Structural and Multidisciplinary Optimization

, Volume 53, Issue 4, pp 673–694 | Cite as

Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics

  • Evgueni T. Filipov
  • Junho Chun
  • Glaucio H. PaulinoEmail author
  • Junho Song


We use versatile polygonal elements along with a multiresolution scheme for topology optimization to achieve computationally efficient and high resolution designs for structural dynamics problems. The multiresolution scheme uses a coarse finite element mesh to perform the analysis, a fine design variable mesh for the optimization and a fine density variable mesh to represent the material distribution. The finite element discretization employs a conforming finite element mesh. The design variable and density discretizations employ either matching or non-matching grids to provide a finer discretization for the density and design variables. Examples are shown for the optimization of structural eigenfrequencies and forced vibration problems.


Topology optimization Multiresolution Polygonal elements Eigenfrequency optimization Forced vibration optimization 



The authors gratefully acknowledge funding provided by the National Science Foundation (NSF) through projects CMMI 1234243 and CMMI 1321661. The first author is thankful for support from the NSF Graduate Research Fellowship Program. We also acknowledge support from the Donald B. and Elizabeth M. Willett endowment at the University of Illinois at Urbana-Champaign. The fourth author acknowledges the support by the SNU Invitation Program for Distinguished Scholars and the Integrated Research Institute of Construction and Environmental Engineering at Seoul National University. Any opinion, finding, conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the sponsors.


  1. Almeida SRM, Paulino GH, Silva ECN (2009) A simple and effective inverse projection scheme for void distribution control in topology optimization. Struct Multidiscip Optim 39(4):359–371Google Scholar
  2. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202Google Scholar
  3. Bendsøe MP, Sigmund O (2004) Topology optimization: Theory and methods and applications. SpringerGoogle Scholar
  4. Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11(4):523–544CrossRefGoogle Scholar
  5. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bratus A, Seiranian A (1983) Bimodal solutions in eigenvalue optimization problems. J Appl Math Mech 47(4):451–457MathSciNetCrossRefGoogle Scholar
  7. Cook R, Malkus D, Plesha M, Witt R (2007) Concepts and applications of finite element analysis, 4th edn. WileyGoogle Scholar
  8. Dahl J, Jensen JS, Sigmund O (2007) Topology optimization for transient wave propagation problems in one dimension. Struct Multidiscip Optim 36(6):585–595MathSciNetCrossRefzbMATHGoogle Scholar
  9. Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45CrossRefGoogle Scholar
  10. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ghosh S (2011) Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method (computational mechanics and applied analysis). CRC PressGoogle Scholar
  12. Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37(5):463–473MathSciNetCrossRefzbMATHGoogle Scholar
  13. Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefzbMATHGoogle Scholar
  14. Haftka RT, Adelman HM (1989) Recent developments in structural sensitivity analysis. Struct Optim 1(3):137–151CrossRefGoogle Scholar
  15. Huang X, Zuo Z, Xie Y (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5–6):357–364CrossRefGoogle Scholar
  16. Jensen J S (2007) Topology optimization of dynamics problems with Pade approximantś. Int J Numer Methods Eng 72(13):1605–1630MathSciNetCrossRefzbMATHGoogle Scholar
  17. Jog C (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709CrossRefGoogle Scholar
  18. Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3):203–226MathSciNetCrossRefzbMATHGoogle Scholar
  19. Larsen AA, Laksafoss B, Jensen JS, Sigmund O (2008) Topological material layout in plates for vibration suppression and wave propagation control. Struct Multidiscip Optim 37(6):585–594MathSciNetCrossRefzbMATHGoogle Scholar
  20. Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280MathSciNetCrossRefzbMATHGoogle Scholar
  21. Masur E (1985) Some additional comments on optimal structural design under multiple eigenvalue constraints. Int J Solids Struct 21(2):117–120MathSciNetCrossRefzbMATHGoogle Scholar
  22. Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925–1944MathSciNetCrossRefzbMATHGoogle Scholar
  23. Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27(1–2):27–42CrossRefGoogle Scholar
  24. Mijar A, Swan C, Arora J, Kosaka I (1998) Continuum topology optimization for concept design of frame bracing systems. J Struct Eng 129(12):1707–1716Google Scholar
  25. Nguyen TH, Paulino GH, Song J, Le CH (2009) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539MathSciNetCrossRefzbMATHGoogle Scholar
  26. Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530MathSciNetCrossRefGoogle Scholar
  27. Nguyen TH, Le CH, Hajjar JF (2013) High-order finite elements for topology optimization. In: 10th World congress on structural and multidisciplinary optimization. OrlandoGoogle Scholar
  28. Olhoff N (1976) Optimization of vibrating beams with respect to higher order natural frequencies. J Struct Mech 4(1):87–122MathSciNetCrossRefGoogle Scholar
  29. Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1(1):11–17CrossRefGoogle Scholar
  30. Olhoff N, Niu B, Cheng G (2012) Optimum design of band-gap beam structures. Int J Solids Struct 49(22):3158–3169CrossRefGoogle Scholar
  31. Parvizian J, Düster A, Rank E (2011) Topology optimization using the finite cell method. Optim Eng 13(1):57–78MathSciNetCrossRefzbMATHGoogle Scholar
  32. Paulino GH, Le CH (2008) A modified Q4/Q4 element for topology optimization. Struct Multidiscip Optim 37(3):255– 264MathSciNetCrossRefGoogle Scholar
  33. Pedersen P, Pedersen NL (2013) A note on eigenfrequency sensitivities and structural eigenfrequency optimization based on local sub-domain frequencies. Struct Multidiscip OptimGoogle Scholar
  34. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434MathSciNetCrossRefzbMATHGoogle Scholar
  35. Rahmatalla S, Swan C (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1–2):130–135CrossRefGoogle Scholar
  36. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRefGoogle Scholar
  37. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227CrossRefGoogle Scholar
  38. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  39. Sleesongsom S, Bureerat S (2013) New conceptual design of aeroelastic wing structures by multi-objective optimization. Eng Optim 45(1):107–122MathSciNetCrossRefGoogle Scholar
  40. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRefGoogle Scholar
  41. Stromberg LL, Beghini A, Baker WF, Paulino GH (2011) Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Struct Multidisc Optim 43(2):165–180CrossRefGoogle Scholar
  42. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181MathSciNetCrossRefzbMATHGoogle Scholar
  43. Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolants. Archives Comput Methods Eng 13(1):129–163MathSciNetCrossRefzbMATHGoogle Scholar
  44. Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci US A 107(30):13,222–7CrossRefGoogle Scholar
  45. Svanberg K (1987) The method of moving asymptotesa new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetCrossRefzbMATHGoogle Scholar
  46. Talischi C, Paulino GH, Le CH (2009a) Honeycomb Wachspress finite elements for structural topology optimization. Struct Multidiscip Optim 37(6):569–583MathSciNetCrossRefzbMATHGoogle Scholar
  47. Talischi C, Paulino GH, Pereira A, Menezes IFM (2009b) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82(6):671–698zbMATHGoogle Scholar
  48. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in MATLAB. Struct Multidiscip Optim 45(3): 309–328MathSciNetCrossRefzbMATHGoogle Scholar
  49. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a MATLAB implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329– 357MathSciNetCrossRefzbMATHGoogle Scholar
  50. Taylor J, Bendsøe MP (1984) An interpretation for min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20(4):301–314MathSciNetCrossRefzbMATHGoogle Scholar
  51. Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):1605–1622CrossRefzbMATHGoogle Scholar
  52. Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686MathSciNetCrossRefzbMATHGoogle Scholar
  53. Wang F, Lazarov BS, Sigmund O (2010) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefzbMATHGoogle Scholar
  54. Yang RJ, Chahande AI (1995) Automotive applications of topology optimization. Struct Optim 9(3–4):245–249CrossRefGoogle Scholar
  55. Yoon GH (2010a) Maximizing the fundamental eigenfrequency of geometrically nonlinear structures by topology optimization based on element connectivity parameterization. Comput Struct 88(1–2):120–133CrossRefGoogle Scholar
  56. Yoon GH (2010b) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25–28):1744–1763MathSciNetCrossRefzbMATHGoogle Scholar
  57. Zhou K (2013) Topology optimization of truss-like continuum structures for natural frequencies. Struct Multidiscip Optim 47(4):613–619MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Evgueni T. Filipov
    • 1
  • Junho Chun
    • 1
  • Glaucio H. Paulino
    • 1
    • 3
    Email author
  • Junho Song
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-Champaign (UIUC)UrbanaUSA
  2. 2.Department of Civil and Environmental EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations