Skip to main content
Log in

Structural topology optimization under harmonic base acceleration excitations

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work is focused on the structural topology optimization methods related to dynamic responses under harmonic base acceleration excitations. The uniform acceleration input model is chosen to be the input form of base excitations. In the dynamic response analysis, we propose using the large mass method (LMM) in which artificial large mass values are attributed to each driven nodal degree of freedom (DOF), which can thus transform the base acceleration excitations into force excitations. Mode displacement method (MDM) and mode acceleration method (MAM) are then used to calculate the harmonic responses and the design sensitivities due to their balances between computing efficiency and accuracy especially when frequency bands are taken into account. A density based topology optimization method of minimizing dynamic responses is then formulated based on the integration of LMM and MDM or MAM. Moreover, some particular appearances such as the precision of response analysis using MDM or MAM, and the duplicated frequencies are briefly discussed. Numerical examples are finally tested to verify the accuracy of the proposed schemes in dynamic response analysis and the quality of the optimized design in improving dynamic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Allahdadian S, Boroomand B (2016) Topology optimization of planar frames under seismic loads induced by actual and artificial earthquake records. Eng Struct 115:140–154

    Article  Google Scholar 

  • Allahdadian S, Boroomand B et al (2012) Towards optimal design of bracing system of multi-story structures under harmonic base excitation through a topology optimization scheme. Finite Elem Anal Des 61:60–74

    Article  MathSciNet  Google Scholar 

  • Alvin KF (1997) Efficient computation of eigenvector sensitivities for structural dynamics. AIAA J 35(11):1760–1766

    Article  MATH  Google Scholar 

  • Bathe KJ, Wilson EL (1972) Stability and accuracy analysis of direct integration methods. Earthq Eng Struct Dyn 1(3):283–291

    Article  Google Scholar 

  • Bathe K, Wilson EL (1976) Numerical methods in finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Besselink B, Tabak U et al (2013) A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J Sound Vib 332(19):4403–4422

    Article  Google Scholar 

  • Bi K, Hao H et al (2013) Seismic response of a concrete filled steel tubular arch bridge to spatially varying ground motions including local site effect. Adv Struct Eng 16(10):1799–1817

    Article  Google Scholar 

  • Cai J, Xia Q, Luo Y, Zhang L, Wang MY (2015) A variable-width harmonic probe for multifrequency atomic force microscopy. Appl Phys Lett 106(7)

  • Chen M, Ali A (1998) An efficient and robust integration technique for applied random vibration analysis. Comput Struct 66(6):785–798

    Article  MATH  Google Scholar 

  • Chen W, Huang G (2010) Seismic wave passage effect on dynamic response of submerged floating tunnels. Procedia Engineering 4:217–224

    Article  Google Scholar 

  • Clough RW, Penzien J (1975) Dynamics of structures. McGraw-Hill Inc., US

    MATH  Google Scholar 

  • Cornwell RE, Craig RR et al (1983) On the application of the mode-acceleration method to structural engineering problems. Earthq Eng Struct Dyn 11(5):679–688

    Article  Google Scholar 

  • Craig RR Jr (1981) Structural dynamics an introduction to computer methods. Wiley, New York

    Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Du J (2015) Structure optimization and its application in dynamic and acoustic design. Tsinghua University Press, Beijing

    Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta AK (1992). Response spectrum method in seismic analysis and design of structures. Blackwell, Cambridge

  • Haftka RT, Starnes JH (1976) Applications of a quadratic extended interior for structural optimization penalty function. AIAA J 14:718–724

    Article  MATH  Google Scholar 

  • Hao X, Li M, et al. (2010). Optimal design of strap-down inertial navigation support under random loads. Information and Automation (ICIA), 2010 I.E. International Conference on, IEEE

  • Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709

    Article  Google Scholar 

  • Kim Y, Jhung MJ (2014) A study on large mass method for dynamic problem of multiple degree-of-freedom system excited by ground acceleration time history. J Mech Sci Technol 28(1):25–41

    Article  Google Scholar 

  • Kiureghian AD, Neuenhofer A (1992). Response spectrum method for multi-support seismic excitations. Earthq Eng Struct Dyn 21(8):713-740

    Article  Google Scholar 

  • Leger P, Ide IM et al (1990) Multiple-support seismic analysis of large structures. Comput Struct 36(6):1153–1158

    Article  Google Scholar 

  • Lin Z, Gea HC et al (2011) Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization. Acta Mech Sinica 27(5):730–737

    Article  MathSciNet  MATH  Google Scholar 

  • Liu M, Gorman DG (1995) Formulation of Rayleigh damping and its extensions. Comput Struct 57(57):277–285

    Article  MATH  Google Scholar 

  • Liu T, Zhu JH et al (2016) A MAC based excitation frequency increasing method for 4 structural topology optimization under harmonic excitations. Int J Simul Multisci Des Optim. https://doi.org/10.1051/smdo/2016012

  • Liu H., Zhang W et al. (2015). A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim, 51(6):1321–1333

  • Ma J, Li Y (2013). Analysis of Traveling Wave Effect on Half-Through CFST Arch Bridge by Large Mass Method. Key Engineering Materials, Trans Tech Publ

  • Ma Z, Kikuchi N et al (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Mills-Curran WC (1988) Calculation of eigenvector derivatives for structures with repeated eigenvalues. AIAA J 26:867–871

    Article  MATH  Google Scholar 

  • Ni C, Yan J, Cheng G, Guo X (2014) Integrated size and topology optimization of skeletal structures with exact frequency constraints. Struct Multidiscip Optim 50(1):113–128

    Article  Google Scholar 

  • Ojalvo IU (1987) Efficient computation of mode-shape derivatives for large dynamic systems. AIAA J 25(10):1386–1390

    Article  MATH  Google Scholar 

  • Olhoff N, Du J (2005). Topological design of continuum structures subjected to forced vibration. Proceedings of 6th world congresses of structural and multidisciplinary optimization, Rio de Janeiro, Brazil

  • Olhoff N, Du J (2014). Structural Topology Optimization with Respect to Eigenfrequencies of Vibration. In: Rozvany GIN, Lewiński T (ed) Topology Optimization in Structural and Continuum Mechanics. Springer, Vienna, pp 275–297

  • Olhoff N, Du J (2016) Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency. Struct Multidiscip Optim 54(5):1113–1141

    Article  MathSciNet  Google Scholar 

  • Olhoff N, Niu B (2015) Minimizing the vibrational response of a lightweight building by topology and volume optimization of a base plate for excitatory machinery. Struct Multidiscip Optim 53(3):1–22

    MathSciNet  Google Scholar 

  • Olhoff N, Niu B et al (2012) Optimum design of band-gap beam structures. Int J Solids Struct 49(22):3158–3169

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Prasad B, Haftka RT (1979) A cubic extended interior penalty function for structural optimization. Int J Numer Methods Eng 14(8):1107–1126

    Article  MATH  Google Scholar 

  • Rong J, Jiang J et al (2003) Optimal dynamic design of structures under earthquake environment excitation. J Vibration Eng 16(1):46–51

    Google Scholar 

  • Seyranian AP, Lund E et al (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Shu L, Wang MY et al (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330(24):5820–5834

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  • Svanberg K (1995). A globally convergent version of MMA without linesearch. Proceedings of the first world congress of structural and multidisciplinary optimization, Goslar, Germany

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  • Vicente WM, Zuo ZH et al (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136

    Article  MathSciNet  Google Scholar 

  • Wang D, Zhang WH, Jiang JS (2005) What are the repeated frequencies? J Sound Vib 281:1186–1194

    Article  Google Scholar 

  • Wang B, Zhou Y, Zhou YM et al (2017) Diverse competitive Design for Topology Optimization. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-017-1762-9

  • Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25):1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang MY (2007) Study on dynamic re-analysis of complex structures. PhD thesis, Fudan University, China

  • Zhang Q (2012). Topology and layout optimization design of component structures under random excitation, Northwestern Polytechnical University. Ph.D

  • Zhang N, Xia H et al (2010) Dynamic analysis of a train-bridge system under multi-support seismic excitations. J Mech Sci Technol 24(11):2181–2188

    Article  Google Scholar 

  • Zhu JH, Zhang WH (2006) Maximization of structural natural frequency with optimal support layout. Struct Multidiscip Optim 31(6):462–469

    Article  Google Scholar 

  • Zhu JH, Beckers P et al (2010) On the multi-component layout design with inertial force. J Comput Appl Math 234(7):2222–2230

    Article  MATH  Google Scholar 

  • Zhu JH, Zhang WH, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Method E 23(4):595–622

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and topology optimization design of multi-frame and multi-component fuselage structure systems. Struct Multidiscip Optim 56(1):21–45

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof Jianbin Du from Tsinghua University for valuable discussions. This work is supported by National Natural Science Foundation of China (11722219, 11432011, 11620101002), National Key Research and Development Program (2017YFB1102800), Key Research and Development Program of Shaanxi (2017KW-ZD-11 & 2017ZDXM-GY-059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JH., He, F., Liu, T. et al. Structural topology optimization under harmonic base acceleration excitations. Struct Multidisc Optim 57, 1061–1078 (2018). https://doi.org/10.1007/s00158-017-1795-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1795-0

Keywords

Navigation