Skip to main content
Log in

Structural static reanalysis for modification of supports

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is focused on structural static reanalysis problem with modification of supports. An efficient reanalysis method is proposed. The method is based on the introduction of the modified master stiffness matrices, the rank-one decomposition of the corresponding incremental stiffness matrix, and the sparse Cholesky rank-one update/downdate algorithm. Adding and deleting of supports with arbitrary orientations can be dealt with. Numerical examples show that exact results can be obtained by the proposed method, and the computational times can be significantly reduced in comparison with the direct analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu Kassim AM, Topping BHV (1987) Static reanalysis: a review. ASCE J Struct Eng 113(5):1029–1045

    Article  Google Scholar 

  • Akesson B, Olhoff N (1988) Minimum stiffness of optimally located supports for maximum value of beam eigenfrequencies. J Sound Vib 120(3):457–463

    Article  Google Scholar 

  • Akgün MA, Garcelon JH, Haftka RT (2001) Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int J Numer Methods Eng 50(7):1587–1606

    Article  MATH  Google Scholar 

  • Davis TA (2006) Direct methods for sparse linear system. SIAM, Philadelphia

    Book  Google Scholar 

  • Davis TA, Hager WW (1999) Modifying a sparse Cholesky factorization. SIAM J Matrix Anal Appl 20(3):606–627

    Article  MATH  MathSciNet  Google Scholar 

  • Davis TA, Hager WW (2001) Multiple-rank modifications of a sparse Cholesky factorization. SIAM J Matrix Anal Appl 22(4):997–1013

    Article  MATH  MathSciNet  Google Scholar 

  • Gill PE, Golub GH, Murray W, Saunders MA (1974) Methods for modifying matrix factorizations. Math Comput 28(126):505–535

    Article  MATH  MathSciNet  Google Scholar 

  • Kirsch U (2008) Reanalysis of structures. Springer, Dordrecht

    MATH  Google Scholar 

  • Li ZG, Wu BS (2007) A preconditioned conjugate gradient approach to structural reanalysis for general layout modifications. Int J Numer Methods Eng 70(5):505–522

    Article  MATH  Google Scholar 

  • Liu HF, Wu BS, Lim CW, Li ZG (2012) An approach for structural static reanalysis with unchanged number of degrees of freedom. Struct Multidisc Optim 45(5):681–692

    Article  Google Scholar 

  • Olhoff N, Taylor JE (1983) On structural optimization. ASME J Appl Mech 50(4):1139–1151

    Article  MATH  MathSciNet  Google Scholar 

  • Pais MJ, Yeralan SN, Davis TA, Kim NH (2012) An exact reanalysis algorithm using incremental Cholesky factorization and its application to crack growth modeling. Int J Numer Methods Eng 91(12):1358–1364

    Article  MathSciNet  Google Scholar 

  • Sherman J, Morrison WJ (1949) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Stat 20(4):621

    Google Scholar 

  • Takezawa A, Nishiwaki S, Izui K, Yoshimura M (2006) Structural optimization using function-oriented elements to support conceptual designs. ASME J Mech Des 128(4):689–700

    Article  Google Scholar 

  • Tanskanen P (2006) A multiobjective and fixed elements based modification of the evolutionary structural optimization method. Comput Methods Appl Mech Eng 196(1–3):76–90

    Article  MATH  Google Scholar 

  • Terdalkar SS, Rencis JJ (2006) Graphically driven interactive finite element stress reanalysis for machine elements in the early design stage. Finite Elem Anal Des 42(10):884–899

    Article  Google Scholar 

  • Wang BP, Chen JL (1996) Application of genetic algorithm for the support location optimization of beams. Comput Struct 58(4):797–800

    Article  MATH  Google Scholar 

  • Wang D, Jiang JS, Zhang WH (2004) Optimization of support positions to maximize the fundamental frequency of structures. Int J Numer Methods Eng 61(10):1584–1602

    Article  MATH  Google Scholar 

  • Woodbury M (1950) Inverting modified matrices. Memorandum Report 42. Statistical Research Group. Princeton University, Princeton

    Google Scholar 

  • Wu BS, Xu ZH, Li ZG (2008) A note on imposing displacement boundary conditions in finite element analysis. Commun Numer Methods Eng 24(9):777–784

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu JH, Zhang WH (2010) Integrated layout design of supports and structures. Comput Methods Appl Mech Eng 199(9–12):557–569

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11072085 and 51005096) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.F., Wu, B.S., Li, Z.G. et al. Structural static reanalysis for modification of supports. Struct Multidisc Optim 50, 425–435 (2014). https://doi.org/10.1007/s00158-014-1063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1063-5

Keywords

Navigation