Skip to main content

Advertisement

Log in

Stacking sequence optimization of horizontal axis wind turbine blade using FEA, ANN and GA

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The requirements for wind energy are significantly increasing for the sources of non-renewable energy is censoriously shortened and the awareness on green energy is emergent. The required energy from the wind turbine can be increased by optimally varying the aerodynamic considerations like aerofoil section, chord length, angle of attack, twist angle and the rotor diameter. However the blade may structurally fail, for the aerodynamic considerations are generally against the structural requirements. For example, the coefficient of lift can be increased with the reduced thickness but the structure may fail due to lacking of bending and torsional strength. Similarly, when the wind turbine blade radius is increased, the structure will have poor buckling strength. As the outer shape of a wind turbine blade and the thickness are determined based on the aerodynamic considerations, they are kept constant in this work and the buckling strength of the wind turbine structure is improved by optimally varying the ply orientations and stacking sequences at each section of the wind turbine blade. The difficulty due to high computational cost in the stacking sequence optimization of wind turbine blade is overcome by replacing finite element analysis using artificial neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeida FS, Awruch AM (2009) Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos Struct 88(3):443–454

    Article  Google Scholar 

  • Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249:28–41

    Article  MathSciNet  Google Scholar 

  • Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Cai X, Zhu J, Pan P, Rongrong G (2012) Structural optimization design of horizontal-axis wind turbine blades using a particle swarm optimization algorithm and finite element method. Energies 5(11):4683–4696

    Article  Google Scholar 

  • Cai X, Pan P, Zhu J, Rongrong G (2013) The analysis of the aerodynamic character and structural response of large-scale wind turbine blades. Energies 6(7):3134–3148

    Article  Google Scholar 

  • Chakraborty D (2005) Artificial neural network based delamination prediction in laminated composites. Mater Des 26(1):1–7

    Article  Google Scholar 

  • Demuth H, Beale M, Martin H (2009) Neural network toolbox user’s guide. The Mathworks, Natick

    Google Scholar 

  • Emmanuel Nicholas P, Padmanaban KP, Vasudevan D (2014) Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA. Struct Eng Mech 52(4):815–827

    Article  Google Scholar 

  • Froyd L, Dahlhaug O (2011) Rotor design for a 10 MW offshore wind turbine. In Proceedings of the Twenty-first International Offshore and Polar Engineering Conference 19–24

  • Gantovnik VB, Gürdal Z, Watson LT (2002) A genetic algorithm with memory for optimal design of laminated sandwich composite panels. Compos Struct 58(4):513–520

    Article  Google Scholar 

  • Gaudern N, Symons DD (2010) Comparison of theoretical and numerical buckling loads for wind turbine blade panels. Wind Eng 34(2):193–206

    Article  Google Scholar 

  • Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90(1):1–11

    Article  Google Scholar 

  • Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M (2010) Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19(8):1116–1127

    Article  Google Scholar 

  • Gurdal Z, Haftka RT, Nagendra S (1994) Genetic algorithms for the design of laminated composite panels. SAMPE J 30(3):29–35

    Google Scholar 

  • Hu W, Han I, Park SC, Choi DH (2012) Multi-objective structural optimization of a HAWT composite blade based on ultimate limit state analysis. J Mech Sci Techol 26(1):29–135.

  • Iyengar NGR, Vyas N (2011) Optimum design of laminated composite under axial compressive load. Sadhana 36(1):73–85

    Article  Google Scholar 

  • Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76(1):52–61

    Article  Google Scholar 

  • Jureczko MEZYK, Pawlak M, Męzyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2):463–471

    Article  Google Scholar 

  • Kermanshashi B, Iwamiya H (2002) Up to 2020 load casting using neural nets. Electr Power Energy Syst 24:789–797

    Article  Google Scholar 

  • Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114

    Article  Google Scholar 

  • Lanting Z (2012) Research on structural lay-up optimum design of composite wind turbine blade. Energy Procedia 14:637–642

    Article  Google Scholar 

  • Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31(5):951–956

    Article  MATH  Google Scholar 

  • Liao CC, Zhao XL, Xu JZ (2012) Blade layers optimization of wind turbines using FAST and improved PSO. Renew Energy 42:227–233

    Article  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167

    Article  Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124

    Article  Google Scholar 

  • Lund E, Kuhlmeier L, Stegmann J (2005) Buckling optimization of laminated hybrid composite shell structures using discrete material optimization. 6th World Congress on Structural and Multidisciplinary Optimization

  • Maheri A, Noroozi S, Vinney J (2007) Combined analytical/FEA-based coupled aero structure simulation of a wind turbine with bend–twist adaptive blades. Renew Energy 32:916–930

    Article  Google Scholar 

  • Messager T, Pyrz M, Gineste B, Chauchot P (2002) Optimal laminations of thin underwater composite cylindrical vessels. Compos Struct 58(4):529–537

    Article  Google Scholar 

  • Park JH, Hwang JH, Lee CS, Hwang W (2001) Stacking sequence design of composite laminates for maximum strength using genetic algorithms. Compos Struct 52(2):217–231

    Article  Google Scholar 

  • Rajendran I, Vijayarangan S (2001) Optimal design of a composite leaf spring using genetic algorithms. Comput Struct 79(11):1121–1129

    Article  Google Scholar 

  • Sale D, Aliseda A, Motley M, Li Y (2013) Structural optimization of composite blades for wind and hydrokinetic turbines. Proceedings of the First Marine Energy Technology Symposium, Washington

    Google Scholar 

  • Schlipf D, Schlipf DJ, Kühn M (2013) Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 16(7):1107–1129

    Article  Google Scholar 

  • Sieros G, Chaviaropoulos P, Sorensen JD, Bulder BH, Jamieson P (2012) Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy. Wind energy 15(1):3–17

    Article  Google Scholar 

  • Song F, Ni Y, Tan Z (2011) Optimization design, modeling and dynamic analysis for composite wind turbine blade. Procedia Eng 16:369–375

    Article  Google Scholar 

  • Todoroki A, Ishikawa T (2004) Design of experiments for stacking sequence optimizations with genetic algorithm using response surface approximation. Compos Struct 64(3):349–357

    Article  Google Scholar 

  • Todoroki A, Kawakami Y (2007) Structural design for CF/GF hybrid wind turbine blade using multi-objective genetic algorithm and kriging model response surface method. AIAA Conference and Exhibit, California

    Book  Google Scholar 

  • Tomislav B, Ukic S, Peternel I, Kusic H, Bozic AL (2014) Artificial neural network models for advanced oxidation of organics in water matrix-comparison of applied methodologies. Indian J Chem Tech 21(1):21–29

    Google Scholar 

  • Vasjaliya Naishadh G, Gangadharan SN (2013) Aero-structural design optimization of composite wind turbine blade. PhD diss., PhD thesis, Embry-Riddle Aeronautical University

  • Vincenti A, Vannucci P, Ahmadian MR (2013) Optimization of laminated composites by using genetic algorithm and the polar description of plane anisotropy. Mech Adv Mater Struct 20(3):242–255

    Article  Google Scholar 

  • Wang L, Wang T, Luo Y (2011) Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades. Appl Math Mech 32:739–748

    Article  MATH  MathSciNet  Google Scholar 

  • Yuen K-V, Lam H-F (2006) On the complexity of artificial neural networks for smart structures monitoring. Eng Struct 28(7):977–984

    Article  Google Scholar 

  • Zhang C, Wang S, Xie H (2011) Static structural analysis of parked composite wind turbine blades. Proceedings of the 8th International Conference on Structural Dynamics, Leuven

    Google Scholar 

  • Zhu J, Cai X, Pan P, Rongrong G (2014) Multi-objective structural optimization design of horizontal-axis wind turbine blades using the non-dominated sorting genetic algorithm II and finite element method. Energies 7(2):988–1002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Emmanuel Nicholas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholas, P.E., Padmanaban, K.P., Vasudevan, D. et al. Stacking sequence optimization of horizontal axis wind turbine blade using FEA, ANN and GA. Struct Multidisc Optim 52, 791–801 (2015). https://doi.org/10.1007/s00158-015-1269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1269-1

Keywords

Navigation