Skip to main content
Log in

Optimal design of robust piezoelectric microgrippers undergoing large displacements

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization combined with optimal design of electrodes is used to design piezoelectric microgrippers. Fabrication at micro-scale presents an important challenge: due to non-symmetrical lamination of the structures, out-of-plane bending spoils the behavior of the grippers. Suppression of this out-of-plane deformation is the main novelty introduced in this work. In addition, a robust approach is used to control length scale in the whole domain and to reduce sensitivity of the design to small fabrication errors. Geometrically non-linear modeling is used for the in-plane deformations whereas out-of-plane motions are modeled by a linear, un-coupled plate model to save computational time. Model and resulting designs are validated by subsequent 3D geometrically non-linear modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635–654

    Article  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459

    Article  MATH  Google Scholar 

  • Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104

    Article  Google Scholar 

  • Carbonari RC, Silva ECN, Nishiwaki S (2007) Optimum placement of piezoelectric material in piezoactuator design. Smart Mater Struct 16(1):207–220

    Article  Google Scholar 

  • Díaz AR, Kikuchi N (1992) Solution to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Donoso A, Sigmund O (2016) Topology optimization of piezo modal transducers with null-polarity phases. Struct Multidisc Optim 53:193–203

    Article  Google Scholar 

  • Frecker MI, Ananthasuresh GK, Nishiwaki S, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. Tran ASME 119(2):238–245

    Article  Google Scholar 

  • Gibbs G, Fuller C (1992) Excitation of thin beams using asymmetric piezoelectric actuators. J Acoust Soc Am 92(6):3221–3227

    Article  Google Scholar 

  • Jensen J, Sigmund O (2011) Topology optimization for nano-photonics. Laser Photonics Rev 5(2):308–321

    Article  Google Scholar 

  • Jonsmann J, Sigmund O, Bouwstra S (1999) Compliant thermal microactuators. Sens Act A Phys 76 (1-3):463–469

    Article  Google Scholar 

  • Kang Z, Tong L (2008a) Integrated optimization of material layout and control voltage for piezoelectric laminated plates. J Intell Mater Syst Struct 19:889–904

    Article  Google Scholar 

  • Kang Z, Tong L (2008b) Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput Struct 86(19-20):1885–1893

    Article  Google Scholar 

  • Kang Z, Wang R, Tong L (2011) Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Comput Methods Appl Mech Eng 200(13-16):1467–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Wang X, Luo Z (2012) Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage. J Mech Des 134(5):051006

    Article  Google Scholar 

  • Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14(2):387–399

    Article  Google Scholar 

  • Kucera M, Wistrela E, Pfusterschmied G, Ruiz-Díez V, Manzaneque T, Hernando-García J, Sánchez-Rojas JL, Jachimowicz A, Schalko J, Bittner A, Schmid U (2014) Design-dependent performance of self-actuated and self-sensing piezoelectric-aln cantilevers in liquid media oscillating in the fundamental in-plane bending mode. Sens Act B Chem 200:235–244

    Article  Google Scholar 

  • Lazarov BS, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2:175–182

    Article  Google Scholar 

  • Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21(18):1851–1865

    Article  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of mems mechanisms by topology optimization. Comput Struct 81(8-11):813–824

    Article  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanism. Int J Numer Methods Eng 50:2683–2705

    Article  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Qian X, Sigmund O (2013) Topological design of electromechanical actuators with robustness toward over- and under-etching. Comput Methods Appl Mech Eng 253:237–251

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz D, Bellido JC, Donoso A (2016a) Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct Multidisc Optim 53:715–730

    Article  MathSciNet  Google Scholar 

  • Ruiz D, Donoso A, Bellido JC, Kucera M, Schmid U, Sánchez-Rojas L (2016b) Design of piezoelectric microtransducers based on the topology optimization method. Microsyst Technol 22(7):1733–1740

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001a) Design of multiphysics actuators using topology optimization – part i: One-material structures. Comput Methods Appl Mech Eng 190(49-50):6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O (2001b) Design of multiphysics actuators using topology optimization – part ii: Two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605–6627

    Article  MATH  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25(2):227–239

    Article  MATH  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences 361:1001–1019

    Article  MATH  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Torquato S, Aksay IA (1998) On the design of 1-3 piezo-composites using topology optimization. J Mater Res 13(4):1038–1048

    Article  Google Scholar 

  • Silva ECN, Fonseca JSO, Kikuchi N (1997) Optimal design of piezoelectric microstructures. Comput Mech 19(5):397–410

    Article  MATH  Google Scholar 

  • Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using topology optimization. Smart Mater Struct 8(3):350– 364

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359– 373

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov B, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472

    Article  MathSciNet  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017) Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach. Comput Methods Apple Mech Engrg 322:590–614

    Article  MathSciNet  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Fox D (2014) The Finite Element Method for Solid and Structural Mechanics, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

The work of David Ruiz has been funded through grant MTM2013-47053-P from the Spanish Ministerio de Economía y Competitividad. The work of Ole Sigmund has been supported by the Sapere Aude research project ‘TOpTEn’ (Topology Optimization of Thermal ENergy systems) from the Danish Council for Independent Research, grant: DFF-4005-00320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, D., Sigmund, O. Optimal design of robust piezoelectric microgrippers undergoing large displacements. Struct Multidisc Optim 57, 71–82 (2018). https://doi.org/10.1007/s00158-017-1863-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1863-5

Keywords

Navigation