Skip to main content

Multi-phase field topology optimization of polycrystalline microstructure for maximizing heat conductivity

Abstract

The present study proposes multi-scale topology optimization for polycrystalline microstructures applying a multi-phase field method. The objective function is to maximize the heat compliance of macrostructure and the equality constraint is the material volume of constituents in an alloy consisting of two components with different heat conductivity. Two-scale steady-state heat conduction problem based on a homogenization method is conducted. The Allen-Cahn non-conserved time evolution equation with the additional volume constraint scheme is employed as the optimization strategy for updating the crystal configuration. In the time evolution equation, sensitivities of objective function with respect to phase-field variables are considered to relate topology optimization to the multi-phase field method. It is verified from a series of numerical examples that the proposed method has great potential for the development of material design underlying polycrystalline structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Blank L, Harald G, Lavinia S, Tarin S, Vanessa S, Axel V (2012) Phase–field approaches to structural topology optimization. Int S Num M 160:245–256

    MathSciNet  MATH  Google Scholar 

  • Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45:1447–1466

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Tong L, Liu S (2017) Concurrent topology design of structure and material using a two-scale topology optimization. Compos Struct 178:119–128

    Article  Google Scholar 

  • Gain AL, Paulino GH (2009) Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct Multidisc Optim 46:327–342

    Article  MathSciNet  MATH  Google Scholar 

  • Kato J, Yachi D, Terada K, Kyoya T (2014) Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis. Struct Multidisc Optim 49:595–608

    Article  MathSciNet  Google Scholar 

  • Kato J, Yachi D, Kyoya T, Terada K (2017) Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis. Int J Numer Meth Engng :1–25. https://doi.org/10.1002/nme.5571 https://doi.org/10.1002/nme.5571

  • Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63:410–423

    Article  MATH  Google Scholar 

  • Larsen UD, Sigmund O, Bouwstra S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J MEMS 6(2):99–106

    Article  Google Scholar 

  • Maute K, Ramm E (1995) Adaptive topology optimization. Struct Optim 10:100–122

    Article  MATH  Google Scholar 

  • Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multi scale topology optimization Part I: Static formulation. Comput Methods Appl Mech Engrg 261-262:167–176

    Article  MATH  Google Scholar 

  • Nestler B, Wendler F, Selzer M (2008) Phase-field model for multiphase systems with preserved volume fractions. Phys Rev E 78:011604

    Article  Google Scholar 

  • Nishi N, Terada K, Kato J, Nishiwaki S, Izui K (2017) Two-scale topology optimization for composite plates with in-plane periodicity Int J Numer Meth Engng, Published online in Wiley Online Library, https://doi.org/10.1002/nme.5545

  • Niu B, Yan J, Chen G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidisc Optim 39:115–132

    Article  Google Scholar 

  • Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidisc Optim 24:1–10

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int JSolid Struct 31(13):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and structural optimization by multiscale topology optimization. Struct Multidisc Optim 54:1267–1281

    Article  MathSciNet  Google Scholar 

  • Tiaden J, Nestler B, Diepers HJ, Steinbach I (1998) The multiphase-field model with an integrated concept for modelling solute diffusion. Phys D 115:73–86

    Article  MATH  Google Scholar 

  • Steinbach I, Pezzolla F, Nestler B, SeeBelberg M, Prieler R, Schmitz GJ (1996) A phase field concept for multiphase system. Phys D 94:135–147

    Article  MATH  Google Scholar 

  • Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Phys D 134:385–393

    Article  MathSciNet  MATH  Google Scholar 

  • Sun SH, Koizumi Y, Kurosu S, Li YP, Matsumoto H, Chiba A (2014) Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater 64:154–168

    Article  Google Scholar 

  • Sun SH, Koizumi Y, Kurosu S, Li YP, Chiba A (2015) Phase and grain size inhomogeneity and their influences on creep behavior of Co-Cr-Mo alloy additive manufactured by electron beam melting. Acta Mater 86:305–318

    Article  Google Scholar 

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phase field method and sensitivity analysis. J Comput Phys 229:2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • Takaki T (2012) A phase-field topology optimization model using a double-obstacle function. In: ECCOMAS 2012 - European congress on computational methods in applied sciences and engineering, e-Book Full Papers, pp 8761–8768

  • Takaki T (2014) Phase-field modeling and simulations of dendrite growth. ISIJ Int 54(2):437–444

    Article  Google Scholar 

  • Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y (2008) Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater Trans 49:2559–2565

    Article  Google Scholar 

  • Takaki T, Hisakuni Y, Hirouchi T, Yamanaka A, Tomita Y (2009) Multi-phase-field simulations for dynamic recrystallization. Comp Mater Sci 45:881–888

    Article  Google Scholar 

  • Takaki T, Kato J (2017) Phase–field topology optimization model that removes the curvature effects. Mech Eng J 4(2):1–12. https://doi.org/10.1299/mej.16-00462

    Article  Google Scholar 

  • Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems 115-line matlab implementation. Struct Multidisc Optim 49:621–642

    Article  MathSciNet  Google Scholar 

  • Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52:1199–1219

    Article  MathSciNet  MATH  Google Scholar 

  • Wallin M, Ristinmaa M (2012) Howard’s algorithm in a phase–field topology optimization approach. Int J Numer Meth Engng 94:43–59

    Article  MathSciNet  MATH  Google Scholar 

  • Yan J, Guo X, Cheng G (2016) Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech 57:437–446

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Sun S (2006) Scale-related topology optimization of cel- lular materials and structures. Int J Numer Meth Engng 68:993– 1011

    Article  MATH  Google Scholar 

  • Zhou S, Wang YM (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidisc Optim 33:89–111

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by MEXT KAKENHI Grant Numbers 16H04394 and Honda R&D. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Kato.

Additional information

Responsible Editor: Anton Evgrafov

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, J., Ogawa, S., Ichibangase, T. et al. Multi-phase field topology optimization of polycrystalline microstructure for maximizing heat conductivity. Struct Multidisc Optim 57, 1937–1954 (2018). https://doi.org/10.1007/s00158-018-1965-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1965-8

Keywords