Skip to main content

Achieving stress-constrained topological design via length scale control

Abstract

A new suite of computational procedures for stress-constrained continuum topology optimization is presented. In contrast to common approaches for imposing stress constraints, herein it is proposed to limit the maximum stress by controlling the length scale of the optimized design. Several procedures are formulated based on the treatment of the filter radius as a design variable. This enables to automatically manipulate the minimum length scale such that stresses are constrained to the allowable value, while the optimization is driven to minimizing compliance under a volume constraint – without any direct constraints on stresses. Numerical experiments are presented that incorporate the following : 1) Global control over the filter radius that leads to a uniform minimum length scale throughout the design; 2) Spatial variation of the filter radius that leads to local manipulation of the minimum length according to stress concentrations; and 3) Combinations of the two above. The optimized designs provide high-quality trade-offs between compliance, stress and volume. From a computational perspective, the proposed procedures are efficient and simple to implement: essentially, stress-constrained topology optimization is posed as a minimum compliance problem with additional treatment of the length scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Engineering Analysis with Boundary Elements 32(11):909–918

    Article  Google Scholar 

  2. Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818

    MathSciNet  Article  Google Scholar 

  3. Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41(3):407–420

    MathSciNet  Article  Google Scholar 

  4. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43:1–16. http://link.springer.com/article/10.1007%2Fs00158-010-0594-7

    Article  Google Scholar 

  5. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural optimization 1 (4):193–202

    Article  Google Scholar 

  6. Bendsøe MP, Sigmund O (2003) Topology optimization - theory methods and applications. Springer, Berlin

    MATH  Google Scholar 

  7. Bendsøe MP, Díaz A, Kikuchi N (1993) Topology and generalized layout optimization of elastic structures. In: Bendsøe MP, Soares CAM (eds) Proceedings of the NATO advanced research workshop on topology design of structures. https://doi.org/10.1007/978-94-011-1804-0_13. Springer, Netherlands, pp 159–205

    Chapter  Google Scholar 

  8. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    MathSciNet  Article  Google Scholar 

  9. Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384

    MathSciNet  Article  Google Scholar 

  10. Bruggi M, Venini P (2008) A mixed fem approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714

    MathSciNet  Article  Google Scholar 

  11. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  Google Scholar 

  12. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  Google Scholar 

  13. Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147–1155

    MathSciNet  Article  Google Scholar 

  14. De Leon DM, Alexandersen J, Fonseca JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943

    MathSciNet  Article  Google Scholar 

  15. Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. 10.1007/s00158-013-0956-z

    MathSciNet  Article  Google Scholar 

  16. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    MathSciNet  Article  Google Scholar 

  17. Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA, Saint Louis, Missouri, AIAA Paper, pp 98–4906

  18. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  19. Fancello E (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32(3):229–240

    MathSciNet  Article  Google Scholar 

  20. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254

    MathSciNet  Article  Google Scholar 

  21. Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47

    MathSciNet  Article  Google Scholar 

  22. James KA, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631

    MathSciNet  Article  Google Scholar 

  23. Kiyono C, Vatanabe S, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19

    Article  Google Scholar 

  24. Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218

    Article  Google Scholar 

  25. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41:605–620

    Article  Google Scholar 

  26. Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) Combined shape and topology optimization for minimization of maximal von mises stress. Struct Multidiscip Optim 55(5):1541–1557

    MathSciNet  Article  Google Scholar 

  27. Madsen S, Lange NP, Giuliani L, Jomaas G, Lazarov BS, Sigmund O (2016) Topology optimization for simplified structural fire safety. Eng Struct 124:333–343

    Article  Google Scholar 

  28. Oest J, Lund E (2017) Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim 56(5):1045–1059

    MathSciNet  Article  Google Scholar 

  29. París J, Navarrina F, Colominas I, Casteleiro M (2007) Block aggregation of stress constraints in topology optimization of structures. In: Hernández S, Brebbia CA (eds) Computer Aided Optimum Design of Structures X

  30. París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441

    Article  Google Scholar 

  31. Park YK (1995) Extensions of optimal layout design using the homogenization method. PhD thesis, University of Michigan, Ann Arbor

    Google Scholar 

  32. Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscip Optim 26(1-2):50–66

    MathSciNet  Article  Google Scholar 

  33. Picelli R, Townsend S, Brampton C, Norato J, Kim H (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23

    MathSciNet  Article  Google Scholar 

  34. Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57:741–760

    MathSciNet  Article  Google Scholar 

  35. Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidiscip Optim 57(1):17–38

    MathSciNet  Article  Google Scholar 

  36. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21:120–127

    Article  Google Scholar 

  37. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  38. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Article  Google Scholar 

  39. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    MathSciNet  Article  Google Scholar 

  40. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    MathSciNet  Article  Google Scholar 

  41. Thore CJ, Holmberg E, Klarbring A (2017) A general framework for robust topology optimization under load-uncertainty including stress constraints. Comput Methods Appl Mech Eng 319:1–18

    MathSciNet  Article  Google Scholar 

  42. Verbart A, Langelaar M, van Keulen F (2016) Damage approach: a new method for topology optimization with local stress constraints. Struct Multidiscip Optim 53(5):1081–1098

    MathSciNet  Article  Google Scholar 

  43. Verbart A, Langelaar M, Van Keulen F (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663–679

    MathSciNet  Article  Google Scholar 

  44. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  Google Scholar 

  45. Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938

    MathSciNet  Article  Google Scholar 

  46. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41(4):495–505. https://doi.org/10.1007/s00158-009-0452-7

    MathSciNet  Article  MATH  Google Scholar 

  47. Yang R, Chen C (1996) Stress-based topology optimization. Structural Optimization 12(2-3):98–105

    Article  Google Scholar 

  48. Zelickman Y, Amir O (2018) Topology optimization with stress constraints using isotropic damage with strain softening. In: Schumacher A, Vietor T, Fiebig S, Bletzinger KU, Maute K (eds) Advances in structural and multidisciplinary optimization: proceedings of the 12th world congress of structural and multidisciplinary optimization (WCSMO12), Springer International Publishing

  49. Zhang S, Gain AL, Norato JA (2017) Stress-based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 325:1–21

    MathSciNet  Article  Google Scholar 

  50. Zhou M, Sigmund O (2017) On fully stressed design and p-norm measures in structural optimization. Struct Multidiscip Optim 56(3):731–736. https://doi.org/10.1007/s00158-017-1731-3

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oded Amir.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author received financial support from the Israeli Science Foundation, grant number 750/15. The work of the second author was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amir, O., Lazarov, B.S. Achieving stress-constrained topological design via length scale control. Struct Multidisc Optim 58, 2053–2071 (2018). https://doi.org/10.1007/s00158-018-2019-y

Download citation

Keywords

  • Topology optimization
  • Stress constraints
  • Length scale