Structural and Multidisciplinary Optimization

, Volume 50, Issue 6, pp 1151–1163 | Cite as

Topology design of inductors in electromagnetic casting using level-sets and second order topological derivatives

  • Alfredo CanelasEmail author
  • Antonio A. Novotny
  • Jean R. Roche


We propose a new iterative method for the topology design of the inductors in electromagnetic casting. The method is based on a level-set representation of the solution together with first and second order topological derivatives. The optimal design is found by minimizing a Kohn–Vogelius-type functional for the problem. The complete topological expansion of the objective functional, which is herein given, is used to define the iterative step. Results for several numerical examples show that the technique proposed can be efficiently used in the design of suitable inductors.


Topological asymptotic analysis Topological derivatives Inverse problem Electromagnetic casting 



The authors thank the Brazilian Research Councils CAPES, CNPq and FAPERJ, the Uruguayan Councils ANII and CSIC and the French Research Councils COFECUB, INRIA and CNRS for the financial support.


  1. Ammari H, Kang H (2004) Reconstruction of small inhomogeneities from boundary measurements. Lectures Notes in Mathematics, vol 1846. Springer-Verlag, BerlinGoogle Scholar
  2. Ammari H, Kang H (2007) Polarization and moment tensors with applications to inverse problems and effective medium theory. Applied Mathematical Sciences, vol 162. Springer-Verlag, New YorkGoogle Scholar
  3. Amstutz S (2006) Sensitivity analysis with respect to a local perturbation of the material property. Asymptot Anal 49(1–2):87–108zbMATHMathSciNetGoogle Scholar
  4. Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588. doi:  10.1016/ CrossRefzbMATHMathSciNetGoogle Scholar
  5. Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von Mises stress constraints. Struc Multidiscip Optim 41(3):407–420. doi:  10.1007/s00158-009-0425-x CrossRefzbMATHMathSciNetGoogle Scholar
  6. Amstutz S, Horchani I, Masmoudi M (2005) Crack detection by the topological gradient method. Control Cybern 34(1):81–101zbMATHMathSciNetGoogle Scholar
  7. Amstutz S, Giusti SM, Novotny AA (2010) Topological derivative in multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84(6): 733–756. doi:  10.1002/nme.2922 CrossRefzbMATHMathSciNetGoogle Scholar
  8. Atkinson K E (1997) The numerical solution of integral equations of the second kind, Cambridge monographs on applied and computational mathematics, vol 4. Cambridge University Press, Cambridge. doi:  10.1017/CBO9780511626340 CrossRefGoogle Scholar
  9. Belaid LJ, Jaoua M, Masmoudi M, Siala L (2008) Application of the topological gradient to image restoration and edge detection. Eng Anal Bound Elem 32(11):891–899. doi:  10.1016/j.enganabound.2008.01.004 CrossRefzbMATHGoogle Scholar
  10. Brancher JP, Séro-Guillaume OE (1985) Étude de la déformation d’un liquide magnétique. Arch Ratio Mechan Anal 90(1):57–85. doi:  10.1007/BF00281587 CrossRefzbMATHGoogle Scholar
  11. Brühl M, Hanke M, Vogelius MS (2003) A direct impedance tomography algorithm for locating small inhomogeneities. Numer Math 93(4):635–654. doi:  10.1007/s002110200409 CrossRefzbMATHMathSciNetGoogle Scholar
  12. Canelas A, Roche JR, Herskovits J (2009a) Inductor shape optimization for electromagnetic casting. Struct Multidiscip Optim 39(6):589–606. doi:  10.1007/s00158-009-0386-0 CrossRefMathSciNetGoogle Scholar
  13. Canelas A, Roche JR, Herskovits J (2009b) The inverse electromagnetic shaping problem. Struct Multidiscip Optim 38(4):389–403. doi:  10.1007/s00158-008-0285-9 CrossRefzbMATHMathSciNetGoogle Scholar
  14. Canelas A, Novotny A A, Roche J R (2011) A new method for inverse electromagnetic casting problems based on the topological derivative. J Comput Phys 230(9):3570–3588. doi:  10.1016/ CrossRefzbMATHMathSciNetGoogle Scholar
  15. Canelas A, Novotny A, Roche J R (2012) Topological derivatives and a level set approach for an inverse electromagnetic casting problem. In: World congress of computational mechanics. São Paulo, BrazilGoogle Scholar
  16. Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726CrossRefzbMATHGoogle Scholar
  17. Eppler K, Harbrecht H (2010) On a kohn-vogelius like formulation of free boundary problems. Comput Optim Appl Online. doi:  10.1007/s10589-010-9345-3
  18. Eschenauer H, Kobelev V, Schumacher A (1994) Bubble method for topology and shape optmization of structures. Struct Optimi 8(1):42–51CrossRefGoogle Scholar
  19. de Faria JR, Novotny AA (2009) On the second order topologial asymptotic expansion. Struct Multidis Optim 39(6):547–555. doi:  10.1007/s00158-009-0436-7 CrossRefGoogle Scholar
  20. Feijóo GR (2004) A new method in inverse scattering based on the topological derivative. Inverse Prob 20(6):1819–1840. doi:  10.1088/0266-5611/20/6/008 CrossRefzbMATHGoogle Scholar
  21. Felici TP, Brancher JP (1991) The inverse shaping problem. Eur J Mech B Fluids 10(5):501–512zbMATHMathSciNetGoogle Scholar
  22. Friedman A, Vogelius M (1989) Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch Ration Mech Anal 105(4):299–326. doi:  10.1007/BF00281494 CrossRefzbMATHMathSciNetGoogle Scholar
  23. Fu H Z, Shen J, Liu L, Hao Q T, Li S M, Li J S (2004) Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum. J Mater Process Tech 148(1):25–29. doi:  10.1016/j.jmatprotec.2003.11.039 CrossRefGoogle Scholar
  24. Gagnoud A, Etay J, Garnier M (1986) Le problème de frontière libre en lévitation électromagnétique. J de Mécan Théor et Appl 5(6):911–934zbMATHGoogle Scholar
  25. Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39(6):1756–1778. doi:  10.1137/S0363012900369538 CrossRefzbMATHMathSciNetGoogle Scholar
  26. Giroire J (1976) Formulation variationnelle par équations intégrales de problèmes aux limites extérieurs. Tech. Rep. 6, Centre de Mathématiques Appliquées de l’Ecole PolytechniqueGoogle Scholar
  27. Guzina B B, Bonnet M (2006) Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics. Inverse Prob 22(5):1761–1785. doi:  10.1088/0266-5611/22/5/014 CrossRefzbMATHMathSciNetGoogle Scholar
  28. Henrot A, Pierre M (1989) Un problème inverse en formage des métaux liquides. RAIRO Modél Math Anal Num 23(1):155–177zbMATHMathSciNetGoogle Scholar
  29. Hintermüller M, Laurain A (2008) Electrical impedance tomography: from topology to shape. Control Cybern 37(4):913–933zbMATHGoogle Scholar
  30. Hintermüller M, Laurain A (2009) Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J Math Imaging Vis 35:1–22. doi:  10.1007/s10851-009-0150-5 CrossRefGoogle Scholar
  31. Hintermüller M, Laurain A, Novotny A A (2012) Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36(2): 235–265. doi:  10.1007/s10444-011-9205-4 CrossRefzbMATHMathSciNetGoogle Scholar
  32. Hsiao G, Wendland W L (2008) Boundary integral equations, applied mathematical sciences, vol 164. Springer-Verlag, BerlinCrossRefGoogle Scholar
  33. Jackson JD (1998) Classical electrodynamics, 3rd edn. WileyGoogle Scholar
  34. Kohn R, Vogelius M (1984) Determining conductivity by boundary measurements. Commun Pure Appl Math 37(3): 289–298. doi:  10.1002/cpa.3160370302 CrossRefzbMATHMathSciNetGoogle Scholar
  35. Larrabide I, Feijóo R A, Novotny A A, Taroco E (2008) Topological derivative: a tool for image processing. Comput Struct 86(13–14):1386–1403. doi:  10.1016/j.compstruc.2007.05.004 CrossRefGoogle Scholar
  36. Moffatt H K (1985) Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundam J Fluid Mech 159:359–378. doi:  10.1017/S0022112085003251 CrossRefzbMATHMathSciNetGoogle Scholar
  37. Nazarov S A (2003) Asymptotic analysis of shape functionals. J Math Pures Appl 82(2):125–196. doi:  10.1016/S0021-7824(03)00004-7 CrossRefzbMATHMathSciNetGoogle Scholar
  38. Nédélec J C (2001) Acoustic and Electromagnetic Equations. Integral representations for harmonic problems, Applied Mathematical Sciences, vol 144. Springer-Verlag, New YorkGoogle Scholar
  39. Novotny A A, Sokołowski J (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics, SpringerGoogle Scholar
  40. Novotny AA, Feijóo RA, Taroco E, Padra C (2007) Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput Methods Appl Mech Eng 196(41-44):4354–4364. doi:  10.1016/j.cma.2007.05.006 CrossRefzbMATHGoogle Scholar
  41. Novruzi A, Roche JR (1995) Second order derivatives, Newton method, application to shape optimization. Tech. Rep. RR-2555, INRIAGoogle Scholar
  42. Novruzi A, Roche JR (2000) Newton’s method in shape optimisation: a three-dimensional case. BIT Numer Math 40(1):102–120. doi:  10.1023/A:1022370419231 CrossRefzbMATHMathSciNetGoogle Scholar
  43. Osher S, Sethian J (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 78:12–49. doi:  10.1016/0021-9991(88)90002-2 CrossRefMathSciNetGoogle Scholar
  44. Pierre M, Roche JR (1991) Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur J Mech B Fluids 10(5):489–500zbMATHMathSciNetGoogle Scholar
  45. Pierre M, Roche JR (1993) Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer Math 65(1):203–217. doi:  10.1007/BF01385748 CrossRefzbMATHMathSciNetGoogle Scholar
  46. Roche JR (1997) Gradient of the discretized energy method and discretized continuous gradient in electromagnetic shaping simulation. Appl Math Comput Sci 7(3):545–565zbMATHMathSciNetGoogle Scholar
  47. Roche JR (2005) Adaptive Newton-like method for shape optimization. Control Cybern 34(1):363–377zbMATHMathSciNetGoogle Scholar
  48. Roche JR (1996) Numerical methods for shape identification problems. Control Cybern 25(5):867–894. special issue: Shape Optimization and Scientific ComputationszbMATHMathSciNetGoogle Scholar
  49. Sarason D (2007) Complex function theory, 2nd edn. American Mathematical Society, Providence, RIGoogle Scholar
  50. Shercliff J A (1981) Magnetic shaping of molten metal columns. Proceedings of the Royal Society of London Series A. Math Phys Sci 375(1763):455–473. doi:  10.1098/rspa.1981.0063 CrossRefGoogle Scholar
  51. Shin J, Spicer J P, Abell J A (2012) Inverse and direct magnetic shaping problems. Struct Multidiscip Optim 46(2):285–301. doi:  10.1007/s00158-011-0756-2 CrossRefzbMATHMathSciNetGoogle Scholar
  52. Sokołowski J, żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272. doi:  10.1137/S0363012997323230 CrossRefzbMATHMathSciNetGoogle Scholar
  53. Sokołowski J, żochowski A (2003) Optimality conditions for simultaneous topology and shape optimization. SIAM J Control Optim 42(4):1198–1221. doi:  10.1137/S0363012901384430 CrossRefzbMATHMathSciNetGoogle Scholar
  54. Zhiqiang C, Fei J, Xingguo Z, Hai H, Junze J (2002) Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys. Mater Sci Eng A 327(2):133–137. doi:  10.1016/S0921-5093(01)01673-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alfredo Canelas
    • 1
    Email author
  • Antonio A. Novotny
    • 2
  • Jean R. Roche
    • 3
  1. 1.Instituto de Estructuras y Transporte, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratório Nacional de Computação Científica LNCC/MCTPetrópolisBrazil
  3. 3.Institut Elie Cartan de LorraineUniversité de Lorraine, CNRS, INRIAVandoeuvre lès NancyFrance

Personalised recommendations