Skip to main content
Log in

Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The reliability of blades is vital to the system reliability of a hydrokinetic turbine. A time-dependent reliability analysis methodology is developed for river-based composite hydrokinetic turbine blades. Coupled with the blade element momentum theory, finite element analysis is used to establish the responses (limit-state functions) for the failure indicator of the Tsai–Hill failure criterion and blade deflections. The stochastic polynomial chaos expansion method is adopted to approximate the limit-state functions. The uncertainties considered include those in river flow velocity and composite material properties. The probabilities of failure for the two failure modes are calculated by means of time-dependent reliability analysis with joint upcrossing rates. A design example for the Missouri river is studied, and the probabilities of failure are obtained for a given period of operation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allen PM, Arnold JG, Byars BW (1994) Downstream channel geometry for use in planning-level models. Water Resour Bull 30:663–671

    Article  Google Scholar 

  • Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84:75–86

    Article  Google Scholar 

  • Araújo AL, Mota Soares CM, Mota Soares CA, Herskovits J (2010) Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates. Compos Struct 92:2321–2327

    Article  Google Scholar 

  • Arora VK, Boer GJ (1999) A variable velocity flow routing algorithm for GCMs. J Geophys Res Atmos 104:30965–30979

    Article  Google Scholar 

  • Beersma JJ, Buishand TA (2004) Joint probability of precipitation and discharge deficits in the Netherlands. Water Resour Res 40:1–11

    Article  Google Scholar 

  • Blade Tidal (2011) Version 4.1, Demonstration version, GL Garrad Hassan. www.gl-garradhassan.com. Accessed 5 Sep 2011

  • Brooks DA (2011) The hydrokinetic power resource in a tidal estuary: the Kennebec River of the central Maine coast. Renewable Energ 36:1492–1501

    Article  Google Scholar 

  • Eldred MS (2009) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, art. no. 2009–2274

  • Eldred MS, Burkardt J (2009) Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, art. no. 2009–0976

  • Chen W, Tsui K-L, Allen JK, Mistree F (1995) Integration of the response surface methodology with the compromise decision support problem in developing a general robust design procedure. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE 82(1), pp 485–492

  • Chiachio M, Chiachio J, Rus G (2012) Reliability in composites—a selective review and survey of current development. Compos B Eng 43:902–913

    Article  Google Scholar 

  • Choi SK, Grandhi RV, Canfield RA (2007) Reliability-based structural design. Springer

  • Du X, Sudjianto A (2005) Reliability-based design with the mixture of random and interval variables. Trans ASME J Mech Des 127:1068–1076

    Article  Google Scholar 

  • Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. Trans ASME J Mech Des 126:562–570

    Article  Google Scholar 

  • Eamon CD, Rais-Rohani M (2009) Integrated reliability and sizing optimization of a large composite structure. Mar Struct 22:315–334

    Article  Google Scholar 

  • Engelund S, Rackwitz R, Lange C (1995) Approximations of first-passage times for differentiable processes based on higher-order threshold crossings. Probabilist Eng Mech 10:53–60

    Article  Google Scholar 

  • Ginter VJ, Pieper JK (2011) Robust gain scheduled control of a hydrokinetic turbine. IEEE Trans Contr Syst Tech 19:805–817

    Article  Google Scholar 

  • Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M (2010) Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades. J Mater Eng Perform 19:1116–1127

    Article  Google Scholar 

  • Guney MS (2011) Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renew Sustain Energ Rev 15:3669–3675

    Article  Google Scholar 

  • Hantoro R, Utama IKAP, Erwandi, Sulisetyono A (2011) An experimental investigation of passive variable-pitch vertical-axis ocean current turbine. ITB J Eng Sci 43B:27–40

    Article  Google Scholar 

  • Hu Z, Du X (2011) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidisc Optim, revision under review

  • Hu Z, Du X (2012) Reliability analysis for hydrokinetic turbine blades. Renewable Energ 48:251–262

    Article  Google Scholar 

  • Kam TY, Su HM, Wang BW (2011) Development of glass-fabric composite wind turbine blade. Adv Mater Res:2482–2485

  • Kriegesmann B, Rolfes R, Hühne C, Kling A (2011) Fast probabilistic design procedure for axially compressed composite cylinders. Compos Struct 93:3140–3149

    Google Scholar 

  • Lago LI, Ponta FL, Chen L (2010) Advances and trends in hydrokinetic turbine systems. Energ Sustain Dev 14:287–296

    Article  Google Scholar 

  • Lee CK (2008) Corrosion and wear-corrosion resistance properties of electroless Ni-P coatings on GFRP composite in wind turbine blades. Surf Coating Tech 202:4868–4874

    Article  Google Scholar 

  • Madsen PH, Krenk S (1984) An integral equation method for the first passage problem in random vibration. J Appl Mech 51:674–679

    Article  MathSciNet  MATH  Google Scholar 

  • Martin OLH (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan, Sterling

  • Mitosek HT (2000) On stochastic properties of daily river flow processes. J Hydrol 228:188–205

    Article  Google Scholar 

  • Motley MR, Young YL (2010) Reliability-based global design of self-adaptive marine rotors. In: ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010, Montreal, QC, pp 1113–1122

  • Motley MR, Young YL (2011a) Performance-based design and analysis of flexible composite propulsors. J Fluid Struct 27:1310–1325

    Article  Google Scholar 

  • Motley MR, Young YL (2011b) Influence of uncertainties on the response and reliability of self-adaptive composite rotors. Compos Struct 94:114–120

    Article  Google Scholar 

  • Mühlberg K (2010) Corrosion protection of offshore wind turbines—a challenge for the steel builder and paint applicator. JPCL 27:20–32

    Google Scholar 

  • Muste M, Yu K, Pratt T, Abraham D (2004) Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part II: fixed-vessel measurements. Flow Meas Instrum 15:17–28

    Article  Google Scholar 

  • Otache MY, Bakir M, Li Z (2008) Analysis of stochastic characteristics of the Benue River flow process. Chin J Oceanol Limnol 26:142–151

    Article  Google Scholar 

  • Pimenta RJ, Diniz SMC, Queiroz G, Fakury RH, Galvão A, Rodrigues FC (2012) Reliability-based design recommendations for composite corrugated-web beams. Probab Eng Mech 28:185–193

    Article  Google Scholar 

  • Preumont A (1985) On the peak factor of stationary Gaussian processes. J Sound Vib 100:15–34

    Article  Google Scholar 

  • Rice SO (1944) Mathematical analysis of random noise. Bell Syst Tech J 23:282–332

    MathSciNet  MATH  Google Scholar 

  • Rice SO (1945) Mathematical analysis of random noise. Bell Syst Tech J 24:146–156

    MathSciNet  Google Scholar 

  • Ronold KO, Christensen CJ (2001) Optimization of a design code for wind-turbine rotor blades in fatigue. Eng Struct 23:993–1004

    Article  Google Scholar 

  • Ronold KO, Larsen GC (2000) Reliability-based design of wind-turbine rotor blades against failure in ultimate loading. Eng Struct 22:565–574

    Article  Google Scholar 

  • Saranyasoontorn K, Manuel L (2006) Design loads for wind turbines using the environmental contour method. J Sol Energ Eng Trans ASME 128:554–561

    Article  Google Scholar 

  • Schall G, Faber MH, Rackwitz R (1991) The ergodicity assumption for sea states in the reliability estimation of offshore structures. J Offshore Mech Arctic Eng 113:241–246

    Article  Google Scholar 

  • Schulze K, Hunger M, Döll P (2005) Simulating river flow velocity on global scale. Adv Geosci 5:133–136

    Article  Google Scholar 

  • Singh A, Mourelatos Z, Li J (2010) Design for lifecycle cost using time-dependent reliability. Trans ASME J Mech Des 132:091008

    Article  Google Scholar 

  • Sudret B (2008a) Analytical derivation of the outcrossing rate in time-variant reliability problems. Struct Infrastruct Eng 4:353–362

    Article  Google Scholar 

  • Sudret B (2008b) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93:964–979

    Article  Google Scholar 

  • Toft HS, Sørensen JD (2011) Reliability-based design of wind turbine blades. Struct Saf 33:333–342

    Article  Google Scholar 

  • Val DV, Chernin L (2011) Reliability of tidal stream turbine blades. In: 11th international conference on applications of statistics and probability in civil engineering, ICASP, Zurich, pp 1817–1822

  • Vanmarcke EH (1975) On the distribution of the first-passage time for normal stationary random processes. J Appl Mech Trans ASME 42(Ser E):215–220

    Article  MATH  Google Scholar 

  • Veldkamp D (2008) A probabilistic evaluation of wind turbine fatigue design rules. Wind Energ 11:655–672

    Article  Google Scholar 

  • Wang W, Van Gelder PHAJM, Vrijling JK (2005) Long-memory in streamflow processes of the yellow river. In: IWA international conference on water economics, statistics, and finance rethymno, Greece, 8–10 July, pp 481–490

  • Yang JN, Shinozuka M (1971) On the first excursion probability in stationary narrow- band random vibration. J Appl Mech Trans ASME 38(Ser E):1017–1022

    Article  MATH  Google Scholar 

  • Young YL, Baker JW, Motley MR (2010) Reliability-based design and optimization of adaptive marine structures. Compos Struct 92:244–253

    Article  Google Scholar 

  • Zhang J, Du X (2011) Time-dependent reliability analysis for function generator mechanisms. Trans ASME J Mech Des 133

  • Zhang YX, Yang CH (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88:147–157

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the Office of Naval Research through contract ONR N000141010923 (Program Manager - Dr. Michele Anderson) and the Intelligent Systems Center at the Missouri University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Du.

Appendices

Appendix A: MCS for time-dependent reliability analysis

The MCS for time-dependent reliability analysis involves both a stochastic process (river flow discharge) and random variables. To generate samples for the stochastic process, we discretize the time interval [t 0, t s ] into N points. Then the samples of the normalized and standardized river flow discharge process D m is generated by

$$ \label{eq33} {{\bf D}}_{\bf m} ={\bf m}_{D_m } +{{\bf M}}\boldsymbol\varsigma $$
(33)

where \(\boldsymbol\varsigma =\left( {\varsigma_1 ,\varsigma_2 ,\cdots ,\varsigma_N } \right)^T\) is the vector of N independent standard normal random variables; \({\bf m}_{D_m } =( \mu_{D_m } ( {t_1 } )\), \({\mu}_{D_m } ( {t_2 } ),\cdots ,{\mu}_{D_m } ( {t_N } ) )^T\) is the vector of mean values of \({{\bf D}}_{{\bf m}} =\left( {D_m \left( {t_1 } \right),D_m \left( {t_2 } \right),\cdots ,D_m \left( {t_N } \right)} \right)^T\); and M is a lower triangular matrix obtained from the covariance matrix of D m .

Let the covariance matrix of D m at the N points be C N×N , we have

$$ \label{eq34} \,\begin{aligned}[b] &{{\bf C}}_{N\times N} \\ &\quad =\left(\, {{\footnotesize\begin{array}{*{20}c} {\rho_{D_m } \left( {t_1 ,\;t_1 } \right)} \hfill & {\rho_{D_m } \left( {t_1 ,\;t_2 } \right)} \hfill & \cdots \hfill & {\rho_{D_m } \left( {t_1 ,\;t_N } \right)} \hfill \\ {\rho_{D_m } \left( {t_2 ,\;t_1 } \right)} \hfill & {\rho_{D_m } \left( {t_2 ,\;t_2 } \right)} \hfill & \cdots \hfill & {\rho_{D_m } \left( {t_2 ,\;t_N } \right)} \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {\rho_{D_m } \left( {t_N ,\;t_1 } \right)} \hfill & {\rho_{D_m } \left( {t_N ,\;t_2 } \right)} \hfill & \cdots \hfill & {\rho_{D_m } \left( {t_N ,\;t_N } \right)} \hfill \\ \end{array} }} \,\right)_{\,\,N\times N} \end{aligned} $$
(34)

Then M can be obtained by

$$ \label{eq35} {{\bf C}}_{N\times N} ={{\bf PDP}}^{-1}={{\bf MM}}^T $$
(35)

in which D is a diagonal eigenvalue matrix of the covariance matrix C N×N , and P is the N×N square matrix whose i-th column is the i-th eigenvector of C N×N .

After samples of the stochastic process of river flow discharge are generated, they are plugged into the limit-state functions, and then the samples (trajectories) of the limit-state functions are obtained. A trajectory is traced from the initial time to the end of the time period. Once the trajectory upcrosses the limit state, then a failure occurs; and the remaining curve will not be checked anymore. The process is illustrated in Fig. 17.

Fig. 17
figure 17

A trajectory of a limit-state function

Appendix B: Computation of v ++ (t 1, t 2)

Madsen has derived the expression for \(\emph{v}^{++}(t_{1}\), t 2) as follows (Madsen and Krenk 1984)

$$ \label{eq36} \,\begin{aligned}[b] &\emph{v}^{++}\left( {t_1 ,t_2 } \right)\\ &\quad =\lambda_1 \lambda_2 f_{{\bf W}} \left( {\boldsymbol\upbeta} \right)\Psi \big( {{\big( {{\mathop{\beta}\limits^\cdot}_1 -\mu_1 } \big)} \mathord{\big/} {\lambda_1 }} \big)\Psi \big( {{\big( {{\mathop{\beta}\limits^\cdot}_2 -\mu_2 } \big)} \mathord{\big/} {\lambda_2 }} \big) \\[10pt] &\qquad +\lambda_1 \lambda_2 f_{{\bf W}} \left( {\boldsymbol\upbeta} \right)\kappa \Phi \big( {{\big( {\mu_1 -{\mathop{\beta}\limits^\cdot}_1 } \big)} \mathord{\big/} {\lambda_1 }} \big)\Phi \big( {{\big( {\mu_2 -{\mathop{\beta}\limits^\cdot}_2 } \big)} \mathord{\big/} {\lambda_2 }} \big) \\[10pt] &\qquad +\lambda_1^2 \lambda_2^2 f_{{\bf W}} \left( {\boldsymbol\upbeta} \right)\displaystyle\int_0^\kappa {\left( {\kappa -K} \right)f_{\ddot{\bf W} \big|{{\bf W}}} \big( { {\mathop{\boldsymbol\upbeta}\limits^\cdot } \big|\boldsymbol\upbeta ;K} \big)} dK \end{aligned} $$
(36)

in which

$$ \label{eq37} \,\begin{aligned}[b] f_{{\bf W}} \left(\boldsymbol\upbeta\right)={}& \big\{ {\exp \big[ {{\big( {\beta _1^2 -2\rho \beta_1 \beta_2 +\beta_2^2 } \big)} \mathord{\big/} {\big( {2-2\rho^2} \big)}} \big]} \big\} \\ & \mathord{\big/} {\big( {2\pi \sqrt {1-\rho^2} } \big)} \end{aligned} $$
(37)

\(\boldsymbol\upbeta=[\beta_{1}, \beta_{2}]\) represents the time-invariant reliability index at time t 1 and t 2. μ 1 and μ 2, and λ 1 and λ 2, κ are the mean values, standard deviations, and correlation coefficient of \(\left. {\dot{\bf L} \left( {t_1 } \right)} \right| \boldsymbol\upbeta \) and \(\left. {\dot{\bf L}\left( {t_2 } \right)} \right| \boldsymbol\upbeta \), respectively. They are calculated by the following equations (Hu and Du 2011):

$$ \label{eq38} \,\begin{aligned}[b] \mu &=\left[\, {{\begin{array}{*{20}c} {\mu_1 } \hfill \\ {\mu_2 } \hfill \\ \end{array} }} \,\right]={{\bf c}}_{\dot{\bf L}\bf L} {{\bf c}}_{{{\bf LL}}}^{-1}\boldsymbol\upbeta\\ &={\left[\, {{\begin{array}{*{20}c} {\left( {\beta_2 -\rho \beta_1 } \right)\rho_1 } \hfill \\ {\left( {\beta_1 -\rho \beta_2 } \right)\rho_2 } \hfill \\ \end{array} }}\, \right]} \mathord{\big/} {\big( {1-\rho^2}\big)} \end{aligned} $$
(38)
$$ \label{eq39} \,\begin{aligned}[b] \sum &= \,{{\bf c}}_{_{\left. {\dot{\bf L}} \right|{{\bf L}}} } ={{\bf c}}_{{\dot{\bf L}} {\dot{\bf L}}} -{{\bf c}}_{{\dot{\bf L}} {{\bf L}}} {{\bf c}}_{{{\bf LL}}}^{-1} {{\bf c}}_{{{\bf L}}{\dot{\bf L}}} \\ &=\left[\, {{\begin{array}{*{20}c} {\lambda_1^2 } \hfill & {\kappa \lambda_1 \lambda_2 } \hfill \\ {\kappa \lambda_1 \lambda_2 } \hfill & {\lambda_2^2 } \hfill \\ \end{array} }} \,\right] \end{aligned} $$
(39)

where

$$ \label{eq40} \left[ {{\begin{array}{*{20}c} {{{\bf c}}_{{\dot{\bf L}} {\dot{\bf L}}}} \hfill & {{{\bf c}}_{{\dot{\bf L}} {{\bf L}}} } \hfill\\ {{{\bf c}}_{{{\bf L}}{\dot{\bf L}}}} \hfill & {{{\bf c}}_{{{\bf LL}}} } \hfill \\ \end{array} }} \right]=\left[ {{\begin{array}{*{20}c} {\omega^2\left( {t_1 } \right)} \hfill & {\rho_{12} } \hfill & 0 \hfill &{\rho_1 } \hfill \\ {\rho_{21} } \hfill & {\omega^2\left( {t_2 } \right)} \hfill & {\rho_2 }\hfill & 0 \hfill \\ 0 \hfill & {\rho_2 } \hfill & 1 \hfill & \rho \hfill \\ {\rho_1 } \hfill & 0 \hfill & \rho \hfill & 1 \hfill \\ \end{array} }} \right] $$
(40)
$$ \label{eq41} \,\begin{aligned}[b] \rho_1 &=\mathop{\boldsymbol\upalpha}\limits^\cdot \left( {t_1 } \right){{\bf C}}\left( {t_1 ,t_2 } \right)\boldsymbol\upalpha^T\left( {t_2 } \right)\\ &\quad +\boldsymbol\upalpha \left( {t_1 } \right){\dot{\bf C}}_1 \left( {t_1 ,t_2 } \right)\boldsymbol\upalpha ^T\left( {t_2 } \right) \end{aligned} $$
(41)
$$ \label{eq42} \,\begin{aligned}[b] \rho_2 &=\boldsymbol\upalpha \left( {t_1 } \right){{\bf C}}\left( {t_1 ,t_2 } \right){\mathop{\boldsymbol\upalpha}\limits^\cdot}^T\left( {t_2 } \right)\\ &\quad + \boldsymbol\upalpha\left( {t_1 } \right){\dot{\bf C}}_2 \left( {t_1 ,t_2 } \right)\boldsymbol\upalpha ^T\left( {t_2 } \right) \end{aligned} $$
(42)
$$ \label{eq43} \,\begin{aligned}[b] \rho_{12} &=\mathop{\boldsymbol\upalpha}\limits^\cdot \left( {t_1 } \right){\dot{\bf C}}_2 \left( {t_1 ,t_2 } \right) {\boldsymbol\upalpha}^T\left( {t_2 } \right)+\mathop{{\boldsymbol\upalpha}}\limits^\cdot \left( {t_1 } \right){{\bf C}}\left( {t_1 ,t_2 } \right){\mathop{{\boldsymbol\upalpha}}\limits^\cdot}^T\left( {t_2 } \right) \\ &\quad + {\boldsymbol\upalpha} \left( {t_1 } \right){\ddot{\bf C}}_{12} \left( {t_1 ,\,t_2 } \right){\boldsymbol\upalpha}^T\left( {t_2 } \right)\\ &\quad + {\boldsymbol\upalpha} \left( {t_1 } \right){\dot{\bf C}}_1 \left( {t_1 ,\,t_2 } \right){\mathop{{\boldsymbol\upalpha}}\limits^\cdot}^T\left( {t_2 } \right) \end{aligned} $$
(43)
$$ \label{eq44} \,\begin{aligned}[b] \rho_{21} &=\mathop{\boldsymbol\upalpha}\limits^\cdot \left( {t_1 } \right){{\bf C}}\left( {t_1 ,t_2 } \right){\mathop{\boldsymbol\upalpha}\limits^\cdot}^T\left( {t_2 } \right)+{\boldsymbol\upalpha} \left( {t_1 } \right){\dot{\bf C}}_1 \left( {t_1 ,t_2 } \right){\mathop{\boldsymbol\upalpha}\limits^\cdot}^T\left( {t_2 } \right) \\ &\quad + {\boldsymbol\upalpha} \left( {t_1 } \right){\ddot{\bf C}}_{21} \left( {t_1 ,t_2 } \right){\boldsymbol\upalpha}^T\left( {t_2 } \right)\\ &\quad +\mathop{\boldsymbol\upalpha}\limits^\cdot \left( {t_1 } \right){\dot{\bf C}}_2 \left( {t_1 ,t_2 } \right){\boldsymbol\upalpha}^T\left( {t_2 } \right) \end{aligned} $$
(44)
$$ \label{eq45} \,\begin{aligned}[b] &{{\bf C}}\left( {t_1 ,t_2 } \right)\\ &\quad =\left[ {{\footnotesize\begin{array}{*{20}c} {{\bf 1}} \hfill & {{\bf 0}} \hfill & \cdots \hfill & {{\bf 0}} \hfill \\ {{\bf 0}} \hfill & {\rho^{Y_1 }\left( {t_1 ,t_2 } \right)} \hfill &\cdots \hfill & 0 \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {{\bf 0}} \hfill & 0 \hfill & \cdots \hfill & {\rho^{Y_m }\left( {t_1 ,t_2 } \right)} \hfill \\ \end{array} }} \right]_{\left( {n+m} \right)\times \left( {n+m} \right)} \end{aligned} $$
(45)

and

$$ \label{eq46} \,\begin{aligned}[b] &{\dot{\bf C}}_j \left( {t_1 ,t_2 } \right) \\ &\quad = {\partial {{\bf C}}\left( {t_1 ,t_2 } \right)} \mathord{\left/ {\vphantom {{\partial {{\bf C}}\left( {t_1 ,t_2 } \right)} {\partial t_j }}} \right. \kern-\nulldelimiterspace} {\partial t_j } \\ &\quad = \left[ {{\footnotesize\begin{array}{*{20}c} {{\bf 0}} \hfill & {{\bf 0}} \hfill & \cdots \hfill & {{\bf 0}} \hfill \\ {{\bf 0}} \hfill & {\dfrac{\partial \rho^{Y_1 }\left( {t_1 ,t_2 } \right)}{\partial t_j }} \hfill & \cdots \hfill & 0 \hfill \\ \vdots \hfill & \vdots \hfill & \ddots \hfill & \vdots \hfill \\ {{\bf 0}} \hfill & 0 \hfill & \cdots \hfill & {\dfrac{\partial \rho ^{Y_m }\left( {t_1 ,t_2 } \right)}{\partial t_j }} \hfill \\ \end{array} }} \right]_{\left( {n+m} \right)\times \left( {n+m} \right)} ,\\ &\qquad j=1,\;2 \end{aligned} $$
(46)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Li, H., Du, X. et al. Simulation-based time-dependent reliability analysis for composite hydrokinetic turbine blades. Struct Multidisc Optim 47, 765–781 (2013). https://doi.org/10.1007/s00158-012-0839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0839-8

Keywords

Navigation