Skip to main content
Log in

Discrete material optimization of vibrating composite plate and attached piezoelectric fiber composite patch

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work deals with the layout optimization of piezoelectric fiber composite patches on a vibrating laminated composite plate and the discrete material design of the composite plate. The vibration of the composite plate is excited by an external mechanical loading, and a sinusoidal voltage with given amplitude and frequency is applied on the piezoelectric fiber composite patches. The analysis of the composite structure with piezoelectric fiber composite patches is performed via a finite element method in condensed form, where the piezoelectric effects are considered as induced force. As a view to minimize the dynamic response of the vibrating laminated composite structure, the Discrete Material Optimization method is employed to perform the design optimization of piezoelectric fiber composite patches and the stacking sequence, fiber angles, and selection of material for the composite structure. Numerical examples are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Allaire G, Jouveb O (2001) Eigenfrequency optimization in optimal design. Comput Meth Appl Mech Eng 190(28):3565–3579

    MathSciNet  MATH  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1–R21

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bruyneel M (2011) SFP—a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27

    Google Scholar 

  • Bruyneel M, Fleury C (2002) Composite structures optimization using sequential convex programming. Adv Eng Softw 33(7):697–711

    MATH  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    MathSciNet  MATH  Google Scholar 

  • Donoso A, Sigmund O (2009) Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads. Struct Multidiscip Optim 38(2):171–183

    Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    MathSciNet  MATH  Google Scholar 

  • Duan Z, Yan J, Zhao G (2015) Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct Multidiscip Optim 51(3):721–732

    Google Scholar 

  • Frecker MI (2003) Recent advances in optimization of smart structures and actuators. J Intell Mater Syst Struct 14(4):207–216

    Google Scholar 

  • Gao F, Shen Y, Li L (2000) The optimal design of piezoelectric actuators for plate vibroacoustic control using genetic algorithms with immune diversity. Smart Mater Struct 9(4):485–491

    Google Scholar 

  • Gao T, Zhang WH, Duysinx P (2013) Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct Multidiscip Optim 48(6):1075–1088

    MathSciNet  Google Scholar 

  • Gaul DIHL, Kögl DIM, Wagner DIM (2003) Boundary element methods for engineers and scientists. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  • Jaewook L, Dongjin K, Tsuyoshi N, Dede EM, Jeonghoon Y (2018) Topology optimization for continuous and discrete orientation design of functionally graded fiber-reinforced composite structures. Compos Struct 201:217–233

    Google Scholar 

  • Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709

    Google Scholar 

  • Kang Z, Tong L (2008a) Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput Struct 86(19–20):1885–1893

    Google Scholar 

  • Kang Z, Tong L (2008b) Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J Intell Mater Syst Struct 19(8):889–904

    Google Scholar 

  • Kiyono CY, Silva ECN, Reddy JN (2012) Design of laminated piezocomposite shell transducers with arbitrary fiber orientation using topology optimization approach. Int J Numer Methods Eng 90(12):1452–1484

    MATH  Google Scholar 

  • Kiyono CY, Silva ECN, Reddy JN (2016a) A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Compos Struct 160:503–515

    Google Scholar 

  • Kiyono CY, Silva ECN, Reddy JN (2016b) Optimal design of laminated piezocomposite energy harvesting devices considering stress constraints. Int J Numer Methods Eng 105(12):883–914

    MathSciNet  Google Scholar 

  • Kögl M, Bucalem ML (2005) A family of piezoelectric MITC plate elements. Comput Struct 83(15–16):1277–1297

    Google Scholar 

  • Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14(2):387–399

    Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167

    MathSciNet  Google Scholar 

  • Lund E, Stegmann J (2006) Eigenfrequency and buckling optimization of laminated composite shell structures using discrete material optimization. Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials, Springer, Dordrecht, Netherlands

  • Nelli Silva EC, Nishiwaki S, Kikuchi N (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization. Part III. Arch Comput Meth Eng 6(4):305–329

    MathSciNet  Google Scholar 

  • Niu B, Olhoff N, Lund E, Cheng G (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114

    MATH  Google Scholar 

  • Niu B, He X, Shan Y, Yang R (2018) On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Struct Multidiscip Optim 57(6):2291–2307

    MathSciNet  Google Scholar 

  • Olhoff N (1976) Optimization of vibrating beams with respect to higher order natural frequencies. J Struct Mech 4(1):87–122

    Google Scholar 

  • Olhoff N (1977) Maximizing higher order Eigenfrequencies of beams with constraints on the design geometry. Mech Base Des Struct Mach 5(2):107–134

    Google Scholar 

  • Olhoff N, Du J (2014) In: Rozvany G, Lewiński T (eds) Topological design for minimum dynamic compliance of structures under forced vibration. Topology optimization in structural and continuum mechanics. Springer, Heidelberg

    Google Scholar 

  • Olhoff N, Niu B, Cheng G (2012) Optimum design of band-gap beam structures. Int J Solid Struct 49(22):3158–3169

    Google Scholar 

  • Padoin E, Santos IF, Perondi EA, Menuzzi O, Gonçalves JF (2018) Topology optimization of piezoelectric macro-fiber composite patches on laminated plates for vibration suppression. Struct Multidiscip Optim

  • Qing HQ (2012) Advanced mechanics of piezoelectricity. Higher Education Press, Beijing

    MATH  Google Scholar 

  • Quek ST, Wang SY, Ang KK (2003) Vibration control of composite plates via optimal placement of piezoelectric patches. J Intell Mater Syst Struct 14(4):229–245

    Google Scholar 

  • Qureshi EM, Shen X, Chen JJ (2014) Vibration control laws via shunted piezoelectric transducers: a review. Int J Aeronaut Space Sci 15(1):1–19

    Google Scholar 

  • Ray MC, Reddy JN (2013) Active damping of laminated cylindrical shells conveying fluid using 1–3 piezoelectric composites. Compos Struct 98:261–271

    Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252

    Google Scholar 

  • Ruiz D, Díaz-Molina A, Sigmund O, Donoso A, Bellido JC, Sánchez-Rojas JL (2018) Optimal design of robust piezoelectric unimorph microgrippers. Appl Math Model 55:1–12

    MathSciNet  Google Scholar 

  • Salas RA, Ramírez-Gil Fran FJ, Montealegre-Rubio W, Silva ECN, Reddy JN (2018) Optimized dynamic design of laminated piezocomposite multi-entry actuators considering fiber orientation. Comput Methods Appl Mech Eng 335:223–254

    MathSciNet  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans 361(1806):1001–1019

    MathSciNet  MATH  Google Scholar 

  • Silva ECN, Kikuchi N (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization—part III. Arch Comput Meth Eng 6(4):305–329

    Google Scholar 

  • Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48(2):249–265

    MathSciNet  Google Scholar 

  • Sørensen R, Lund E (2015a) Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures. Struct Multidiscip Optim 52(2):227–250

    Google Scholar 

  • Sørensen R, Lund E (2015b) In-plane material filters for the discrete material optimization method. Struct Multidiscip Optim 52(4):645–661

    MathSciNet  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    MATH  Google Scholar 

  • Sun HL, Chen HB, Zhang K, Zhang PQ (2008) Research on performance indices of vibration isolation system. Appl Acoust 69(9):789–795

    Google Scholar 

  • Sun H, Yang ZC, Li KX, Li B, Xie J, Wu D, Zhang LL (2009) Vibration suppression of a hard disk driver actuator arm using piezoelectric shunt damping with a topology-optimized PZT transducer. Smart Mater Struct 18(6):065010

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    MathSciNet  MATH  Google Scholar 

  • Tzou HS, Tseng CI (1990) Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach. J Sound Vib 138(1):17–34

    Google Scholar 

  • Vatanabe SL, Paulino GH, Silva ECN (2013) Design of functionally graded piezocomposites using topology optimization and homogenization—toward effective energy harvesting materials. Comput Methods Appl Mech Eng 266:205–218

    MathSciNet  MATH  Google Scholar 

  • Wang J, Mak CM (2013) An indicator for the assessment of isolation performance of transient vibration. J Vib Control 19(16):2459–2468

    Google Scholar 

  • Wang SY, Tai K, Quek ST (2006) Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates. Smart Mater Struct 15(15):253

    Google Scholar 

  • Xia Q, Shi T (2018) A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation. Compos Struct 188:209–219

    Google Scholar 

  • Zhang X, Kang Z (2014) Topology optimization of piezoelectric layers in plates with active vibration control. J Intell Mater Syst Struct 25(6):697–712

    Google Scholar 

  • Zhang X, Kang Z, Li M (2014) Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Struct Multidiscip Optim 50(5):799–814

    MathSciNet  Google Scholar 

  • Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23

    Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (NSFC Nos. 51975087, 51790172, 51505064, 51675082), Natural Science Foundation of Liaoning Province (no. 2015020154), and Fundamental Research Funds for the Central Universities (DUT17ZD207). These supports are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Helder C. Rodrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Shan, Y. & Lund, E. Discrete material optimization of vibrating composite plate and attached piezoelectric fiber composite patch. Struct Multidisc Optim 60, 1759–1782 (2019). https://doi.org/10.1007/s00158-019-02359-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02359-8

Keywords

Navigation