Skip to main content
Log in

Co-optimization of color and mechanical properties by volumetric voxel control

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Controlling the composition of individual voxels allows for a co-optimization of 3D-printed part properties such as color and mechanical ones. As a result, choices can be made continuously about how to use a given system’s materials, from favoring mechanical strength to giving preference to color variety. A processing pipeline is presented here that determines the composition of individual print-resolution voxels and exercises control over them in a volumetrically probabilistic way. As a result, it allows for all possible at-voxel contents (liquids, powders, system parameters, etc) to be arranged with all possible local volumetric probabilities. Results are shown here for applying such an approach to a prototype printing testbed for controlling color and mechanical properties as well as their combined domain to produce mechanically strong color parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • ASTM D638 Standard Test Method for Tensile Properties of Plastics https://www.astm.org/Standards/D638

  • Bickel B, Bächer M, Otaduy MA, Lee HR, Pfister H, Gross M, Matusik W (2010) Design and fabrication of materials with desired deformation behavior. ACM Trans Graph 29:63

    Article  Google Scholar 

  • Brunton A, Arikan CA, Urban P (2015) Pushing the limits of 3D color printing: error diffusion with translucent materials. ACM Transactions on Graphics (TOG) 35(1):4

    Article  Google Scholar 

  • Chandru V, Manohar S, Prakash CE (1995) Voxel- based modeling for layered manufacturing. IEEE Comput Graph Appl 15:27–42

    Article  Google Scholar 

  • Chen D, Levin DIW, Didyk P, Sitthi-Amorn P, Matusik W (2013) Spec2Fab: a reducer-tuner model for translating specifications to 3D prints. ACM Trans Graph 32(4):135

    Google Scholar 

  • Cho W, Sachs E, Patrikalakis NM, Troxel DE (2003) A dithering algorithm for local composition control with three-dimensional printing. In Cad 35(9):851–867

  • Cignoni P, Gobbetti E, Pintus R, Scopigno R (2008) Color enhancement for rapid prototyping. In VAST:9–16

  • Coelho P, Fernandes P, Guedes J, Rodrigues H (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35(2):107–115

    Article  Google Scholar 

  • de Berg M, Cheong O van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications. 2008. Springer, ISBN-13: 978-3540779735

  • Dimitrov D, Schreve K, de Beer N (2006) Advances in three dimensional printing – state of the art and future perspectives. Rapid Prototyp J 12(3):136–147

    Article  Google Scholar 

  • Dong Y, Wang J, Pellacini F, Tong X, Guo B (2010) Fabricating spatially-varying subsurface scattering. In ACM TOG 29(4):62

  • Dwivedi R, Zekovic S, and Kovacevic R (2005) Field feature detection and morphing-based process planning for fabrication of geometries and composition control for functionally graded materials, In Proceedings of the institution of mechanical engineers, part B: journal of engineering manufacture, 220:1647–1661

  • Hašan M, Fuchs M, Matusik W, Pfister H, Rusinkiewicz S (2010) Physical reproduction of materials with specified subsurface scattering. ACM Trans Graph 29(4):61

    Article  Google Scholar 

  • Hiller JD, Lipson H (2010) Tunable digital material properties for 3D voxel printers. Rapid Prototyp J 16(4):241–247

    Article  Google Scholar 

  • HP 3D High Reusability PA 12 spec sheet: http://www8.hp.com/h20195/v2/getpdf.aspx/4AA6-4895ENA.pdf

  • Jackson TR, Liu H, Patrikalakis NM, Sachs EM, Cima MJ (1999) Modeling and designing functionally graded material components for fabrication with local composition control. In Mater Des 20:63–75

  • Kumar P, Santosa JK, Beck E, Das S (2004) Direct-write deposition of fine powders through miniature hopper-nozzles for multi-material solid freeform fabrication. Rapid Prototyp J 10(1):14–23

    Article  Google Scholar 

  • Liu J Gaynor AT Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CCL, Cheng L, Liang X, To AC (2018) Suresh K. Current and future trends in topology optimization for additive manufacturing, In Structural and Multidisciplinary Optimization, 57 (6):2457–2483

  • Lou Q, Stucki P (1998) Fundamentals of 3D halftoning. Lect Notes Comput Sci 1375:224–239

    Article  Google Scholar 

  • Ming, L. W., Gibson, I. 1999. Possibility of colouring SLS prototypes using the ink-jet method, Rapid Prototyping Journal, 5: 4 (1999):152–154, https://doi.org/10.1108/13552549910295460

  • Mirzaali MJ, Edens ME, Herranz de la Nava A, Janbaz S, Vena P, Doubrovski EL, Zadpoor AA (2018) Length-scale dependency of biomimetic hard-soft composites. Sci Rep 8:12052

    Article  Google Scholar 

  • Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., and Ford, R.G. (Eds.). 1999. Functionally graded materials. Design, Processing and Applications, Springer

  • Morovič J, Morovič P, Arnabat J (2011) HANS – controlling inkjet print attributes via Neugebauer primary area coverages. IEEE Trans Image Process 21(2):688–696

    Article  MATH  Google Scholar 

  • Morovič P, Morovič J, Tastl I, Gottwals M, Dispoto G (2017) HANS3D: a multi-material, volumetric, voxel-by-voxel content processing pipeline for color and beyond, In 25th IS&T Color and Imaging Conference, Lillehammer, Norway

  • Morovič P, Morovič J, Diego V, Maestro J, Fariña X, Gasparing P (2018) Halftone structure optimization using convex programming. In 26th IS&T Color and Imaging Confernece, Vancouver (BC), Canada, 410–416

  • Papas M, Regg C, Jarosz W, Bickel B, Jackson P, Matusik W, Marschner S, Gross M (2013) Fabricating translucent materials using continuous pigment mixtures. In ACM Tog (Proc. SIGGRAPH) 32:3

  • Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modelling. In Composites: Part A 76:110–114

    Article  Google Scholar 

  • Rasul K (2013) Klein bottle (STL 3D model at http://www.thingiverse.com/thing:121871 )

  • Reiner T, Carr N, Mech R, Stava O, Dachsbacher C, Miller G (2014) Dual-color mixing for fused de- position modeling printers. In: Computer graphics forum (EURO- GRAPHICS 2014 proceedings), vol 33, p 2

    Google Scholar 

  • Rodrigues H, Guedes J, And Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10

    Article  MathSciNet  Google Scholar 

  • Schumacher C, Bickel B, Rys J, Marschner S, Daraio C, Gross M (2015) Microstructures to control elasticity in 3D printing. ACM Trans Graph 34(4):136:1–136:13

    Article  Google Scholar 

  • Sitthi-Amorn P, Ramos JE, Wangy Y, Kwan J, Lan J, Wang W and Matusik W (2015) MultiFab: a machine vision assisted platform for multi-material 3D printing, In ACM Transactions on Graphics (TOG), ACM, 34, 4

  • Stucki P (1997) 3D halftoning. In: Proc. SPIE, vol 2949, pp 314–317

    Google Scholar 

  • Sun PL and Sie Y (2015) Color dithering methods for LEGO-like 3D printing, In Proc. SPIE 9395, Color Imaging XX: Displaying, Processing, Hardcopy, and Applications, 93950J

  • Sun PL and Sie Y (2016) Color uniformity improvement for an inkjet color 3D printing system. In Electronic Imaging, Color Imaging XXI: Displaying, Processing, Hardcopy, and Applications, 1-6(6)

  • Vidimče K, Wang S-P, Ragan-Kelley J, Matusik W (2013) OpenFab: a programmable pipeline for multi-material fabrication. ACM Trans Graph 32(4):136:1–136:12

    Article  Google Scholar 

  • Vidimče, K., Kaspar, A., Wang, Y. and Matusik, W. 2016. Foundry: hierarchical material design for multi-material fabrication. In UIST ‘16 Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 563–574

  • Wang L, Lau J, Thomas EL, Boyce MC (2011) Co-continuous composite materials for stiffness, strength, and energy dissipation. Adv Mater 23(13):1524–1529

    Article  Google Scholar 

  • Willis KDD, Brockmeyer E, Hudson SE, and Poupyrev I (2012) Printed optics: 3D printing of embedded optical elements for interactive devices. In UIST

  • Xu H, Li Y, Chen Y, Barbič J (2015) Interactive material design using model reduction. ACM Trans Graph 34(2):18:1–18:14

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their thorough and thoughtful comments and feedback as well as to acknowledge the support of their colleagues at HP Inc., Africa Real, Albert Serra, Andrew Fitzhugh, David Gaston, Hou T Ng, Jake Wright, Jay Gondek, Jim Stasiak, Jordi Arnabat, Juan Manuel Garcia Reyero, Lihua Zhao, Matt Gaubatz, Rafa Gimenez, Ramon Pastor, Sascha de Peña, Scott White, Tsuyoshi Yamashita, Virginia Palacios, and Yan Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Morovič.

Additional information

Responsible Editor: Fred van Keulen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morovič, P., Morovič, J., Tastl, I. et al. Co-optimization of color and mechanical properties by volumetric voxel control. Struct Multidisc Optim 60, 895–908 (2019). https://doi.org/10.1007/s00158-019-02240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02240-8

Keywords

Navigation