Structural and Multidisciplinary Optimization

, Volume 57, Issue 4, pp 1809–1813 | Cite as

Graph-based element removal method for topology synthesis of beam based ground structures

  • Francesco Danzi
  • James M. Gibert
  • Giacomo Frulla
  • Enrico Cestino


This note proposes a novel element removal method for ground structured based topology optimization that utilizes a double-filtering scheme based on a graph representation of the topology. Two types of systems: planar resonators and compliant mechanisms, are used to illustrate the method.


Topology optimization Graph Ground structures Element removal method Resonator Compliant mechanism 


  1. An H, Huang H (2017) Topology and sizing optimization for frame structures with a two-level approximation method. AIAA J 55(3).
  2. Asadpoure A, Guest JK, Valdevit L (2015) Incorporating fabrication cost into topology optimization of discrete structures and lattices. Struct Multidiscip Optim 51.2:385-396. CrossRefGoogle Scholar
  3. Cormen TH (2009) Introduction to algorithms. MIT PressGoogle Scholar
  4. Danzi F, Gibert J, Cestino E, Frulla G (2017) Topology synthesis of planar ground structures for energy harvesting applications.
  5. Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of optimal structures. J Mecanique 3:25-52Google Scholar
  6. Frecker M, Ananthasuresh G, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119:2CrossRefGoogle Scholar
  7. He L, Gilbert M (2015) Rationalization of trusses generated via layout optimization. Struct Multidiscip Optim 52.4:677-694. MathSciNetCrossRefGoogle Scholar
  8. Joo J, Kota S (2004) Topological synthesis of compliant mechanisms using nonlinear beam elements. Mech Based Des Struct Mach 32.1:17-38. CrossRefGoogle Scholar
  9. Joo J, Kota S, Kikuchi N (2000) Topological synthesis of compliant mechanisms using linear beam elements*. Mech Struct Mach 28.4:245-280. CrossRefGoogle Scholar
  10. Madah H, Amir O (2017) Truss optimization with buckling considerations using geometrically nonlinear beam modeling. Comput Struct 192:233-247. issn: 0045-7949. CrossRefGoogle Scholar
  11. Paulino GH, Menezes IF, Gattass M, Mukherjee S (1994) Node and element resequencing using the laplacian of a finite element graph: part I: general concepts and algorithm. Int J Numer Methods Eng 37.9:1511-1530CrossRefzbMATHGoogle Scholar
  12. Ramos AS, Paulino GH (2016) Filtering structures out of ground structuresa discrete filtering tool for structural design optimization. Struct Multidiscip Optim 54.1:95-116CrossRefGoogle Scholar
  13. Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10.10:803-805. CrossRefGoogle Scholar
  14. Torii AJ, Lopez RH, Miguel LFF (2016) Design complexity control in truss optimization. Struct Multidiscip Optim 54.2:289-299. MathSciNetCrossRefGoogle Scholar
  15. Tripathi A, Bajaj AK (2013) Computational synthesis for nonlinear dynamics based design of planar resonant structures. J Vibr Acous 135.5:05103105103113. Google Scholar
  16. Zhang X, Ramos AS, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55.6:2045-2072. issn: 1615-1488MathSciNetCrossRefGoogle Scholar
  17. Zhou H, Ting K-L (2005) Topological synthesis of compliant mechanisms using spanning tree theory. J Mech Des 127(4):753-759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Francesco Danzi
    • 1
    • 2
  • James M. Gibert
    • 2
  • Giacomo Frulla
    • 1
  • Enrico Cestino
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
  2. 2.Ray W. Herrick LaboratoriesPurdue UniversityWest LafayetteUSA

Personalised recommendations