Skip to main content
Log in

Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The so-called bi-value coding parameterization (BCP) method is developed for the simultaneous optimization of layout design and discrete fiber orientations of laminated structures related to the compliance minimization and natural frequency maximization. Both kinds of problems are transformed into a discrete material selection problem that is then solved as a continuous topology optimization problem with multiphase materials. A new form of the volume constraint is introduced in accordance with the BCP to control the material usage and material removal in the corresponding problem formulation. The BCP scheme assigning the integer value of +1 or -1 to each design variable for the unique “coding” is efficiently used to interpolate discrete fiber orientations and to identify the presence and removal of materials. Meanwhile, a general set-up strategy is proposed by assigning “uniform” weight values in BCP to ensure the feasibility of the initial starting point. Numerical tests illustrate that the BCP is efficient in dealing with both kinds of design problems including the volume constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Blasques J, Stolpe M (2011) Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct Multidiscip Optim 43:573–588

    Article  MATH  Google Scholar 

  • Bruyneel M (2011) SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43:17–27

    Article  Google Scholar 

  • Bruyneel M, Duysinx P, Fleury C, Gao T (2011) Extensions of the shape functions with penalization parameterization for composite-ply optimization. AIAA J 49:2325–2329

    Article  Google Scholar 

  • Cheng HC, Kikuchi N, Ma ZD (1994) An improved approach for determining the optimal orientation of orthotropic material. Struct Multidiscip Optim 8:101–112

    Article  Google Scholar 

  • Díaz AR, Bendsøe MP (1992) Shape optimization of structures for multiple loading conditions using a homogenization method. Struct Multidiscip Optim 4:17–22

    Article  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428

    Article  MathSciNet  MATH  Google Scholar 

  • Gao T, Zhang W (2011) A mass constraint formulation for structural topology optimization with multiphase materials. Int J Numer Methods Eng 88:774–796

    Article  MATH  Google Scholar 

  • Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91:98–114

    Article  MATH  Google Scholar 

  • Gea HC, Luo JH (2004) On the stress-based and strain-based methods for predicting optimal orientation of orthotropic materials. Struct Multidiscip Optim 26:229–234

    Article  Google Scholar 

  • Hvejsel C, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43:1–15

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. Perth, Wa, pp 1942–1948

  • Kitayama S, Arakawa M, Yamazaki K (2006) Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization. Struct Multidiscip Optim 32:191–202

    Article  MathSciNet  MATH  Google Scholar 

  • Le Riche R, Haftka RT (1993) Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31: 951-956.

    Article  MATH  Google Scholar 

  • Le Riche R, Haftka RT (1995) Improved genetic algorithm for minimum thickness composite laminate design. Compos Eng 5: 143–161

    Article  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91:158–167

    Article  Google Scholar 

  • Omkar S, Mudigere D, Naik G, Gopalakrishnan S (2008) Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures. Comput Struct 86:1–14

    Article  Google Scholar 

  • Pedersen P (1989) On optimal orientation of orthotropic materials. Struct Multidiscip Optim 1:101–106

    Article  Google Scholar 

  • Pedersen P (1990) Bounds on elastic energy in solids of orthotropic materials. Struct Multidiscip Optim 2:55–63

    Article  Google Scholar 

  • Pedersen P (1991) On thickness and orientational design with orthotropic materials. Struct Multidiscip Optim 3:69–78

    Article  Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization - Part II: two-material structures. Comput Methods Appl Mech Eng 190:6605–6627

    Article  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45:1037–1067

    Article  MathSciNet  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    Article  MATH  Google Scholar 

  • Stegmann J, Lund E (2006) On discrete material optimization of laminated composites using global and local criteria. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures. Machines and materials. Springer, Netherlands, pp 89–98

    Chapter  Google Scholar 

  • Stolpe M, Stegmann J (2008) A Newton method for solving continuous multiple material minimum compliance problems. Struct Multidiscip Optim 35:93–106

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without line search. In: First world congress of structural and multidisciplinary optimization. Pergamon Press, Goslar, pp 9–16

    Google Scholar 

  • Zhang WH, Fleury C (1997) A modification of convex approximation methods for structural optimization. Comput Struct 64:89–95

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Walloon Region of Belgium and SKYWIN (Aerospace Cluster of Wallonia) through the project VIRTUALCOMP (Contract RW-6293), the National Natural Science Foundation of China (10925212, 90916027) and the NWPU Foundation of Fundamental Research (JCY20130116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, T., Zhang, W.H. & Duysinx, P. Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct Multidisc Optim 48, 1075–1088 (2013). https://doi.org/10.1007/s00158-013-0948-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0948-z

Keywords

Navigation