Skip to main content
Log in

Optimization of the motion control mechanism of the hatch door of airliner

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper deals with the problem of parameter optimization of the motion control mechanism of the hatch door of ARJ21-700, a regional airliner of China. Motion improvement of the hatch door is implemented by two kinds of passive designs. Firstly, a single-layer optimization model for trajectory modification is developed to find the optimum size of the key parts of the control mechanism. Secondly, a novel nested bi-level optimization model is presented for the design of the size tolerance limits of the selected parts. The design objective is minimization of the total extremum deviation of the motion trajectory of the objective point of the hatch door, where the extremum deviation is obtained by solution of the inner-level size optimization problem for the fixed size tolerance limits. The optimization models for motion control of the hatch door mechanism are solved using the response surface method. Numerical examples show that the precision of the real running trajectory of the objective point of the hatch door mechanism may be improved effectively by using the methods presented. A home-made multi-body dynamics solver (THUSOLVER) and the corresponding optimization software have been developed to implement the above tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson KS, Hsu Y (2004) Order-(n + m) direct differentiation determination of design sensitivity for constrained multibody dynamic systems. Struct Multidiscip Optim 26(3–4):171–182

    Article  Google Scholar 

  • Avilés R, Vallejo J, Ajuria G, Agirrebeitia J (2000) Second-order methods for the optimum synthesis of multibody systems. Struct Multidiscip Optim 19(3):192–203

    Article  Google Scholar 

  • Bestle D, Eberhard P (1992) Analyzing and optimizing multibody systems. Mech Struct Mach 20(1):67–92

    Article  Google Scholar 

  • Bianch G, Schiehlen W (1986) Dynamics of multibody system. Springer, Berlin

    Book  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B Stat Methodol 13(1):1–45

    MATH  MathSciNet  Google Scholar 

  • Chun HG, Kwon SJ, Tak T (2008) Multibody approach for tolerance analysis and optimization of mechanical systems. J Mech Sci Technol 22(2):276–286

    Article  Google Scholar 

  • Collard JF, Fisette P, Duysinx P (2005) Contribution to the optimization of closed-loop multibody systems: Application to parallel manipulators. Multibody Syst Dyn 13(1):69–84

    Article  MATH  Google Scholar 

  • Connelly JD, Huston RL (1994a) The dynamics of flexible multibody systems - a finite segment approach.1. Theoretical aspects. Comput Struct 50(2):255–258

    Article  Google Scholar 

  • Connelly JD, Huston RL (1994b) The dynamics of flexible multibody systems - a finite segment approach.2. Example problems. Comput Struct 50(2):259–262

    Article  Google Scholar 

  • Datoussaid S, Verlinden O, Conti C (2001) Comparison of the use of GAs and ESs for the optimization of multibody systems. 15th European Simulation Multiconference, Prague, Tchequie, 6–9 June: 461–465.

  • Ding JY, Pan ZK, Chen LQ (2007) Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations. Multibody Syst Dyn 18(4):599–617

    Article  MATH  MathSciNet  Google Scholar 

  • Ding JY, Pan ZK, Chen LQ (2008) Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach. Int J Comput Math 85(6):899–913

    Article  MATH  MathSciNet  Google Scholar 

  • Eberhard P, Schiehlen W, Bestle D (1999) Some advantages of stochastic methods in multicriteria optimization of multibody systems. Arch Appl Mech 69(8):543–554

    Article  MATH  Google Scholar 

  • Erkaya S, Uzmay I (2009) Optimization of transmission angle for slider-crank mechanism with joint clearances. Struct Multidiscip Optim 37(5):493–508

    Article  Google Scholar 

  • Forsberg J, Nilsson L (2005) On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Struct Multidiscip Optim 29(3):232–243

    Article  Google Scholar 

  • Gerdts M (2004) Parameter optimization in mechanical multibody systems and linearized Runge–Kutta methods. Prog Ind Math ECMI 5:121–126

    MathSciNet  Google Scholar 

  • Goncalves JPC, Ambrosio JAC (2003) Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics. Nonlinear Dyn 34(1–2):113–131

    Article  MATH  Google Scholar 

  • Gustafsson E, Strömberg N (2008) Shape optimization of castings by using successive response surface methodology. Struct Multidiscip Optim 35(1):11–28

    Article  Google Scholar 

  • Haddadpour H, Firouz RD, Fotouhi MM (2008) Equilibrium analysis of multibody dynamic systems using genetic algorithm in comparison with constrained and unconstrained optimization techniques. Struct Multidiscip Optim 36(4):381–391

    Article  Google Scholar 

  • Haug EJ, Wehage R, Barman NC (1981) Design sensitivity analysis of planar mechanism and machine dynamics. J Mech Des Trans ASME 103(3):560–570

    Article  Google Scholar 

  • Haug EJ, Ehle PE (1982) 2nd-order design sensitivity analysis of mechanical system dynamics. Int J Numer Methods Eng 18(11):1699–1717

    Article  MATH  Google Scholar 

  • Haug EJ, Wehage RA, Mani NK (1984) Design sensitivity analysis of large-scale constrained dynamic mechanical systems. J Mech Transm Autom Des Trans ASME 106(2):156–162

    Article  Google Scholar 

  • Hay AM, Snyman JA (2005) A multi-level optimization methodology for determining the dextrous workspaces of planar parallel manipulators. Struct Multidiscip Optim 30(6):422–427

    Article  MATH  MathSciNet  Google Scholar 

  • Hong EP, You BJ, Kim CH, Park GJ (2010) Optimization of flexible components of multibody systems via equivalent static loads. Struct Multidiscip Optim 40(1–6):549–562

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu Y, Anderson KS (2002) Recursive sensitivity analysis for constrained multi-rigid-body dynamic systems design optimization. Struct Multidiscip Optim 24(4):312–324

    Article  Google Scholar 

  • Ider SK, Oral S (1996) Optimum design of flexible multibody systems with dynamic behavior constraints. Eur J Mech sSolids 15(2):351–359

    MATH  Google Scholar 

  • Kim SS, Haug EJ (1988) A recursive formulation for flexible multibody dynamics,1. Open-loop systems. Comput Methods Appl Mech Eng 71(3):293–314

    Article  MATH  MathSciNet  Google Scholar 

  • Kim SS, Haug EJ (1989) A recursive formulation for flexible multibody dynamics.2. Closed-loop systems. Comput Methods Appl Mech Eng 74(3):251–269

    Article  MATH  MathSciNet  Google Scholar 

  • Kwon YS, Copeland G, Park NG (2005) A multibody dynamic model for escalator handrail systems and its application to dynamic characteristics. Multibody Syst Dyn 13(2):253–266

    Article  MATH  Google Scholar 

  • Likins PW (1972) Finite element appendage equations for hybrid coordinate dynamic analysis. J Solids Struct 8(5):709–731

    Article  Google Scholar 

  • Liu XJ (1996) Sensitivity analysis of constrained flexible multibody systems with stability considerations. Mech Mach Theory 31(7):859–863

    Article  Google Scholar 

  • Minnaar RJ, Tortorelli DA, Snyman JA (2001) On nonassembly in the optimal dimensional synthesis of planar mechanisms. Struct Multidiscip Optim 21(5):345–354

    Article  Google Scholar 

  • Mukherjee RM, Bhalerao KD, Anderson KS (2008) A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct Multidiscip Optim 35(5):413–429

    Article  MATH  MathSciNet  Google Scholar 

  • Ohkami Y, Likins PW (1979) Eigenvalues and eigenvectors for hybrid coordinate equations of motion for flexible spacecraft. Celest Mech 19(4):359–390

    Article  MATH  MathSciNet  Google Scholar 

  • Panayi AP, Diaz AR, Schock HJ (2009) On the optimization of piston skirt profiles using a pseudo-adaptive response surface method. Struct Multidiscip Optim 38(3):317–330

    Article  Google Scholar 

  • Prebil I, Krašna S, Ciglaric I (2002) Synthesis of four-bar mechanism in a hydraulic support using a global optimization algorithm. Struct Multidiscip Optim 24(3):246–251

    Article  Google Scholar 

  • Samin JC, Bruls O, Collard JF et al (2007) Multiphysics modeling and optimization of mechatronic multibody systems. Multibody Syst Dyn 18(3):345–373

    Article  MATH  Google Scholar 

  • Schulz M, Brauchli H (2000) Two methods of sensitivity analysis for multibody systems with collisions. Mech Mach Theory 35(10):1345–1365

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Tromme E, Brüls O, Emonds J, Bruyneel M, Virlez G, Duysinx P (2013) Discussion on the optimization problem formulation of flexible components in multibody systems. Struct Multidiscip Optim 48(6):1189–1206

    Article  MathSciNet  Google Scholar 

  • Venter G, Haftka RT (1999) Using response surface approximations in fuzzy set based design optimization. Struct Optim 18(4):218–227

    Article  Google Scholar 

  • Xiang Y, Arora JS, Abdel K (2009) Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct Multidiscip Optim 37(6):595–608

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgment

Projects (11372154, 90816025) supported by National Natural Science Foundation of China, and the Commercial Aircraft Corporation of China (COMAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Huang, Z. & Yang, R. Optimization of the motion control mechanism of the hatch door of airliner. Struct Multidisc Optim 51, 1173–1186 (2015). https://doi.org/10.1007/s00158-014-1191-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1191-y

Keywords

Navigation