Google Scholar 

  45. Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54s(5):1173–1190

    MathSciNet  Google Scholar 

  46. Zhang W, Zhong W, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng, https://doi.org/10.1016/j.cma.2015.03.007

    MathSciNet  MATH  Google Scholar 

  47. Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 322:590–614

    MathSciNet  Google Scholar 

  48. Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309–336

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their constructive comments, and in particular for pointing towards several relevant papers that are important additions to the literature review. This work has been carried out as part of AATiD—Advanced Additive Titanium Development Consortium. The authors wish to thank the Israeli Innovation Authority and the industrial partners for their generous financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolò Pollini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Julián Andrés Norato

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pollini, N., Amir, O. Mixed projection- and density-based topology optimization with applications to structural assemblies. Struct Multidisc Optim 61, 687–710 (2020). https://doi.org/10.1007/s00158-019-02390-9

Download citation

Keywords

  • Topology optimization
  • Shape optimization
  • Projection methods
  • Structural assembly
  • Robust approach