Aerothermoelastic topology optimization with flutter and buckling metrics

Research Paper


This work develops a framework for SIMP-based topology optimization of a metallic panel structure subjected to design-dependent aerodynamic, inertial, elastic, and thermal loads. Multi-physics eigenvalue-based design metrics such as thermal buckling and dynamic flutter are derived, along with their adjoint-based design derivatives. Locating the flutter point (Hopf-bifurcation) in a precise and efficient manner is a particular challenge, as is outfitting the optimization problem with sufficient constraints such that the critical flutter mode does not switch during the design process. Results are presented for flutter-optimal topologies of an unheated panel, thermal buckling-optimal topologies, and flutter-optimality of a heated panel (where the latter case presents a topological compromise between the former two). The effect of various constraint boundaries, temperature gradients, and (for the flutter of the heated panel) thermal load magnitude are assessed. Off-design flutter and thermal buckling boundaries are given as well.


Panel flutter Topology optimization Aerothermoelasticity 


  1. Abbas J, Ibrahim R, Gibson R (1993) Nonlinear flutter of orthotropic composite panel under aerodynamic heating. AIAA J 31(8):1478–1488MATHCrossRefGoogle Scholar
  2. Ashley H, Zartarian G (1956) Piston theory—a new aerodynamic tool for the aeroelastician. J Aeronaut Sci 23(12):1109–1118MathSciNetGoogle Scholar
  3. Barboni R, Mannini A, Gaudenzi P (1999) On the use of the P-TFE method for panel flutter optimization. Comput Struct 70(1):109–117MATHCrossRefGoogle Scholar
  4. Beiner L, Librescu L (1983)Minimum-weight design of an orthotropic shear panel with fixed flutter speed. AIAA J 21(7):1015–1016CrossRefGoogle Scholar
  5. Beloiu D, Ibrahim R, Pettit C (2005) Influence of boundary conditions relaxation on panel flutter with compressive in-plane loads. J Fluid Struct 21(4):743–767CrossRefGoogle Scholar
  6. Bendsøe M, Sigmund O (2003) Topology optimization. Springer, BerlinGoogle Scholar
  7. Beran P, Khot N, Eastep F, Snyder R, Zweber J (2004) Numerical analysis of store-induced limit-cycle oscillation. J Aircr 41(6):1315–1326CrossRefGoogle Scholar
  8. Bisplinghoff R, Ashley H, Halfman R (1955) Aeroelasticity. Addison-Wesley, CambridgeMATHGoogle Scholar
  9. Bruns T (2007) Topology optimization on convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transfer 50(15):2859–2873MATHCrossRefGoogle Scholar
  10. Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459MATHCrossRefGoogle Scholar
  11. Chen B, Gu Y, Zhao G, Lin W, Chang T, Kuang J (2003) Design optimization for structural thermal buckling. J Therm Stress 26(5):479–494CrossRefGoogle Scholar
  12. Cook R,Malkus D, PleshaM,Witt R (2002) Concepts and applications of finite element analysis. Wiley, New YorkGoogle Scholar
  13. Culler A, McNamara J (2010) Studies on fluid-thermal-structural 48(10):1721–1738CrossRefGoogle Scholar
  14. De Leon D, de Souza C, Fonseca J, da Silva R (2012) Aeroelastic tailoring using fiber orientation and topology optimization. Struct Multidisc Optim 46(5):663–677CrossRefGoogle Scholar
  15. Dowell E (1966) Nonlinear oscillations of a fluttering plate. AIAA J 4(7):1267–1275CrossRefGoogle Scholar
  16. Dowell E (1970) Panel flutter: a review of the aeroelastic stability of plates and shells. AIAA J 8(3):385–399CrossRefGoogle Scholar
  17. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34(5):91–110MathSciNetCrossRefGoogle Scholar
  18. Dugundji J (1966) Theoretical considerations of panel flutter at high supersonic mach numbers. AIAA J 4(7):1257–1266CrossRefGoogle Scholar
  19. Erickson L (1966) Supersonic flutter of flat rectangular orthotropic panels elastically restrained against edge rotation. NASA TN D-3500Google Scholar
  20. Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390CrossRefGoogle Scholar
  21. Foldager J, Hansen J, Olhoff N (2001) Optimization of the buckling load for composite structures taking thermal effects into account. Struct Multidisc Optim 21(1):14–31CrossRefGoogle Scholar
  22. Forster E, Yang H (1998) Flutter control of wing boxes using peizo-electric actuators. J Aircr 35(6):949–957CrossRefGoogle Scholar
  23. Fung Y (1958) On two-dimensional panel flutter. J Aeronaut Sci 25(4):145–160MATHGoogle Scholar
  24. Gao T, Zhang W (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidisc Optim 42:725–738CrossRefGoogle Scholar
  25. Garrick I (1963) A survey of aerothermoelasticity. Aero/Space Eng 22(1):140–147Google Scholar
  26. Gee D, Sipcic S (1999) Coupled thermal model for nonlinear panel flutter. AIAA J 37(5):642–650CrossRefGoogle Scholar
  27. Gomes A, Suleman A (2008) Topology optimization of a reinforced wing box for enhanced roll maneuvers. AIAA J 46(3):548–556CrossRefGoogle Scholar
  28. Greene W, Haftka R (1991) Computational aspects of sensitivity calculations in linear transient structural analysis. Struct Multidisc Anal 3(3):176–201Google Scholar
  29. Griewank A, Reddien G (1983) The calculation of Hopf points by a direct method. IMA J Numer Anal 3(1):295–303MathSciNetMATHCrossRefGoogle Scholar
  30. Haftka R (1975) Parametric constraints with application to optimization for flutter using a continuous flutter constraint. AIAA J 13:471–475MATHCrossRefGoogle Scholar
  31. Hanoaka M, Washizu K (1980) Optimum design of Beck’s column. Comput Struct 11(5):473–480CrossRefGoogle Scholar
  32. Hirano Y, Todoroki A (2004) Stacking sequence optimizations for composite laminates using fractal branch and bound method: application for supersonic panel flutter problem with buckling load condition. Adv Compos Mater 13(2):89–106CrossRefGoogle Scholar
  33. Jensen J (2007) Topology optimization of dynamics problems with padé approximants. Int J Numer Methods Eng 72:1605–1630MATHCrossRefGoogle Scholar
  34. Jensen J (2009) Space-time topology optimization for one-dimensional wave propagation. Comput Methods Appl Mech Eng 198(5):705–715MATHCrossRefGoogle Scholar
  35. Jog C (1996) Distributed-parameter optimization and topology design for nonlinear thermoelasticity. Comput Methods Appl Mech Eng 132(1):117–134MathSciNetMATHCrossRefGoogle Scholar
  36. Jog C (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(3):687–709CrossRefGoogle Scholar
  37. Kontinos D (1997) Coupled thermal analysis methods with application to metallic thermal protection panels. J Thermophys Heat Transf 11(2):173–181CrossRefGoogle Scholar
  38. Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidisc Optim 42(4):495–516CrossRefGoogle Scholar
  39. Krog L, Tucker A, Kemp M (2004) Topology optimization of aircraft wing box ribs. In: AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, NY, 30 August–1 SeptemberGoogle Scholar
  40. Langthjem M, Sugiyama Y (1999) Optimum shape design against flutter of a cantilevered column with an end-mass of finite size subjected to a non-conservative load. J Sound Vib 226(1):1–23CrossRefGoogle Scholar
  41. Lehoucq R, Sorensen D, Yang C (1998) ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, PhiladelphiaCrossRefGoogle Scholar
  42. Li Q, Steven G, Querin O, Xie Y (2000) Structural topology design with multiple thermal criteria. Eng Comput 17(6):715–734MATHCrossRefGoogle Scholar
  43. Librescu L, Marzocca P, Silva W (2004) Linear/nonlinear supersonic panel flutter in a high-temperature field. J Aircr 41(4):918–924CrossRefGoogle Scholar
  44. Livne E, Mineau D (1997) Panel flutter constraints: analytic sensitivities and approximations including planform shape design variables. J Aircr 34(4):558–568CrossRefGoogle Scholar
  45. Ma Z, Kikuchi N, Cheng H, Hagiwara I (1995) Topology optimization technique for free vibration problems. J Appl Mech 62:200–207MATHCrossRefGoogle Scholar
  46. Maalawi K (2002) Buckling optimization of flexible columns. Int J Solid Struct 39(23):5865–5876MATHCrossRefGoogle Scholar
  47. Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Methods Eng 67(12):597–628MathSciNetMATHCrossRefGoogle Scholar
  48. Manickarajah D, Xie Y, Steven G (2000) Optimisation of columns and frames against buckling. Comput Struct 75(1):45–54CrossRefGoogle Scholar
  49. Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidisc Optim 27(1):27–42CrossRefGoogle Scholar
  50. Maute K, Reich G (2006) Integrated multidisciplinary topology optimization approach to adaptive wing design. J Aircr 43(1):253–263CrossRefGoogle Scholar
  51. McNamara J, Friedmann P (2011) Aeroelastic and aerothermoelastic analysis of hypersonic flow: past, present, and future. AIAA J 49(6):1089–1122CrossRefGoogle Scholar
  52. McNamara J, Friedmann P, Powell K, Thuruthimattam B, Bartels R (2008) Aeroelastic and aerothermoelastic behavior in hypersonic flow. AIAA J 46(10):2591–2610CrossRefGoogle Scholar
  53. Mei C, Abdel-Motagaly K, Chen R (1999) Review of nonlinear panel flutter at supersonic and hypersonic speeds. Appl Mech Rev 52(10):321–332CrossRefGoogle Scholar
  54. Miller B, McNamara J, Spottswood S, Culler A (2011) The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. J Sound Vib 330(23):5736–5752CrossRefGoogle Scholar
  55. Min S, Kikuchi N, Park Y, Kim S, Chang S (1999) Optimal topology design of structures under dynamic loads. Struct Multidisc Optim 17(2):208–218CrossRefGoogle Scholar
  56. Morton S, Beran P (1999) Hopf-bifurcation analysis of airfoil flutter at transonic speeds. J Aircr 36(2):421–429CrossRefGoogle Scholar
  57. Murthy D, Haftka R (1988) Derivatives of eigenvalues and eigen-vectors of a general complex matrix. Int J Numer Methods Eng 26(2):293–311MathSciNetMATHCrossRefGoogle Scholar
  58. Nam C, Kim Y, Weisshaar T (1996) Optimal sizing and placement of piezo-actuators for active flutter suppression. Smart Mater Struct 5(2):216–224CrossRefGoogle Scholar
  59. Neves M, Rodriguez H, Guedes J (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78CrossRefGoogle Scholar
  60. Odaka Y, Furuya H (2005) Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter. Struct Multidisc Optim 30(2):437–446CrossRefGoogle Scholar
  61. Palaniappan K, Beran P, Jameson A (2006) Optimal control of LCOs in aero-structural systems. In: AIAA structures, structural dynamics, and materials conference, Newport, RI, 1–4 MayGoogle Scholar
  62. Pedersen N (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11CrossRefGoogle Scholar
  63. Peirson B (1975) Panel flutter optimization by gradient projection. Int J Numer Methods Eng 9(2):271–296CrossRefGoogle Scholar
  64. Rahmatalla S, Swan C (2003) Continuum topology optimization of buckling-sensitive structures. AIAA J 41(6):1180–1189CrossRefGoogle Scholar
  65. Reed W, Hanson P, Alford W (1987) Assessment of flutter model testing related to the national aero-space plane. NASA CN-156, 823Google Scholar
  66. Sadri A,Wright J,Wynne R (2002) LQG control design for panel flutter suppression using piezoelectric actuators. Smart Mater Struct 11(6):834–839CrossRefGoogle Scholar
  67. Schaeffer H, Heard W (1965) Flutter of a flat plate exposed to a nonlinear temperature distribution. AIAA J 3(10):1918–1923CrossRefGoogle Scholar
  68. Seresta O, Abdalla M, Mulani S, Marzocca P (2006) Stacking sequence design of flat composite panel for flutter and thermal buckling. AIAA J 44(11):2726–2735CrossRefGoogle Scholar
  69. Seyranian A, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227CrossRefGoogle Scholar
  70. Shigley J, Mishke C (2001) Mechanical engineering design. McGraw Hill, New YorkGoogle Scholar
  71. Sigmund O (2001) Design of multiphysics actuators using topology optimization—part I: one-material structures. Comput Methods Appl Mech Eng 190(49):6577–6604MATHCrossRefGoogle Scholar
  72. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(11):401–424CrossRefGoogle Scholar
  73. Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidisc Optim 38(3):301–316CrossRefGoogle Scholar
  74. Stanford B, Beran P (2011a) Conceptual design of compliant mechanisms for flapping wings with topology optimization. AIAA J 49(4):855–867CrossRefGoogle Scholar
  75. Stanford B, Beran P (2011b) Optimal structural topology of a plate-like wing for subsonic aeroelastic stability. J Aircr 48(4):1193–1203CrossRefGoogle Scholar
  76. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRefGoogle Scholar
  77. Tanaka M, Todoh M, Maetaka A (2005) Optimal allocation of piezo-electric passive dampers for a panel exposed to fluid flow: maximum critical velocity design problem. J Intell Mater Syst Struct 16(11):925–930CrossRefGoogle Scholar
  78. Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J NumerMethods Eng 54(11):1605–1622MATHCrossRefGoogle Scholar
  79. Thornton E (1992) Thermal structures: four decades of progress. J Aircr 29(3):485–498CrossRefGoogle Scholar
  80. Thornton E, Dechaumphai P (1988) Coupled flow, thermal, and structural analysis of aerodynamically heated panels. J Aircr 25(11):1052–1059CrossRefGoogle Scholar
  81. Timme S, Marques S, Badcock K (2011) Transonic aeroelastic stability analysis using a kriging-based schur complement formulation. AIAA J 49(6):1202–1213CrossRefGoogle Scholar
  82. Van Keuren G, Eastep F (1977) Use of galerkin method for minimum-weight panels with dynamic constraints. J Spacecr 14(7):414–418CrossRefGoogle Scholar
  83. Wang X, Hansen J, Oguamanam D (2004) Layout optimization of stiffeners in stiffened composite plates with thermal residual stresses. Finite Elem Anal Des 40(9):1233–1257CrossRefGoogle Scholar
  84. Weisshaar T (1972) Aeroelastic optimization for a panel in high mach number supersonic flow. J Aircr 9(9):611–617CrossRefGoogle Scholar
  85. Weisshaar T (1976) Panel flutter optimization—a refined finite element approach. Int J Numer Methods Eng 10(1):77–91MATHCrossRefGoogle Scholar
  86. Xue D, Mei C (1993) Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162MATHCrossRefGoogle Scholar
  87. Yang T, Han A (1976) Flutter of thermally buckled finite element panels. AIAA J 14(7):975–977CrossRefGoogle Scholar
  88. Yoon G (2010a) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199:1744–1763MATHCrossRefGoogle Scholar
  89. Yoon G (2010b) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng 82(5):591–616MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2013

Authors and Affiliations

  1. 1.U.S. Air Force Research Laboratory, Wright-Patterson AFBOHUSA

Personalised recommendations