Skip to main content
Log in

Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Despite the rapid growth of computing power and continuing advancements in numerical techniques, significant complexity exists when applying traditional sensitivity based optimization to such highly nonlinear problems as crashworthiness design. As a major alternative, surrogate modeling techniques have proven considerably effective. However the challenge remains how to determine the most suitable surrogate scheme for modeling nonlinear responses and conducting optimization. This paper presents a comparative study on the different surrogate models, such as polynomial response surface (PRS), Kriging (KRG), support vector regression (SVR) and radial basis function (RBF), which have been widely used for a variety of engineering problems, thereby gaining insights into their relative performance and features in computational modeling and design. In this study, a foam-filled tapered thin-walled structure is exemplified. Both the gradient and non-gradient algorithms, specifically sequential quadratic programming (SQP) and particle swarm optimization (PSO), are used for these abovementioned four surrogate models, respectively. The design results demonstrate that simultaneous use of different surrogate models can be essential for both gradient and non-gradient optimization algorithms because they may generate different outcomes in the crashworthiness design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramowicz W, Jones N (1986) Dynamic progressive buckling of circular and square tubes. Int J Impact Eng 4(4):243–270

    Article  Google Scholar 

  • Acar E, Guler MA, Gerceker B, Cerit ME, Bayram B (2011) Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations. Thin-Walled Struct 49(1):94–105

    Article  Google Scholar 

  • Ahmad Z, Thambiratnam DP (2009a) Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Comput Struct 87(3–4):186–197

    Article  Google Scholar 

  • Ahmad Z, Thambiratnam DP (2009b) Crushing response of foam-filled conical tubes under quasi-static axial loading. Mater Des 30(7):2393–2403

    Article  Google Scholar 

  • Ahmad Z, Thambiratnam DP, Tan ACC (2010) Dynamic energy absorption characteristic of foam-filled conical tubes under oblique impact loading. Int J Impact Eng 37(5):475–488

    Article  Google Scholar 

  • Alghamdi AAA (2002) Reinversion of aluminium frustra. Thin-Walled Struct 40(12):1037–1049

    Article  Google Scholar 

  • Bi J, Fang HB, Wang Q, Ren XC (2010) Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs. Finite Elem Anal Des 46(9):698–709

    Article  Google Scholar 

  • Borvik T, Hopperstad OS, Reyes A, Langseth M, Solomos G, Dyngeland T (2003) Empty and foam-filled circular aluminium tubes subjected to axial and oblique quasi-static loading. Int J Crashworthiness 8(3):481–494

    Article  Google Scholar 

  • Deshpande VS, Fleck NA (2000) Isotropic constitutive models for metallic foams. J Mech Phys Solids 48(6–7):1253–1283

    Article  MATH  Google Scholar 

  • Guler MA, Cerit ME, Bayram B, Gerceker B, Karakaya E (2010) The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. Int J Crashworthiness 15(4):377–390

    Article  Google Scholar 

  • Gutmann HM (2001) A radial basis function method for global optimization. J Glob Optim 19(3):201–227

    Article  MathSciNet  MATH  Google Scholar 

  • Hanssen AG, Hopperstad OS, Langseth M, IIstad H (2002) Validation of constitutive models applicable to aluminium foams. Int J Mech Sci 44(2):359–406

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2009) Crashworthiness design for foam filled thin-wall structures. Mater Des 30:2024–2032

    Article  Google Scholar 

  • Hou SJ, Han X, Sun GY, Long SY, Yang XJ, Li W, Li Q (2011) Multiobjective optimization for tapered circular tubes. Thin-Walled Struct 49(7):855–863

    Article  Google Scholar 

  • Hussain MF, Barton RR, Joshi SB (2002) Metamodeling: radial basis functions, versus polynomials. Eur J Oper Res 138(1):142–154

    Article  MATH  Google Scholar 

  • Jin R, Chen W, Simpson, TW (2001) Comparative studies of metamodeling techniques under multiple modelling criteria. Struct Multidisc Optim 23(1):1–13

    Article  Google Scholar 

  • Kaya N, Ozturk F (2010) Multi-objective crashworthiness design optimization of thin-walled tubes. Int J Veh Des 52(1–4):54–63

    Article  Google Scholar 

  • Kim HS (2002) New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin-Walled Struct 40(4):311–327

    Article  Google Scholar 

  • Lanzi L, Castelletti LML, Anghileri M (2004) Multi-objective optimization of composite absorber shape under crashworthiness requirements. Compos Struct 65(3–4):433–441

    Article  Google Scholar 

  • Lee KH, Kang DH (2007) Structural optimization of an automotive door using the kriging interpolation method. J Automob Eng 221(12):1525–1534

    Article  Google Scholar 

  • Liao XT, Li Q, Yang XJ, Zhang WG, Li W (2008a) Multiobjective optimization for crash safety design of vehicle using stepwise regression model. Struct Multidisc Optim 35(6):561–569

    Article  Google Scholar 

  • Liao XT, Li Q, Yang XJ, Li W, Zhang WG (2008b) Two-Stage multiobjective optimization of vehicle crashworthiness under frontal impact. Int J Crashworthiness 13(3):279–288

    Article  Google Scholar 

  • Liu YC (2008) Crashworthiness design of multi-corner thin-walled columns. Thin-Walled Struct 46(12):1329–1337

    Article  Google Scholar 

  • Mamalis AG, Manolakos DE, Ioannidis MB, Spentzas KN, Koutroubakis S (2008) Static axial collapse of foam-filled steel thin-walled rectangular tubes: experimental and numerical simulation. Int J Crashworthiness 13(2):117–126

    Article  Google Scholar 

  • Marzbanrad J, Ebrahimi MR (2011) Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Struct 49(12):1605–1615

    Article  Google Scholar 

  • Mirfendereski L, Salimi M, Ziaei-Rad S (2008) Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. Int J Mech Sci 50(6):1042–1057

    Article  Google Scholar 

  • Mullur AA, Messac A (2006) Metamodeling using extended radial basis functions: a comparative approach. Engineering with Computers 21(3):203–217

    Article  Google Scholar 

  • Myers RH, Montgomery DC (1995) Response Surface methodology: process and product optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  • Nagel GM, Thambiratnam DP (2004a) Dynamic simulation and energy absorption of tapered tubes under impact loading. International Journal of Crashworthiness 9(4):389–399

    Article  Google Scholar 

  • Nagel GM, Thambiratnam DP (2004b) A numerical study on the impact response and energy absorption of tapered thin-walled tubes. International Journal of Mechanical Science 46(2):201–206

    Article  Google Scholar 

  • Olsson A, Sandberg G, Dahlblom O (2003) On latin hypercube sampling for structural reliability analysis. Struct Saf 25(1):47–68

    Article  Google Scholar 

  • Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box Functions using radial basis functions. J Glob Optim 31(1):153–171

    Article  MathSciNet  MATH  Google Scholar 

  • Reyes A, Hopperstad OS, Berstad T, Hanssen AG, Langseth M (2003) Constitutive modeling of aluminum foam including fracture and statistical variation of density. European Journal of Mechanics A-Solid, 22(6):815–835

    Article  MATH  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  MATH  Google Scholar 

  • Santosa SP, Wierzbicki T, Hanssen AG (2000) Experimental and numerical studies of foam-filled sections. International Journal of Impacting Engineering 24(5):509–534

    Article  Google Scholar 

  • Seitzberger M, Rammerstorfer FG, Degischer HP, Gradinger R (1997) Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mechanica 125(1–4):93–105

    Article  MATH  Google Scholar 

  • Simpson TW, Booker AJ, Ghosh D, Giunta AA, Koch PN, Yang RJ (2004) Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct Multidisc Optim 27(5):302–313

    Article  Google Scholar 

  • Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  • Song XG, Jung JH, Son HJ, Park JH, Lee KH, Park YC (2010) Metamodel-based optimization of a control arm considering strength and durability performance. Comput Math Appl 60(4):976–980

    Article  MATH  Google Scholar 

  • Sun GY, Li GY, Gong ZH, Cui XY, Yang XJ, Li Q (2010a) Multiobjective robust optimization method for drawbead design in sheet metal forming. Materials & Design 31(4):1917–1929

    Article  Google Scholar 

  • Sun GY, Li GY, Hou SJ, Zhou SW, Li W, Li Q (2010b) Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Eng A 527(7–8):1911–1919

    Google Scholar 

  • Sun GY, Li GY, Stone M, Li Q (2010c) A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci 49(3):500–511

    Article  Google Scholar 

  • Sun GY, Li GY, Gong ZH, He GQ, Li Q (2011) Radial basis functional model for multiobjective sheet metal forming optimization. Eng Optim 12(43):1351–1366

    Article  MathSciNet  Google Scholar 

  • Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidisc Optim 39(4):439–457

    Article  Google Scholar 

  • Wang H, Li EY, Li GY (2011) Probability-based least square support vector regression metamodeling technique for crashworthiness optimization problems. Comput Mech 47(3):251–263

    Article  MATH  Google Scholar 

  • Yang RJ, Gu L (2004) Experience with approximate reliability-based optimization methods. Struct Multidisc Optim 26(1–2):152–159

    Article  MathSciNet  Google Scholar 

  • Yang RJ, Akkerman A, Anderson DF, Faruque OM, Gu L (2000) Robustness optimization for vehicular crash simulations. Comput Sci Eng 2(6):8–13

    Article  Google Scholar 

  • Yang RJ, Chuang C, Gu L, Li G (2005a) Experience with approximate reliability-based optimization method II: an exhaust system problem. Struct Multidisc Optim 29(6):488–497

    Article  Google Scholar 

  • Yang RJ, Wang N, Tho CH, Bohineau JP, Wang BP (2005b) Metamodeling development for vehicle frontal impact simulation. J Mech Des 127(5):1014–1020

    Article  Google Scholar 

  • Zhao D, Xue DY (2010) A comparative study of metamodeling methods considering sample quality merits. Struct Multidisc Optim 42(6):923–938

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported from National 973 Project of China (2010CB328005), The Open Fund of Key Laboratory for Automotive Transportation Safety Enhancement Technology of the Ministry of Communication, PRC (CHD2011SY008), The Open Fund of The State Key Laboratory of Vehicle NVH and Safety Technology (NVHSKL-201002), The Open Fund of the Key Laboratory of Manufacture and Test Techniques for Automobile Parts (Chongqing University of Technology), Ministry of Education (2011KLMT06), The Open Fund of the State Key Laboratory of Automotive Simulation and Control (20111113) and Research Funds from Dong-A University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Sun, G., Li, G. et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidisc Optim 47, 221–231 (2013). https://doi.org/10.1007/s00158-012-0820-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0820-6

Keywords

Navigation