Skip to main content

Many objective visual analytics: rethinking the design of complex engineered systems

Abstract

Many cognitive and computational challenges accompany the design of complex engineered systems. This study proposes the many-objective visual analytics (MOVA) framework as a new approach to the design of complex engineered systems. MOVA emphasizes learning through problem reformulation, enabled by visual analytics and many-objective search. This study demonstrates insights gained by evolving the formulation of a General Aviation Aircraft (GAA) product family design problem. This problem’s considerable complexity and difficulty, along with a history encompassing several formulations, make it well-suited to demonstrate the MOVA framework. The MOVA framework results compare a single objective, a two objective, and a ten objective formulation for optimizing the GAA product family. Highly interactive visual analytics are exploited to demonstrate how decision biases can arise for lower dimensional, highly aggregated problem formulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Arrow K (1950) A difficulty in the concept of social welfare. J Polit Econ 58(4):328–346

    Article  Google Scholar 

  • Balling R (1999) Design by shopping: a new paradigm? In: Proceedings of the Third World Congress of structural and multidisciplinary optimization (WCSMO-3), pp 295–297

  • Balling RJ, Taber JT, Brown MR, Day K (1999) Multiobjective urban planning using genetic algorithms. J Urban Plan Dev 125(2):86–99

    Article  Google Scholar 

  • Bloebaum C, McGowan A-M (2010) Design of complex engineered systems. J Mech Des 132(12):120301–1–120301–2

    Article  Google Scholar 

  • Brill ED, Flach JM, Hopkins LD, Ranjithan S (1990) MGA: a decision support system for complex, incompletely defined problems. IEEE Trans Syst Man Cybern 20(4):745–757

    Article  Google Scholar 

  • Brockhoff D, Friedrich T, Hebbinghaus N, Klein C, Neumann F, Zitzler E (2007) Do additional objectives make a problem harder? In: Genetic and evolutionary computation conference (GECCO ‘07), London, England, pp 765–772

  • Chen W, Elliot JG, Simpson TW, Virasak J (1995) Designing a general aviation aircraft as an open engineering system. Design Report for ME8104, Georgia Institute of Technology

  • Climaco J (2004) A critical reflection on optimal decision. Eur J Oper Res 153(2):506–516

    MATH  Article  Google Scholar 

  • Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Kluwer Academic Publishers. doi:10.1007/978-0-387-36797-2

  • Deb K, Agrawal RB (1994) Simulated binary crossover for continuous search space. Tech. Rep. Technical Report IITK/ME/SMD-94027, Indian Institute of Technology, Kanpur, Kanpur, UP, India

  • Deb K, Joshi D, Anand A (2002) Real-coded evolutionary algorithms with parent-centric re-combination. In: Proceedings of the World on Congress on computational intelligence, vol 1, pp 61–66

  • Deb K, Mohan M, Mishra S (2005) Evaluating the \(\varepsilon \)-domination based multiobjective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput J 13(4):501–525

    Article  Google Scholar 

  • Di Pierro F, Khu S-T, Savi DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1):17–45. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4079613

    Article  Google Scholar 

  • Eddy J, Lewis K (2002) Visualization of multi-dimensional design and optimization data using cloud visualization In: ASME design technical conferences, design automation conference. Paper No. DETC2002/DAC-34130

  • English K, Bloebaum C (2008) Visual dependency structure matrix for multidisciplinary design optimization tradeoff studies. J Aerosp Comput Inf Commun 5(1):274–297

    Article  Google Scholar 

  • ESTECO SpA (2012) modeFrontier. http://www.modefrontier.com/. Accessed 5 Apr 2012

  • Ferringer M, Spencer D, Reed P (2009) Many-objective reconfiguration of operational satellite constellations with the large-cluster epsilon non-dominated sorting genetic algorithm-ii. In: Proceedings of the 2009 IEEE congress on evolutionary computation. IEEE, pp 340–349

  • Fleming PJ, Purshouse RC, Lygoe RJ (2005) Many-objective optimization: an engineering design perspective. In: In evolutionary multi-criterion optimization. Lecture notes in computer science, vol 3410. Springer, Berlin/Heidelberg, pp 14–32

    Google Scholar 

  • Fonseca CM, Fleming PJ (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans Syst, Man Cybern, A: Syst Humans 28(1):26–37

    Article  Google Scholar 

  • Franssen M (2005) Arrow’s theorem, multi-criteria decision problems and multi-attribute preferences in engineering design. Res Eng Des 16(1):42–56

    Article  Google Scholar 

  • Goldberg D (2002) The design of innovation: lessons from and for competent genetic algorithms, vol 7. Springer, New York

    Google Scholar 

  • Hadka D, Reed P (2012a) Borg: an auto-adaptive many-objective evolutionary computing framework. Evol Comput. doi:10.1162/EVCO_a_00075

    Google Scholar 

  • Hadka D, Reed P (2012b) Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol Comput 20(3):423–452

    Article  Google Scholar 

  • Hadka D, Reed PM, Simpson TW (2012) Diagnostic assessment of the borg moea for many-objective product family design problems. In: Proceedings of the 2012 IEEE World Congress on computational intelligence, IEEE, pp 986–995

  • Hitch CJ (1960) On the choice of objectives in systems studies. Tech. Rep. P-1955, The RAND Corporation

  • Hogarth R (1981) Beyond discrete biases: functional and dysfunctional aspects of judgmental heuristics. Psychol Bull 90(2):197–217

    Article  Google Scholar 

  • Inselberg A (1997) Multidimensional detective. In: IEEE symposium on information visualization, 1997. Proceedings, IEEE, pp 100–107

  • Inselberg A (2009) Parallel coordinates: visual multidimensional geometry and its applications. Springer, New York

    Google Scholar 

  • Kanukolanu D, Lewis K, Winer E (2006) A multidimensional visualization interface to aid in trade-off decisions during the solution of coupled subsystems under uncertainty. J Comput Inf Sci Eng 6:288

    Article  Google Scholar 

  • Kasprzyk JR, Reed PM, Kirsch BR, Characklis GW (2009) Managing population and drought risks using many-objective water portfolio planning under uncertainty. Water Resources Research 45:W12401. doi:10.1029/2009WR008121

    Article  Google Scholar 

  • Kasprzyk JR, Reed PM, Kirsch BR, Characklis GW (2012) Many-objective de novo water supply portfolio planning under deep uncertainty. Environ Model Softw 34:87–104. doi:10.1016/j.envsoft.2011.04.003

    Article  Google Scholar 

  • Keim DA, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age - solving problems with visual analytics. Eurographics. http://www.vismaster.eu/wp-content/uploads/2010/11/VisMaster-book-lowres.pdf

  • Kipouros T, Mleczko M, Savill A (2008) Use of parallel-coordinates for post-analyses of multi-objective aerodynamic optimisation in turbomachinery. In: Proceedings of the 4th AIAA multi-disciplinary design optimization specialist conference, Schaumburg, IL. Paper No. AIAA-2008-2138

  • Kita H, Ono I, Kobayashi S (1999) Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms. In: Proceedings of the 1999 congress on evolutionary computation, pp 1581–1588

  • Kollat J, Reed P (2005) The value of online adaptive search: a performance comparison of NSGAII, \(\varepsilon \)-NSGAII and \(\varepsilon \)MOEA. In: Coello Coello C, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Lecture notes in computer science, vol 3410. Springer, Berlin/Heidelberg, pp 386–398

    Google Scholar 

  • Kollat JB, Reed P (2007a) A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VIDEO). Environ Modell Softw 22(12):1691–1704. http://linkinghub.elsevier.com/retrieve/pii/S1364815207000308

    Article  Google Scholar 

  • Kollat J, Reed P (2007b) A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications. Adv Water Resour 30(3):408–419

    Article  Google Scholar 

  • Kollat J, Reed P, Maxwell R (2011) Many-objective groundwater monitoring network design using bias-aware ensemble kalman filtering, evolutionary optimization, and visual analytics. Water Resour Res 47:W02529. doi:10.1029/2010WR009194

    Article  Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 10(3):263–282

    Article  Google Scholar 

  • Messac A, Martinez M, Simpson T (2002) A penalty function for product family design using physical programming. ASME J Mech Des 124(2):164–172

    Article  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  Google Scholar 

  • Naim A, Chiu P, Bloebaum C, Lewis K (2008) Hyper-radial visualization for multi-objective decision-making support under uncertainty using preference ranges: the PRUF method. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Paper No. AIAA 2008-6087

  • NASA (1978) GASP—general aviation synthesis program. Tech. Rep. NASA-CR-152303National Aeronautics and Space Administration Ames Research Center, Moffet Field, California

  • NASA, FAA (1994) General aviation design competition guidelines. Virginia Space Grant Consortium, Hampton, VA

    Google Scholar 

  • Nolan D, Thal J, Henry K, Sandy M (1995) NASA/FAA announce aviation design competition winners [press release]

  • R project (2012) The R project for statistical computing. http://www.r-project.org. Accessed 5 Apr 2012

  • Raymer D (1999) Aircraft design: a conceptual approach. American Institute of Aeronautics and Astronautics, Inc., Reston, VA

    Google Scholar 

  • Reed P, Hadka D, Herman J, Kasprzyk J, Kollat J (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future (editor invited submission to 35th anniversary special issue). Adv Water Resour 51:438–456

    Article  Google Scholar 

  • Roy B (1971) Problems and methods with multiple objective functions. Math Program 1(1):239–266

    MATH  Article  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    MATH  Article  Google Scholar 

  • SAS Institute (2012) JMP statistical discovery software. http://jmp.com. Accessed 5 Apr 2012

  • See T, Gurnani A, Lewis K (2003) An approach to robust multi-attribute concept selection. In: Proceedings of ASME 2003 design engineering technical conferences, ASME. Paper No. DETC2003/DAC-48707

  • Seo J, Shneiderman B (2005) A rank-by-feature framework for interactive exploration of multidimensional data. Inf Vis 4(2):96–113. http://www.palgrave-journals.com/doifinder/10.1057/palgrave.ivs.9500091

    Article  Google Scholar 

  • Shah R, Simpson T, Reed P (2011) Many-objective evolutionary optimisation and visual analytics for product family design. In: Wang L, et al (eds) Multi-objective evolutionary optimisation for product design and manufacturing. Springer-Verlag, London, pp 137–159. doi:10.1007/978-0-85729-652-8_4

    Chapter  Google Scholar 

  • Simpson T (1995) Development of a design process for realizing open engineering systems. Master’s Thesis, Georgia Institute of Technology

  • Simpson TW, D’Souza B (2004) Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm. Concurr Eng: Res Appl 12(2):119–130

    Article  Google Scholar 

  • Simpson T, Martins JRRA (2010) The future of multidisciplinary design optimization (mdo): advancing the design of complex engineered systems. Tech. rep., National Science Foundation, Fort Worth, TX

  • Simpson TW, Martins JRRA (2011) Multidisciplinary design optimization for complex engineered systems: Report from a national science foundation workshop. J Mech Des 133(10):101002. doi:10.1115/1.4004465. http://link.aip.org/link/?JMD/133/101002/1

    Article  Google Scholar 

  • Simpson TW, Chen W, Allen JK, Mistree F (1996) Conceptual design of a family of products through the use of the robust concept exploration method. In: 6th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, AIAA, Bellevue, WA, pp 1535–1545

  • Simpson T, Seepersad C, Mistree F (2001) Balancing commonality and performance within the concurrent design of multiple products in a product family. Concurr Eng 9(3):177–190

    Article  Google Scholar 

  • Slingerland LA, Bobuk A, Simpson TW (2010) Product family optimization using a multidimensional data visualization approach. In: 13th AIAA/ISSMO multidisciplinary analysis and optimization converence, Fort Worth, TX. Paper No. AIAA 2010-9031

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Article  Google Scholar 

  • Stump G, Yukish M, Simpson T, Harris E (2003) Design space visualization and its application to a design by shopping paradigm. In: ASME design engineering technical conferences-design automation conference, Chicago, IL, ASME. Paper No. DETC2003/DAC-48785

  • Teytaud O (2006) How entropy-theorems can show that on-line approximating high-dim pareto fronts is too hard. Technical Report, Inria Saclay (CR1)

  • Teytaud O (2007) On the hardness of offline multi-objective optimization. Evol Comput 15(4):475–491

    Article  Google Scholar 

  • Thomas J, Cook K, National Visualization and Analytics Center (2005) Illuminating the path: the research and development agenda for visual analytics. [Book]. IEEE Computer Society

  • TIBCO (2012) Spotfire. http://spotfire.tibco.com. Accessed 5 Apr 2012

  • Tsoukiàs A (2008) From decision theory to decision aiding methodology. Eur J Oper Res 187:138–161

    Article  Google Scholar 

  • Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real coded genetic algorithms. In: Genetic and evolutionary computation conference (GECCO 1999)

  • Venkataraman S, Haftka RT (2004) Structural optimization complexity: what has moore’s law done for us? Struct Multidisc Optim 28:275–287

    Article  Google Scholar 

  • Vrugt J, Robinson B (2007) Improved evolutionary optimization from genetically adaptive multimethod search. Proc Natl Acad Sci USA 104(3):708

    Article  Google Scholar 

  • Ware C (2004) Information visualization: perception for design, 2nd edn. Morgan-Kauffman

  • Winer E, Bloebaum C (2002) Development of visual design steering as an aid in large-scale multidisciplinary design optimization. part i: method development. Struct Multidisc Optim 23(6):412–424

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Woodruff M, Hadka D, Reed P, Simpson T (2012) Auto-adaptive search capabilities of the new borg MOEA: a detailed comparison on alternative product family design problem formulations. In: 14th AIAA/ISSMO multidisciplinary analysis and optimization conference, Indianapolis, IA, USA, 17 September 2012

  • Zeleny M (1986) Optimal system design with multiple criteria: de novo programming approach. Eng Costs Prod Econ 10(1):89–94

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

The second author of this work was partially supported by the US National Science Foundation under Grant CBET-0640443. The computational resources for this work were provided in part through instrumentation funded by the National Science Foundation through Grant OCI-0821527. Any opinions,findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Reed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woodruff, M.J., Reed, P.M. & Simpson, T.W. Many objective visual analytics: rethinking the design of complex engineered systems. Struct Multidisc Optim 48, 201–219 (2013). https://doi.org/10.1007/s00158-013-0891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0891-z

Keywords

  • Multi-objective optimization
  • Multidimensional data visualization
  • Product family design