Skip to main content
Log in

Uncertainty propagation analysis using sparse grid technique and saddlepoint approximation based on parameterized p-box representation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Uncertainty propagation analysis, which assesses the impact of the uncertainty of input variables on responses, is an important component in risk assessment or reliability analysis of structures. This paper proposes an uncertainty propagation analysis method for structures with parameterized probability-box (p-box) representation, which could efficiently compute both the bounds on statistical moments and also the complete probability bounds of the response function. Firstly, based on the sparse grid numerical integration (SGNI) method, an optimized SGNI (OSGNI) is presented to calculate the bounds on the statistical moments of the response function and the cumulants of the cumulant generating function (CGF), respectively. Then, using the bounds on the first four cumulants, an optimization procedure based on the saddlepoint approximation is proposed to obtain the whole range of probability bounds of the response function. Through using the saddlepoint approximation, the present approach can achieve a good accuracy in estimating the tail probability bounds of a response function. Finally, two numerical examples and an engineering application are investigated to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aughenbaugh JM, Paredis CJ (2006) The value of using imprecise probabilities in engineering design. ASME J Mech Des 128(4):969–979

    Article  Google Scholar 

  • Barthelmann V, Novak E, Ritter K (2000) High dimensional polynomial interpolation on sparse grids. Adv Comput Math 12(4):273–288

    Article  MathSciNet  MATH  Google Scholar 

  • Berleant D (1993) Automatically verified reasoning with both intervals and probability density functions. Interval Comput 2:48–70

    MathSciNet  MATH  Google Scholar 

  • Berleant D, Xie L, Zhang J (2003) Statool: a tool for distribution envelope determination (DEnv), an interval-based algorithm for arithmetic on random variables. Reliab Comput 9(2):91–108

    Article  MATH  Google Scholar 

  • Berleant D, Zhang J (2004) Representation and problem solving with distribution envelope determination (DEnv). Reliab Eng Syst Saf 85(1):153–168

    Article  Google Scholar 

  • Bruns MC, Paredis CJJ (2006) Numerical Methods for Propagating Imprecise Uncertainty. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference ASME, 1077–1091

  • Bruns MC (2006) Propagation of imprecise probabilities through black box models. M.S. thesis, Georgia Institue of Technology, Atlanta, GA

  • Cho H, Choi KK, Gaul NJ, Lee I, Lamb D, Gorsich D (2016) Conservative reliability-based design optimization method with insufficient input data. Struct Multidiscip O 54(6):1609–1630

    Article  MathSciNet  Google Scholar 

  • Daniels HE (1954) Saddlepoint approximations in statistics. Ann Math Stat 631–650

  • Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat:325–339

  • Kiureghian AD, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112

    Article  Google Scholar 

  • Du XP, Chen W (2001) A most probable point-based method for efficient uncertainty analysis. J Adv Mech Des Syst 4(1):47–66

    Google Scholar 

  • Dubois D, Prade H (2012) Possibility theory: an approach to computerized processing of uncertainty: Springer Science & Business Media

  • Eldred MS, Swiler LP, Tang G (2011) Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab Eng Syst Saf 96(9):1092–1113

    Article  Google Scholar 

  • Ferson S, Donald S (1998) Probability bounds analysis. Proceedings of the international conference on probabilistic safety assessment and management (PSAM4). Spring-Verlag, New York, pp 1203–1208

    Google Scholar 

  • Ferson S, Ginzburg LR (1996) Different methods are needed to propagate ignorance and variability. Reliab Eng Syst Saf 54(2–3):133–144

    Article  Google Scholar 

  • Ferson S, Kreinovich V, Ginzburg L, Myers DS, Sentz K (2003) Constructing probability boxes and Dempster-Shafer structures: Technical report, Sandia National Laboratories

  • Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18(3–4):209

    Article  MathSciNet  MATH  Google Scholar 

  • Hall JW, Lawry J (2004) Generation, combination and extension of random set approximations to coherent lower and upper probabilities. Reliab Eng Syst Saf 85(1–3):89–101

    Article  Google Scholar 

  • Huang B, Du XP (2006) Uncertainty analysis by dimension reduction integration and saddlepoint approximations. ASME J Mech Des 128(1):26–33

    Article  Google Scholar 

  • Huang XZ, Liu Y, Zhang YM, Zhang XF (2017a) Reliability analysis of structures using stochastic response surface method and saddlepoint approximation. Struct Multidiscip O 55(6):2003–2012

    Article  MathSciNet  Google Scholar 

  • Huang ZL, Jiang C, Zhang Z, Fang T, Han X (2017b) A decoupling approach for evidence-theory-based reliability design optimization. Struct Multidisc Optim 56(3):647–661

  • Huzurbazar S (1999) Practical saddlepoint approximations. Am Stat 53(3):225–232

    MathSciNet  Google Scholar 

  • Jensen JL (1995) Saddlepoint approximations: Oxford University Press

  • Kendall MG, Stuart A (1958) The advanced theory of statistics

  • Kruschke JK (2010) Bayesian data analysis. Wiley Interdiscip Rev Cogn Sci 1(5):658–676

    Article  Google Scholar 

  • Kuonen D (2001) Computer-intensive statistical methods: saddlepoint approximations with applications in bootstrap and robust inference. PhD Thesis, Swiss Federal Institute of Technology

  • Lee D, Kim NH, Kim HS (2016) Validation and updating in a large automotive vibro-acoustic model using a P-box in the frequency domain. Springer-Verlag New York, Inc

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip O 37(3):239–253

    Article  Google Scholar 

  • Leon-Garcia A (2008) Probability, statistics, and random processes for electrical engineering, 3rd edn. Pearson/Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Liu X, Yin LR, Hu L, Zhang ZY (2017) An efficient reliability analysis approach for structure based on probability and probability box models. Struct Multidisc Optim 56(1):167–181

    Article  MathSciNet  Google Scholar 

  • Liu HB, Jiang C, Jia XY, Long XY, Zhang Z, Guan FJ (2018) A new uncertainty propagation method for problems with parameterized probability-boxes. Reliab Eng Syst Saf 172:64–73

    Article  Google Scholar 

  • Lugannani R, Rice S (1980) Saddle point approximation for the distribution of the sum of independent random variables. Adv Appl Probab 12(2):475–490

    Article  MathSciNet  MATH  Google Scholar 

  • Molchanov I (2006) Theory of random sets: Springer Science & Business Media

  • Moon MY, Choi KK, Cho H, Gaul N, Lamb D, Gorsich D (2016) Reliability-based design optimization using confidence-based model validation for insufficient experimental data. J Mech Design 139(3):V02BT03A054

    Google Scholar 

  • Moore RE (1979) Methods and applications of interval analysis: SIAM

  • Neumaier A (2004) Clouds, fuzzy sets, and probability intervals. Reliable Comput 10(4):249–272

    Article  MathSciNet  MATH  Google Scholar 

  • Novak E, Ritter K (1996) High dimensional integration of smooth functions over cubes. Numer Math 75(1):79–97

    Article  MathSciNet  MATH  Google Scholar 

  • Novak E, Ritter K (1999) Simple cubature formulas with high polynomial exactness. Constr Approx 15(4):499–522

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilist Eng Mech 19(4):393–408

    Article  Google Scholar 

  • Regan HM, Ferson S, Berleant D (2004) Equivalence of methods for uncertainty propagation of real-valued random variables. Int J Approx Reason 36(1):1–30

    Article  MathSciNet  MATH  Google Scholar 

  • Reid N (1988) Saddlepoint methods and statistical inference. Stat Sci 3:213–227

    Article  MathSciNet  MATH  Google Scholar 

  • Rekuc SJ, Aughenbaugh JM, Bruns M, Paredis CJ (2006) Eliminating design alternatives based on imprecise information: SAE Technical Paper

  • Rota GC (1986) Simulation and the Monte-Carlo method: R. Y Rubinstein , Wiley, 1981. Adv Math 60(1):278

    Google Scholar 

  • Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using three-point information. Int J Prod Res 40(4):931–944

    Article  MATH  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence: Princeton university press

  • Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math Dokl 4(5):240–243

    MATH  Google Scholar 

  • Thoft-Cristensen P, Baker MJ (2012) Structural reliability theory and its applications: Springer Science & Business Media

  • Wang S (1992) General saddlepoint approximations in the bootstrap. Stat Probabil Lett 13(1):61–66

    Article  MathSciNet  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Article  MathSciNet  MATH  Google Scholar 

  • Williamson RC, Downs T (1990) Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds. Int J Approx Reason 4(2):89–158

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao NC, Huang HZ, Wang Z, Liu Y, Zhang XL (2012) Unified uncertainty analysis by the mean value first order saddlepoint approximation. Struct Multidiscip O 46(6):803–812

    Article  MATH  Google Scholar 

  • Xiao NC, Huang HZ, Wang Z, Pang Y, He L (2011) Reliability sensitivity analysis for structural systems in interval probability form. Struct Multidiscip O 44(5):691–705

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao Z, Han X, Jiang C, Yang G (2016) An efficient uncertainty propagation method for parameterized probability boxes. Acta Mech 227(3):633–649

    Article  MathSciNet  MATH  Google Scholar 

  • Xiong FF, Greene S, Chen W, Xiong Y, Yang S (2010) A new sparse grid based method for uncertainty propagation. Struct Multidiscip O 41(3):335–349

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The wiener--Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int J Numer Meth Eng 61(12):1992–2019

    Article  MATH  Google Scholar 

  • Zhang H, Mullen R, Muhanna R (2010a) Finite element structural analysis using imprecise probabilities based on p-box representation. The 4th International Workshop on Reliable Engineering Computing, Professional Activities Centre, National University of Singapore

  • Zhang H, Mullen RL, Muhanna RL (2010b) Interval Monte Carlo methods for structural reliability. Struct Saf 32(3):183–190

    Article  Google Scholar 

  • Zhang H, Mullen RL, Muhanna RL (2011) Structural analysis with probability-boxes. Int J Reliab and Saf 6(1–3):110–129

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Fund for Distinguished Young Scholars (51725502), the Major Projects of the National Natural Science Foundation of China (51490662), the National Key Research and Development Plan (2016YFD0701105) and the Open Funds for State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China (Grant No.31515010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Additional information

Responsible Editor: Byeng D Youn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H.B., Jiang, C., Liu, J. et al. Uncertainty propagation analysis using sparse grid technique and saddlepoint approximation based on parameterized p-box representation. Struct Multidisc Optim 59, 61–74 (2019). https://doi.org/10.1007/s00158-018-2049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2049-5

Keywords

Navigation