Structural and Multidisciplinary Optimization

, Volume 48, Issue 6, pp 1143–1151 | Cite as

Modelling and shape optimization of an actuator

  • Charles-Henri Bruneau
  • Frédéric Chantalat
  • Angelo Iollo
  • Bastien Jordi
  • Iraj Mortazavi
Research Paper

Abstract

The aim of this work is to optimize an actuator design so that the flow profile at its exit section is as close as possible to a target profile. The method is founded on the penalization and level-set methods to solve direct and inverse problems on Cartesian meshes The optimization process is written and applied both for Stokes and Navier-Stokes flows. The results show that the method can be successfully applied to the non linear problem to improve the flow profile of an actuator even if the target cannot be totally reached.

Keywords

MEMS Shape optimization Navier-Stokes flow 

Notes

Acknowledgments

This work was carried out in the framework of the CARAVAJE project supported by the Agence pour le Développement Et la Maîtrise de l’Energie (ADEME). We thank FLOWDIT research team for the initial geometry of the actuator and all the partners for fruitful discussions.

References

  1. Allaire G, Jouve F (2006) Coupling the level set method and the topological gradient in structural optimization. In: Bendsoe M. et al (ed) IUTAM symposium on topological design optimization of structures, machines and materials. Springer-Verlag, Heidelberg.Google Scholar
  2. Amstutz S. (2005) The topological asymptotic for the Navier-Stokes equations. ESAIM Control Optim Calc Var 11(n° 3).Google Scholar
  3. Angot Ph, Bruneau Ch-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81Google Scholar
  4. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer-Verlag, HeidelbergGoogle Scholar
  5. Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Internat. J Numer Methods Fluids 41(n° 1)Google Scholar
  6. Brackett DJ, Ashcroft IA, Hague RJ (2010) Multi-physics optimisation of ’brass’ instruments-a new method to include structural and acoustical interactions. Struct Multidiscip Optim 40Google Scholar
  7. Bruneau Ch.-H, Mortazavi I. (2008) Numerical modelling and passive flow control using porous media. Comput & Fluids 37(n° 5)Google Scholar
  8. Bruneau C-H, Saad M (2006) The 2D-lid driven cavity problem revisited. Comput & Fluids 35(n° 3)Google Scholar
  9. Céa J (1986) Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût. Math Model Numer Anal 20(n° 3)Google Scholar
  10. Chantalat F (2009) Méthode level-set et de pénalisation pour l’optimisation et le contrôle d’écoulements, Ph D Thesis University Bordeaux, vol 1Google Scholar
  11. Chantalat F, Bruneau C-H, Galusinski C, Iollo A (2009) Level-set, penalization and meshes cartesian: a paradigm for inverse problems and optimal design. J Comput Phys 228(n° 17)Google Scholar
  12. Duan X, Ma Y, Zhang R. (2008) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372(n° 9)Google Scholar
  13. Gad-el-Hak M (1999) The fluid mechanics of microdevices-the freeman scholar lecture. J Fluids Eng 121Google Scholar
  14. Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30Google Scholar
  15. Guillaume Ph, Sid Idris K (2004) Topological sensitivity shape optimization for the Stokes equations. SIAM J Control Optim 43(n° 1)Google Scholar
  16. Jiang GS, Shu CW (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(n° 1)Google Scholar
  17. Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids, 2nd edn. Numerical Mathematics and Scientific Computation. Oxford University Press, LondonGoogle Scholar
  18. Osher S, Fedkiw R (2001) Level set methods: an overview and some recent results. J Comput Phys 169(n° 2)Google Scholar
  19. Osher S, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J Comput Phys 171(n° 1)Google Scholar
  20. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(n° 1)Google Scholar
  21. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93Google Scholar
  22. Sethian JA (2001) Evolution and application of level-set and fastmarching methods for advancing fronts. J Comput Phys 169(n° 2)Google Scholar
  23. Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier-Stokes flow. J Comput Phys 227(n° 24)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Charles-Henri Bruneau
    • 1
    • 2
    • 3
  • Frédéric Chantalat
    • 1
    • 2
    • 3
  • Angelo Iollo
    • 1
    • 2
    • 3
  • Bastien Jordi
    • 1
    • 2
    • 3
  • Iraj Mortazavi
    • 1
    • 2
    • 3
  1. 1.Univ. BordeauxTalenceFrance
  2. 2.CNRSTalenceFrance
  3. 3.INRIATalenceFrance

Personalised recommendations