Advertisement

Structural and Multidisciplinary Optimization

, Volume 51, Issue 4, pp 801–811 | Cite as

On Chebyshev’s method for topology optimization of Stokes flows

  • Anton EvgrafovEmail author
RESEARCH PAPER

Abstract

We present a locally cubically convergent algorithm for topology optimization of Stokes flows based on a Chebyshev’s iteration globalized with Armijo linesearch. The characteristic features of the method include the low computational complexity of the search direction calculation, evaluation of the objective function and constraints needed in the linesearch procedure as well as their high order derivatives utilized for obtaining higher order rate of convergence. Both finite element and finite volumes discretizations of the algorithm are tested on the standard two-dimensional benchmark problems, in the case of finite elements both on structured and quasi-uniform unstructured meshes of quadrilaterals. The algorithm outperforms Newton’s method in nearly all test cases. Finally, the finite element discretization of the algorithm is tested within a continuation/adaptive mesh refinement framework.

Keywords

Topology optimization Stokes flows Chebyshev’s algorithm 

Notes

Acknowledgments

The author is grateful to Martin Berggren for pointing out the reference (Carlsson et al. 2009) to us.

Supplementary material

158_2014_1176_MOESM1_ESM.zip (10 kb)
(ZIP 10.1 KB)

References

  1. Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip Optim 35(2):175–180zbMATHMathSciNetCrossRefGoogle Scholar
  2. Amrouche C, Girault V (1991) On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc Jpn Acad, Series A, Math Sci 67(5):171–175zbMATHMathSciNetCrossRefGoogle Scholar
  3. Babuška I (1973) The finite element method with penalty. Math Comput 27(122):221–228zbMATHCrossRefGoogle Scholar
  4. Bangerth W, Hartmann R, Kanschat G (2007) deal.II - a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27MathSciNetCrossRefGoogle Scholar
  5. Bartish MJ (1969) On some iterative methods of solving functional equations. Sibirskij matematiceskij zurnal 10(3):488–493Google Scholar
  6. Bercovier M, Pironneau O (1979) Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer Math 33(2):211–224zbMATHMathSciNetCrossRefGoogle Scholar
  7. Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Internat J Numer Methods Fluids 41(1):77– 107zbMATHMathSciNetCrossRefGoogle Scholar
  8. Carlsson J, Sandberg M, Szepessy A (2009) Symplectic Pontryagin approximations for optimal design. ESAIM: Math Model and Numer Anal 43(1):3–32zbMATHMathSciNetCrossRefGoogle Scholar
  9. Challis VJ, Guest JK (2009) Level-set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79:1284–1308zbMATHMathSciNetCrossRefGoogle Scholar
  10. Davis TA (2004) Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans Math Softw 30(2):196–199zbMATHCrossRefGoogle Scholar
  11. Deng N, Zhang H (2004) Theoretical efficiency of a new inexact method of tangent hyperbolas. Optim Meth and Softw 19(3–4):247–265zbMATHMathSciNetCrossRefGoogle Scholar
  12. Duff IS (2002) MA57 a new code for the solution of sparse symmetric definite and indefinite systems. Technical Report RAL-TR-2002-024. Rutherford Appleton LaboratoryGoogle Scholar
  13. Evgrafov A (2005) The limits of porous materials in the topology optimization of Stokes flows. Appl Math Optim 52(3):263–277zbMATHMathSciNetCrossRefGoogle Scholar
  14. Evgrafov A (2014) State space Newtons method for topology optimization. Comput Methods Appl Mech Eng 278:272–290MathSciNetCrossRefGoogle Scholar
  15. Geuzaine C, Remacle J-F (2009) Gmsh A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331zbMATHMathSciNetCrossRefGoogle Scholar
  16. Griebel M, Dornseifer T, Neunhoeffer T (1997) Numerical simulation in fluid dynamics: a practical introduction. SIAM 3Google Scholar
  17. Gundersen G, Steihaug T (2012) On diagonally structured problems in unconstrained optimization using an inexact super Halley method. J Comput Appl Math 236(15):3685–3695zbMATHMathSciNetCrossRefGoogle Scholar
  18. Hood P, Taylor C (1973) Numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1:1–28MathSciNetCrossRefGoogle Scholar
  19. Kellogg RB, Osborn JE (1976) A regularity result for the Stokes problem in a convex polygon. J Funct Anal 21(4):397–431zbMATHMathSciNetCrossRefGoogle Scholar
  20. Kleinmichel H (1968) Stetige Analoga und Iterationsverfahren für nichtlineare Gleichungen in BANACHräumen. Math Nachr 37(5-6):313–343zbMATHMathSciNetCrossRefGoogle Scholar
  21. Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidiscip Optim 45(5):693–701zbMATHMathSciNetCrossRefGoogle Scholar
  22. Mertvecova MA (1953) Analogue of the process of tangent hyperbolas for general functional equations. Dokl Akad Nauk SSSR 88:611–614zbMATHMathSciNetGoogle Scholar
  23. Nechepurenko MI (1954) On Chebyshev’s method for functional equations. Uspekhi Mat Nauk 9(2):163–170Google Scholar
  24. Nechepurenko MI (2004) Refinement of convergence conditions for the Chebyshev method. Sib Zh Vychisl Mat 7(3):249–260zbMATHMathSciNetGoogle Scholar
  25. Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Internat J Numer Methods Fluids 58(8)Google Scholar
  26. Seiboldm B (2008) A compact and fast Matlab code solving the incompressible Navier–Stokes equations on rectangular domains. http://math.mit.edu/cse/codes/mit18086_navierstokes.pdf
  27. Steihaug T, Suleiman S (2013) Rate of convergence of higher order methods. Appl Numer Math 67:230–242zbMATHMathSciNetCrossRefGoogle Scholar
  28. Verfürth R (1989) A posteriori error estimators for the Stokes equations. Numer Math 55(3):309–325zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations