Skip to main content

Advertisement

Log in

Advances in optimization of highrise building structures

  • REVIEW ARTICLE
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a review of interesting work on optimization of highrise building structures with a focus on large-scale and real-life structures. A number of interesting projects with an eye on practicality are reviewed, a few involving practicing designers of highrise building structures. A review of literature indicates that performing a formal optimization can result in cost savings in the range of 5 to 15 % which can be especially significant in design of highrise and superhighhrise building structures. Since optimization of highrise building structures is a large-scale optimization problem the choice of the optimization approach is an important one. It should be one that is not entrapped in a local optimum solution and is stable for large-scale optimization subjected to discontinuous constraints of commonly-used design codes. The nature-based optimization approaches such as the neural dynamics model of Adeli and Park and genetic algorithms appear to be the preferred choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adeli H, Cheng N-T (1993) Integrated Genetic Algorithm for Optimization of Space Structures. J Aerosp Eng ASCE 6(4):315–328

    Article  Google Scholar 

  • Adeli H, Cheng N-T (1994a) Augmented Lagrangian genetic algorithm for structural optimization. J Aerosp Eng ASCE 7(1):104–118

    Article  Google Scholar 

  • Adeli H, Cheng N-T (1994b) Concurrent genetic algorithms for optimization of large structures. J Aerosp Eng ASCE 7(3):276–296

    Article  Google Scholar 

  • Adeli H, Hung SL (1995) Machine learning - neural networks, genetic algorithms, and fuzzy systems. Wiley, New York

    MATH  Google Scholar 

  • Adeli H, Kamal O (1991) Efficient optimization of plane trusses. Adv Eng Softw 13(3):116–122

    Google Scholar 

  • Adeli H, Kamal O (1993) Parallel processing in structural engineering. Elsevier Applied Science, London

    Google Scholar 

  • Adeli H, Kumar S (1995a) Distributed genetic algorithms for structural optimization. J Aerosp Eng 8(3):156–163

    Article  Google Scholar 

  • Adeli H, Kumar S (1995b) Concurrent structural optimization on a massively parallel supercomputer. J Struct Eng ASCE 121(11):1588–1597

    Article  Google Scholar 

  • Adeli H, Kumar S (1999) Distributed computer-aided engineering for analysis, design, and visualization. CRC Press, Boca Raton

    Google Scholar 

  • Adeli H, Park HS (1995a) A neural dynamics model for structural optimization - theory. Comput Struct 57(3):383–390

    Article  MATH  MathSciNet  Google Scholar 

  • Adeli H, Park HS (1995b) Optimization of space structures by neural dynamics. Neural Netw 8(5):769–781

    Article  Google Scholar 

  • Adeli H, Park HS (1998) Neurocomputing for design automation. CRC Press, Boca Raton

    Google Scholar 

  • Adeli H, Sarma K (2006) Cost optimization of structures—fuzzy logic, genetic algorithms, and parallel computing. Wiley, West Sussex

    Book  Google Scholar 

  • Adeli H, Soegiarso R (1999) High-performance computing in structural engineering. CRC Press, Boca Raton

    Google Scholar 

  • AISC (2011) Manual of steel construction, 14th edn. American Institute of Steel Construction, Chicago

    Google Scholar 

  • Amini F, Khanmohamadi Hazaveh N, Abdolahi Rad A (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput Aided Civ Infrastruct Eng 28(7):542–557

    Article  Google Scholar 

  • Atabay Ş (2009) Cost optimization of three-dimensional beamless reinforced concrete shear-wall systems via genetic algorithm. Exp Syst Appl 36(2):3555–3561

    Article  Google Scholar 

  • Baker, W., Sinn, R., Novak, L., and Viise, J. (2000). Structural Optimization of 2000-Foot Tall 7 South Dearborn Building. Proceedings of Structural Congress 2000. Philadelphia, Pennsylvania, US. May 8–10, 2000

  • Baldock, R., Shea, K., Eley D. (2005). Evolving Optimized Braced Steel Frameworks for Tall Buildings using Modified Pattern Search. Proceedings of Computing in Civil Engineering. Cancun, Mexico July 12–15

  • Boutalis Y, Christodoulou M, Theodoridis D (2013) Indirect adaptive control of nonlinear systems based on bilinear neuro-fuzzy approximation. Int J Neural Syst 23(5):1350022

  • Campomanes-Álvareza BR, Cordón O, Damasa S (2013) Evolutionary multi-objective optimization for mesh simplification of 3D open models. Integr Comput Aided Eng 20(4):375–390

    Google Scholar 

  • Chabuk T, Reggia JA, Lohn J, Linden D (2012) Causally-guided evolutionary optimization and its application to antenna array design. Integ Comput Aided Eng 19(2):111–124

    Google Scholar 

  • Chan, C., Gibbons, C., and MacArthur, J (2000) Optimal Stiffness Performance design of the North East Tower, Hong Kong Station. Proceedings of Structural Congress 2000. Philadelphia, Pennsylvania, US. May 8–10, 2000

  • Chan CM, Zou XK (2004) Elastic and inelastic drift performance optimization for reinforced concrete buildings under earthquake loads. Earthquake Eng Struct Dyn 33(8):929–950

    Article  Google Scholar 

  • Chan C, Wong K (2008) Structural topology and element sizing design optimisation of tall steel frameworks using a hybrid OC– GA method. Struct Multidiscip Optim 35:473–488

    Article  Google Scholar 

  • Chan C, Huang M, Kwok K (2010) Integrated wind load analysis and stiffness optimization of tall buildings with 3D modes. Eng Struct 32(5):1252–1261

    Article  Google Scholar 

  • Cross P, Vesey D, Chan CM (2007) High-Rise Buildings. In: Melchers, Hough (eds) Modeling complex engineering structures. Society of Civil Engineers, Virginia, pp 1–52

    Google Scholar 

  • Fuggini C, Chatzi E, Zangani D, Messervey TB (2013) Combining genetic algorithm with a meso-scale approach for system identification of a smart polymeric textile. Comput Aided Civ Infrastruct Eng 28(3):227–245

    Article  Google Scholar 

  • Gellatly, R.A., Berke, L., and Gibson, W (1971) The use of optimality criteria in automated structural design, AFFDL, Proceedings of the 3rd conference on matrix methods in structural analysis, October 1971

  • Gholizadeh, S (2012) Optimum Design of structures for earthquake loading by a cellular evolutionary algorithm and neural networks. Chapter 12 in Plevris, V., Mitropoulou, C., Lagaros, N. (2012) Structural seismic design optimization and earthquake engineering - formulations and applications. Engineering science reference (an imprint of IGI Global), Hershey, PA

  • Gholizadeh S, Fattahi F (2014) Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct Des Tall Build 23(4):285–301

    Article  Google Scholar 

  • Hasançebi O, Çarbaş S, Saka M (2010) Improving the performance of simulated annealing in structural optimization. Struct Multidiscip Optim 41(2):189–203

    Article  Google Scholar 

  • Hejazi F, Toloue I, Noorzaei J, Jaafar MS (2013) Optimization of earthquake energy dissipation system by genetic algorithm. Comput Aided Civ Infrastruct Eng 28(10):796–810

    Google Scholar 

  • Jensen, H., Valdebenito, M., Sepúlveda, J., Becerra, L (2012) Discrete variable structural optimization of systems under stochastic earthquake excitation. Chapter 3 in Plevris, V., Mitropoulou, C., Lagaros, N. (2012) Structural seismic design optimization and earthquake engineering - formulations and applications. Engineering science reference (an imprint of IGI Global), Hershey, PA

  • Kareem, A., Spence, S., Bernardini, E., Bobby, S., Wei, D (2013) Using computational fluid dynamics to optimize tall building design. Council on Tall Buildings and Urban Habitat Journal. 3, 38–43

  • Kaveh A, Laknejadi K, Alinejad B (2012) Performance-based multi-objective optimization of large steel structures. Acta Mech 223(2):355–369

    Article  MATH  Google Scholar 

  • Kicinger, R., Obayashi, S., Arciszewski, T (2007) Evolutionary multiobjective optimization of steel structural systems in tall buildings. Proceedings of the 4th International Conference. Matsushima, Japan. March 5–8, 2007

  • Kim H, Adeli H (2001) Discrete cost optimization of composite floors using a floating point genetic algorithm. Eng Optim 33(4):485–501

    Article  Google Scholar 

  • Kim CK, Kim HS, Hwang S, Hong SM (1998) Stiffness- based optimal design of tall steel frameworks subject to lateral loading. J Struct Multidiscip Optim 15(3–4):180–186

    Article  Google Scholar 

  • Kociecki M, Adeli H (2013) Two-phase genetic algorithm for size optimization of free-form steel space-frame roof structures. J Constr Steel Res 90:283–296

    Article  Google Scholar 

  • Lagaros N, Magoula E (2013) Life-cycle cost assessment of mid-rise and high-rise steel and steel–reinforced concrete composite minimum cost building designs. Struct Des Tall Build 22(12):954–974

    Article  Google Scholar 

  • Lagaros N, Papadrakakis M (2007) Robust seismic design optimization of steel structures. Struct Multidiscip Optim 33(6):457–469

    Article  Google Scholar 

  • Lee K. Y. and El-Sharkawi M. A (2007) Modern heuristic optimization techniques with applications to power systems. John Wiley & Sons, Inc

  • Li, G., Lu, H., and Liu, X (2010) A hybrid genetic algorithm and optimality criteria method for optimum design of RC tall buildings under multi-load cases. The Structural Design of Tall and Special Building. (19): 656– 678

  • Li Q, Zou X, Wu J, Wang Q (2011) Integrated wind- induced response analysis and design optimization of tall steel buildings using Micro- GA. Struct Des Tall Spec Build 20(8):951–971

    Article  Google Scholar 

  • Li G, Jiang Y, Yang D (2012) Modified-modal-pushover-based seismic optimum design for steel structures considering life-cycle cost. Struct Multidiscip Optim 45(6):861–874

    Article  MATH  MathSciNet  Google Scholar 

  • Liu F, Er MJ (2012) A novel efficient learning algorithm for self-generating fuzzy neural network with applications. Int J Neural Syst 22(1):21–35

    Article  Google Scholar 

  • Liu M, Wen Y, Burns S (2004) Life cycle cost oriented seismic design optimization of steel moment frame structures with risk-taking preference. Eng Struct 26(10):1407–1421

    Article  Google Scholar 

  • Luebkeman C, Shea K (2005) CDO: computational design + optimization in building practice. Arup J 2005(3):17–21

    Google Scholar 

  • Moeller O, Foschi R, Quiroz L, Rubinstein M (2009) Structural optimization for performance-based design in earthquake engineering: applications of neural networks. Struct Saf 31(6):490–499

    Article  Google Scholar 

  • Murren P, Khandelwal K (2014) Design-driven harmony search (DDHS) in steel frame optimization. Eng Struct 59:798–808

    Article  Google Scholar 

  • Neri F, Cotta C, Moscato P (2012) Handbook of Memetic algorithms, 379th edn, Studies in computational intelligence. Springer Verlag, Berlin

    Book  Google Scholar 

  • Ng CT, Lam HF (2005) Optimization design of tall buildings under multiple design criteria. Int J Appl Math Mech 4:35–48

    Google Scholar 

  • Nimtawat A, Nanakorn P (2010) A genetic algorithm for beam–slab layout design of rectilinear floors. Eng Struct 32(11):3488–3500

    Article  Google Scholar 

  • Oskouei A, Fard S, Aksogan O (2012) Using genetic algorithm for the optimization of seismic behavior of steel planar frames with semi-rigid connections. Struct Multidiscip Optim 45(2):287–302

    Article  Google Scholar 

  • Park HS, Adeli H (1995) A neural dynamics model for structural optimization - application to plastic design of structures. Comput Struct 57(3):391–399

    Article  MATH  MathSciNet  Google Scholar 

  • Park HS, Adeli H (1997) Distributed neural dynamics algorithms for optimization of large steel structures. J Struct Eng ASCE 123(7):880–888

    Article  Google Scholar 

  • Park HS, Kwon JH (2003) Optimal drift design model for multi-story building subjected to dynamic lateral forces. Struct Des Tall Spec Build 12:317–333

    Article  Google Scholar 

  • Pedrino EC, Roda VO, Kato ERR, Saito JH, Tronco ML, Tsunaki RH, Morandin O, Nicoletti MC (2013) A genetic programming based system for the automatic construction of image filters. Int Comput Aided Eng 20(3):275–287

    Google Scholar 

  • Putha R, Quadrifoglio L, Zechman E (2012) Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Comput Aided Civ Infrastruct Eng 27(1):14–28

    Article  Google Scholar 

  • Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  • Sahab MG, Ashour AF, Toropov VV (2005) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27(3):313–322

    Article  Google Scholar 

  • Sarkisian, M (2011) Tall building design inspired by nature. Proceedings of 36th conference on our world in concrete & structures. Singapore, August 14–16, 2011, CI-Premier PTE LTD

  • Sarkisian, M., Long, E., Shook, D., and Doo, C (2009) Optimization tools for the design of structures. Proceedings of 78th convention for structural engineers association of California (SEAOC). San Diego, CA. September 23–26, 2009

  • Sarma K, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng ASCE 124(5):570–578

    Article  Google Scholar 

  • Sarma K, Adeli H (2000a) Cost optimization of steel structures. Eng Optim 32(6):777–802

    Article  Google Scholar 

  • Sarma K, Adeli H (2000b) Fuzzy genetic algorithm for optimization of steel structures. J Struct Eng ASCE 126(5):596–604

    Article  Google Scholar 

  • Sarma K, Adeli H (2000c) Fuzzy discrete multicriteria cost optimization of steel structures. J Struct Eng ASCE 126(11):1339–1347

    Article  Google Scholar 

  • Sarma KC, Adeli H (2001) Bi-level parallel genetic algorithms for optimization of large steel structures. Comput Aided Civ Infrastruct Eng 16(5):295–304

    Article  Google Scholar 

  • Sarma KC, Adeli H (2002) Life-cycle cost optimization of steel structures. Int J Numer Methods Eng 55(12):1451–1462

    Article  MATH  Google Scholar 

  • Sgambi L, Gkoumas K, Bontempi F (2012) Genetic algorithms for the dependability assurance in the design of a long span suspension bridge. Comput Aided Civ Infrastruct Eng 27(9):655–675

    Article  Google Scholar 

  • Shafahi Y, Bagherian M (2013) A customized particle swarm method to solve highway alignment optimization problem. Comput Aided Civ Infrastruct Eng 28(1):52–67

    Article  Google Scholar 

  • Sharafi P, Hadi M, Teh L (2012a) Heuristic approach for optimum cost and layout design of 3D reinforced concrete frames. J Struct Eng 138(7):853–863

    Article  Google Scholar 

  • Sharafi, P., Hadi, M.N.S., Teh, L.H (2012b) Optimum column layout design of reinforced concrete frames under wind loading. Proceedings of 30th IMAC conference on structural dynamics. Jacksonville, FL. January 30th – February 2nd 2012

  • Siddique N, Adeli H (2013) Computational intelligence - synergies of fuzzy logic, neural networks and evolutionary computing. Wiley, West Sussex

    Book  Google Scholar 

  • Spillers WR, MacBain KM (2009) Structural optimization. Springer, NewYork

    MATH  Google Scholar 

  • Stromberg L, Beghini A, Baker W, Paulino G (2011) Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. J Struct Multidiscip Optim 43(2):165–180

    Article  Google Scholar 

  • Talatahari S, Gandomi AH, Yun GJ (2013) Optimum design of tower structures using firefly algorithm. Struct Des Tall Spec Build. doi:10.1002/tal.1043

    Google Scholar 

  • Tao H, Zain JM, Ahmed MM, Abdalla AN, Jing W (2012) A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integr Comput Aided Eng 19(1):81–91

    Google Scholar 

  • Theodoridis D, Boutalis Y, Christodoulou M (2012) Dynamical recurrent neuro-fuzzy identification schemes employing switching parameter hopping. Int J Neural Syst 22(2):1250004–16

    Article  Google Scholar 

  • Viana FAC, Haftka RT, Watsom LT (2012) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim 56(2):669–689

    Article  Google Scholar 

  • Viise, J., Halvorson, R., Morava, B., Weismantle, P., and Stafford, J (2012) 1 Dubai—engineering and optimizing a mega-structure. Proceedings of Structures Congress. Chicago, IL. March 29–31, 2012

  • Winslow P, Pellegrino S, Sharma S (2010) Multi-objective optimization of free-form grid structures. Struct Multidiscip Optim 40(1–6):257–269

    Article  Google Scholar 

  • Xu L, Gong Y, Grierson D (2006) Seismic design optimization of steel building frameworks. J Struct Eng 132(2):277–286

    Article  Google Scholar 

  • Yang X (2010) nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press Frome, United Kingdom

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojjat Adeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldwaik, M., Adeli, H. Advances in optimization of highrise building structures. Struct Multidisc Optim 50, 899–919 (2014). https://doi.org/10.1007/s00158-014-1148-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1148-1

Keywords

Navigation