Advertisement

Structural and Multidisciplinary Optimization

, Volume 57, Issue 3, pp 1391–1409 | Cite as

Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling

  • Katarzyna Szepietowska
  • Benoit Magnain
  • Izabela Lubowiecka
  • Eric Florentin
INDUSTRIAL APPLICATION

Abstract

The modelling of a system containing implants used in ventral hernia repair and human tissue suffers from many uncertainties. Thus, a probabilistic approach is needed. The goal of this study is to define an efficient numerical method to solve non-linear biomechanical models supporting the surgeon in decisions about ventral hernia repair. The model parameters are subject to substantial variability owing to, e.g., abdominal wall parameter uncertainties. Moreover, the maximum junction force, the quantity of interest which is worthy of scrutiny due to hernia recurrences, is non-smooth. A non-intrusive regression-based polynomial chaos expansion method is employed. The choice of regression points is crucial in such methods, thus we study the influence of this choice on the quantity of interest, and look for an efficient strategy. For this purpose, several aspects are studied : (i) we study the quality of the quantity of interest, i.e. accuracy of the mean and standard deviation, (ii) we perform a global sensitivity analysis using Sobol sensitivity indices. The influence of uncertainties of the chosen variables is presented. This study leads to the definition of an efficient numerical simulation dedicated to our model of implant.

Keywords

Stochastic finite element Global sensitivity analysis Ventral hernia repair Optimal regression points choice 

Notes

Acknowledgements

This work was partially supported by grant UMO-2015/17/N/ST8/02705 from the National Science Centre, Poland, and by the subsidy for the development of young scientists given by the Faculty of Civil and Environmental Engineering, Gdańsk University of Technology. Computations were performed partially in TASK Computer Science Centre, Gdańsk, Poland.

References

  1. Acosta Santamaría V, Siret O, Badel P, Guerin G, Novacek V, Turquier F, Avril S (2015) Material model calibration from planar tension tests on porcine linea alba. J Mech Behav Biomed Mater 43:26–34.  https://doi.org/10.1016/j.jmbbm.2014.12.003 CrossRefGoogle Scholar
  2. de Aguiar P, Bourguignon B, Khots M, Massart D, Phan-Than-Luu R (1995) D-optimal designs. Chemom Intell Lab Syst 30(2):199–210.  https://doi.org/10.1016/0169-7439(94)00076-X CrossRefGoogle Scholar
  3. Antille G, Weinberg A et al (2000) A study of d-optimal designs efficiency for polynomial regression université de genève/faculté des sciences économiques et socialesGoogle Scholar
  4. Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Revue européenne de mécanique numérique 15(1–3):81–92.  https://doi.org/10.3166/remn.15.81-92 zbMATHGoogle Scholar
  5. Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25(2):183–197.  https://doi.org/10.1016/j.probengmech.2009.10.003 CrossRefGoogle Scholar
  6. Blatman G, Sudret B (2010) Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliab Eng Syst Saf 95(11):1216–1229.  https://doi.org/10.1016/j.ress.2010.06.015 CrossRefGoogle Scholar
  7. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367MathSciNetCrossRefzbMATHGoogle Scholar
  8. Blatman G, Sudret B, Berveiller M (2007) Quasi random numbers in stochastic finite element analysis. Mec Ind 8(3):289–297.  https://doi.org/10.1051/meca:2007051 Google Scholar
  9. Breuing K, Butler CE, Ferzoco S, Franz M, Hultman CS, Kilbridge JF, Rosen M, Silverman RP, Vargo D, Group VHW et al (2010) Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery 148(3):544–558CrossRefGoogle Scholar
  10. Burnaev E, Panin I, Sudret B (2016) Effective Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions. Springer International Publishing, Cham, pp 165–184Google Scholar
  11. Carter SA, Hicks SC, Brahmbhatt R, Liang MK (2014) Recurrence and pseudorecurrence after laparoscopic ventral hernia repair: predictors and patient-focused outcomes. Am Surg 80(2):138–48Google Scholar
  12. Chamoin L, Florentin E, Pavot S, Visseq V (2012) Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems. Comput Struct 106-107(i):189–195.  https://doi.org/10.1016/j.compstruc.2012.05.002 CrossRefGoogle Scholar
  13. Cho I, Lee Y, Ryu D, Choi DH (2017) Comparison study of sampling methods for computer experiments using various performance measures. Struct Multidiscip Optim 55(1):221–235.  https://doi.org/10.1007/s00158-016-1490-6 CrossRefGoogle Scholar
  14. Choi SK, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198CrossRefGoogle Scholar
  15. Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129(2):231–235CrossRefGoogle Scholar
  16. Cooney GM, Lake SP, Thompson DM, Castile RM, Winter DC, Simms CK (2016) Uniaxial and biaxial tensile stress–stretch response of human linea alba. J Mech Behav Biomed Mater 63:134–140CrossRefGoogle Scholar
  17. Crestaux T, Le Maître O, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172. Special Issue on Sensitivity AnalysisCrossRefGoogle Scholar
  18. Deeken CR, Thompson DM, Castile RM, Lake SP (2014) Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. J Mech Behav Biomed Mater 38:6–16CrossRefGoogle Scholar
  19. Dubourg V, Sudret B, Bourinet JM (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44(5):673–690.  https://doi.org/10.1007/s00158-011-0653-8 CrossRefGoogle Scholar
  20. Fedorov VV (1972) Theory of optimal experiments. Academic Press INC (english translation), New YorkGoogle Scholar
  21. Filomeno Coelho R, Lebon J, Bouillard P (2011) Hierarchical stochastic metamodels based on moving least squares and polynomial chaos expansion. Struct Multidiscip Optim 43(5):707–729.  https://doi.org/10.1007/s00158-010-0608-5 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Fishman GS (1996) Monte carlo. Springer, New YorkCrossRefzbMATHGoogle Scholar
  23. Gao Z, Zhou T (2014) On the choice of design points for least square polynomial approximations with application to uncertainty quantification. Communications in Computational Physics 16(2):365–381.  https://doi.org/10.4208/cicp.130813.060214a MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New YorkCrossRefzbMATHGoogle Scholar
  25. Hernández-Gascón B, Mena A, Pena E, Pascual G, Bellón J, Calvo B (2013) Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41(2):433– 444CrossRefGoogle Scholar
  26. Hernández-Gascón B, Peña E, Grasa J, Pascual G, Bellón JM, Calvo B (2013) Mechanical response of the herniated human abdomen to the placement of different prostheses. J Biomech Eng 135(5):051,004CrossRefGoogle Scholar
  27. Hu C, Youn BD (2011) Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct Multidiscip Optim 43(3):419–442.  https://doi.org/10.1007/s00158-010-0568-9 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Huang X, Liu Y, Zhang Y, Zhang X (2017) Reliability analysis of structures using stochastic response surface method and saddlepoint approximation. Struct Multidiscip Optim 55(6):2003–2012.  https://doi.org/10.1007/s00158-016-1617-9
  29. Huberts W, Donders W, Delhaas T, Vosse F (2014) Applicability of the polynomial chaos expansion method for personalization of a cardiovascular pulse wave propagation model. Int J Numer Methods Biomed Eng 30 (12):1679–1704CrossRefGoogle Scholar
  30. Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. Graduate School New Brunswick, Ph.D. thesisGoogle Scholar
  31. Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Schumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernias using mesh implants. Hernia 5(3):113–118CrossRefGoogle Scholar
  32. Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Scientific computation. Springer Netherlands, DordrechtCrossRefzbMATHGoogle Scholar
  33. Le Maître OP, Reagan MT, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow: Ii. random process. J Comput Phys 181(1):9–44.  https://doi.org/10.1006/jcph.2002.7104 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Lee SH, Chen W (2008) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239.  https://doi.org/10.1007/s00158-008-0234-7 CrossRefGoogle Scholar
  35. Lubowiecka I (2015) Mathematical modelling of implant in an operated hernia for estimation of the repair persistence. Comput Methods Biomech Biomed Engin 18(4):438–445CrossRefGoogle Scholar
  36. Lubowiecka I, Szepietowska K, Szymczak C, Tomaszewska A (2016) Preliminary study on the optimal choice of an implant and its orientation in ventral hernia repair. J Theor Appl Mech 54(2):411–421.  https://doi.org/10.15632/jtam-pl.54.2.411 CrossRefGoogle Scholar
  37. Lyons M, Mohan H, Winter D, Simms C (2015) Biomechanical abdominal wall model applied to hernia repair. Br J Surg 102(2):e133–e139CrossRefGoogle Scholar
  38. Maurer M, Röhrnbauer B, Feola A, Deprest J, Mazza E (2014) Mechanical biocompatibility of prosthetic meshes: a comprehensive protocol for mechanical characterization. J Mech Behav Biomed Mater 40:42–58CrossRefGoogle Scholar
  39. McKay MD, Beckman RJ, Conover WJ (2000) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1):55–61CrossRefzbMATHGoogle Scholar
  40. Morokoff WJ, Caflisch RE (1994) Quasi-Random Sequences and their discrepancies . SIAM J Sci Comput 15(6):1251–1279.  https://doi.org/10.1137/0915077 MathSciNetCrossRefzbMATHGoogle Scholar
  41. Redhe M, Forsberg J, Jansson T, Marklund PO, Nilsson L (2002) Using the response surface methodology and the d-optimality criterion in crashworthiness related problems. Struct Multidiscip Optim 24 (3):185–194.  https://doi.org/10.1007/s00158-002-0228-9 CrossRefGoogle Scholar
  42. Schobi R, Sudret B, Wiart J (2015) Polynomial-chaos-based Kriging. Int J Uncertain Quantif 5(2):171–193.  https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015012467 MathSciNetCrossRefGoogle Scholar
  43. Simón-Allué R, Calvo B, Oberai A, Barbone P (2017) Towards the mechanical characterization of abdominal wall by inverse analysis. J Mech Behav Biomed Mater 66:127–137CrossRefGoogle Scholar
  44. Simón-Allué R, Hernández-Gascón B, Lèoty L, Bellón J, Peña E, Calvo B (2016) Prostheses size dependency of the mechanical response of the herniated human abdomen. Hernia 20(6):839–848CrossRefGoogle Scholar
  45. Smith K (1918) On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12(1-2):1–85.  https://doi.org/10.1093/biomet/12.1-2.1 CrossRefGoogle Scholar
  46. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1-3):271–280.  https://doi.org/10.1016/S0378-4754(00)00270-6 MathSciNetCrossRefzbMATHGoogle Scholar
  47. Song C, Alijani A, Frank T, Hanna G, Cuschieri A (2006) Elasticity of the living abdominal wall in laparoscopic surgery. J Biomech 39(3):587–591CrossRefGoogle Scholar
  48. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93 (7):964–979.  https://doi.org/10.1016/j.ress.2007.04.002 CrossRefGoogle Scholar
  49. Suryawanshi A, Ghosh D (2016) Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels. Struct Multidiscip Optim 53(5):1069–1080.  https://doi.org/10.1007/s00158-015-1322-0 MathSciNetCrossRefGoogle Scholar
  50. Szymczak C, Lubowiecka I, Szepietowska K, Tomaszewska A (2017) Two-criteria optimisation problem for ventral hernia repair. Comput Methods Biomech Biomed Engin 20(7):760–769CrossRefGoogle Scholar
  51. Szymczak C, Lubowiecka I, Tomaszewska A, Śmietański M (2010) Modeling of the fascia-mesh system and sensitivity analysis of a junction force after a laparascopic ventral hernia repair. Journal of Thoretical and Applied Mechanics 48(4):933–950Google Scholar
  52. Szymczak C, Lubowiecka I, Tomaszewska A, Śmietański M (2012) Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin Biomech (Bristol, Avon) 27(2):105–10.  https://doi.org/10.1016/j.clinbiomech.2011.08.008 CrossRefGoogle Scholar
  53. Szymczak C, Śmietański M (2012) Selected problems of laparoscopic ventral hernia repair - modeling and simulation. Alfa-medica press GdańskGoogle Scholar
  54. Tomaszewska A, Lubowiecka I, Szymczak C, Śmietański M, Meronk B, Kłosowski P, Bury K (2013) Physical and mathematical modelling of implant-fascia system in order to improve laparoscopic repair of ventral hernia. Clin Biomech 28(7):743–751.  https://doi.org/10.1016/j.clinbiomech.2013.06.009 CrossRefGoogle Scholar
  55. Tran D, Mitton D, Voirin D, Turquier F, Beillas P (2014) Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. J Biomech 47(12):3056–3063CrossRefGoogle Scholar
  56. Tran D, Podwojewski F, Beillas P, Ottenio M, Voirin D, Turquier F, Mitton D (2016) Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J Mech Behav Biomed Mater 60:451–459CrossRefGoogle Scholar
  57. Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936MathSciNetCrossRefzbMATHGoogle Scholar
  58. Winkelmann K, Górski J (2014) The use of response surface methodology for reliability estimation of composite engineering structures. J Theor Appl Mech 52(4):1019–1032CrossRefGoogle Scholar
  59. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644.  https://doi.org/10.1137/S1064827501387826 MathSciNetCrossRefzbMATHGoogle Scholar
  60. Zein S, Colson B, Glineur F (2012) An efficient sampling method for Regression-Based polynomial chaos expansion. Communications in Computational Physics 13(4):1173–1188.  https://doi.org/10.4208/cicp.020911.200412a MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.INSA-CVL - Laboratoire PRISMEBourgesFrance

Personalised recommendations