Skip to main content

A survey of multidisciplinary design optimization methods in launch vehicle design

Abstract

Optimal design of launch vehicles is a complex problem which requires the use of specific techniques called Multidisciplinary Design Optimization (MDO) methods. MDO methodologies are applied in various domains and are an interesting strategy to solve such an optimization problem. This paper surveys the different MDO methods and their applications to launch vehicle design. The paper is focused on the analysis of the launch vehicle design problem and brings out the advantages and the drawbacks of the main MDO methods in this specific problem. Some characteristics such as the robustness, the calculation costs, the flexibility, the convergence speed or the implementation difficulty are considered in order to determine the methods which are the most appropriate in the launch vehicle design framework. From this analysis, several ways of improvement of the MDO methods are proposed to take into account the specificities of the launch vehicle design problem in order to improve the efficiency of the optimization process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

AAO:

All At Once

ATC:

Analytical Target Cascading

BLISS:

Bi-Level System Synthesis

CO:

Collaborative Optimization

CSSO:

Concurrent SubSpace Optimization

DIVE:

Discipline Interaction Variable Elimination

DyLeaf:

Dynamic Leader Follower

ELV:

Expendable Launch Vehicle

FPI:

Fixed Point Iteration

GA:

Genetic Algorithm

GAGGS:

Genetic Algorithm Guided Gradient Search

GLOW:

Gross Lift-Off Weight

GSE:

Global Sensitivity Equation

IDF:

Individual Discipline Feasible

LDC:

Local Distributed Criteria

MCO:

Modified Collaborative Optimization

MDA:

Muldisciplinary Design Analysis

MDF:

Multi Discipline Feasible

MDO:

Multidisciplinary Design Optimization

MOPCSSO:

Multi-Objective Pareto CSSO

MSTO:

Multi-Stage To Orbit

NAND:

Nested Analysis and Design

OBD:

Optimization Based Decomposition

RLV:

Reusable Launch Vehicle

RSM:

Response Surface Method

SAND:

Simultaneous Analysis and Design

SQP:

Sequential Quadratic Programming

SNN:

Single NAND NAND

SSA:

System Sensitivity Analysis

SSN:

Single SAND NAND

SSS:

Single SAND SAND

SSTO:

Single Stage To Orbit

References

  • Agte J (2005) A tool for application of bi-level integrated system synthesis to multidisciplinary design optimization problems. In: DGLR-2005-241, German air and space congress, Friedrichshafen, Germany

  • Agte J, de Weck O, Sobieszczanski-Sobieski J, Arendsen P, Morris A, Spieck M (2009) MDO: assessment and direction for advancement—an opinion of one international group. Struct Multidisc Optim. doi:10.1007/s00158-009-0381-5

    Google Scholar 

  • Akhtar S, Linshu H (2005) Simulation-based optimization strategy for liquid fueled multi-stage space launch vehicle. In: 6th international conference on parallel and distributed computing, applications and technologies (PDCAT’05). Dalian, China

  • Akhtar S, Linshu H (2006) Support vector regression-driven multidisciplinary design optimization for multi-stage launch vehicle considering throttling effect. In: 44th AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Alaya I, Solnon C, Ghedira K (2007) Ant colony optimization for multi-objective optimization problems. In: 19th IEEE international conference on tools with artificial intelligence. Patras, Greece

  • Alexandrov N, Hussaini M (1995) Multidisciplinary design optimization: state of the art. In: Proceedings of the ICASE/NASA Langley workshop on multidisciplinary design optimization, SIAM proceedings series

  • Alexandrov N, Lewis R (2000) Algorithmic perspectives on problem formulations in MDO. In: 8th AIAA/UASAF/NASA/ISSMO symposium on multidisciplinary analysis & optimization. Long Beach, CA, USA

  • Allison J (2004) Complex system optimization: a comparison of analytical target cascading, collaborative optimization and other formulations. Ph.D. thesis, University of Michigan, USA

  • Allison J, Kokkolaras M, Zawislak M, Papalambros P (2005) On the use of analytical target cascading and collaborative optimization for complex system design. In: 6th world congress on structural and multidisciplinary optimization, 30 May–3 June, Rio de Janeiro, Brazil

  • Altus T (2002) A response surface methodology for Bi-Level Integrated System Synthesis (BLISS). NASA Technical Report n° NASA/CR-2002-211652. NASA Langley Research Center, USA

  • Auroux D, Clément J, Hermetz J, Masmoudi M, Parte Y (2009) Etat de l’art et nouvelles tendances en conception collaborative. Optimisation multidisciplinaire en mécanique. Hermes Science, ISTE Wiley, London

  • Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Balesdent M, Bérend N, Dépincé P (2010a) Optimal design of expendable lauch vehicles using stage-wise MDO formulation. In: 13th AIAA/ISSMO multidisciplinary analysis and optimization conference. Fort Worth, Texas, USA. AIAA-2010-9324

  • Balesdent M, Bérend N, Dépincé P, Chriette A (2010b) Multidisciplinary design optimization of a multi-stage launch vehicle using flight phases decomposition. In: 3rd international conference on multidisciplinary design optimization and applications. Paris, France

  • Balling R, Sobieszczanski-Sobieski J (1994) Optimization of coupled systems: a critical overview of approaches. NASA/ICASE Report n° 94-100

  • Balling R, Wilkinson C (1997) Execution of multidisciplinary design optimization approaches on common test problems. AIAA J 35(1):178–186

    MATH  Article  Google Scholar 

  • Bayley D, Hartfield R (2007) Design optimization of space launch vehicles for minimum cost using a genetic algorithm. In: 43rd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. Cincinnati, OH, USA. AIAA-2007-5852

  • Bayley D, Hartfield R, Burkhalter J, Jenkins R (2008) Design optimization of a space launch vehicle using a genetic algorithm. J Spacecr Rockets 45(4):733–740

    Article  Google Scholar 

  • Betts J (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dyn 21(2):193–207

    MATH  Article  Google Scholar 

  • Boman E (1999). Infeasibility and negative curvature in optimization. Ph.D. thesis, Stanford University, USA

  • Braun R (1996) Collaborative optimization: an architecture for large-scale distributed design. Ph.D. thesis, Stanford University, USA

  • Braun R, Kroo I (1995) Development and application of the collaborative optimization architecture in a multidisciplinary design environment. In: Multidisciplinary design optimization: state of the art. SIAM, Philadelphia, pp 98–116

    Google Scholar 

  • Braun R, Kroo I, Gage P (1993) Post-optimality analysis in aerospace vehicle design. In: AIAA aircraft design, systems and operations meeting. Monterey, CA, USA

  • Braun R, Kroo I, Lepsch R, Powell R, Stanley D (1995) Comparison of two multidisciplinary optimization strategies for launch vehicle design. J Spacecr Rockets 32(3):404–410

    Article  Google Scholar 

  • Braun R, Moore A, Kroo I (1996) Use of the collaborative optimization architecture for launch vehicle design. In: 6th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. Bellevue, WA, USA

  • Briggs G, Ray T, Milthorpe J (2007a). Evolutionary algorithm use in optimisation of a launch vehicle stack model. In: 45th AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA. AIAA-2007-364

  • Briggs G, Ray T, Milthorpe J (2007b) Optimal design of an Australian medium launch vehicle. Innov Syst Softw Eng 2(3):105–116

    Article  Google Scholar 

  • Brown N, Olds J (2005) Evaluation of Multidisciplinary Optimization (MDO) techniques applied to a reusable launch vehicle. In: 43rd AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Brown N, Olds R (2006) Evaluation of multidisciplinary optimization techniques applied to a reusable launch vehicle. J Spacecr Rockets 43:1289–1300

    Article  Google Scholar 

  • Bryson A (1999) Dynamic optimization. Addison-Wesley, Menlo-Park

    Google Scholar 

  • Bryson A, Ho Y-C (1975) Applied optimal control: optimization, estimation and control, revised printing. Taylor & Francis, Levittown

    Google Scholar 

  • Castellini F, Lavagna M, Erf S (2008) Concurrent optimization of launcher architectures and ascent trajectories with global optimization algorithms. In: 59th international astronautical congress (IAC). Glasgow, Scotland

    Google Scholar 

  • Clément J (2009) Optimisation multi-disciplinaire: étude théorique et application à la conception des avions en phase d’avant projet. Ph.D. thesis, Institut Supérieur de l’Aéronautique et de l’Espace. Toulouse, France

  • Coello C (1998) An updated survey of GA-based multi-objective optimization techniques. Technical Report RD-98-08. Laboratorio Nacional de Informatica Avanzada (LNIA). Xalapa, Veracruz, Mexico

  • Coello C (1999) A comprehensive survey of evolutionary-based multi-objective optimization. Knowl Inf Syst 1(3):129–137

    Google Scholar 

  • Cormier T, Scott A, Ledsinger L, McCormick D, Way D, Olds R (2000) Comparison of collaborative optimization to conventional design techniques for a conceptual RLV. In: 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. Long Beach, CA, USA

  • Cramer E, Dennis J, Frank P, Lewis R, Shubin G (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4:754–776

    MathSciNet  MATH  Article  Google Scholar 

  • Delattre N, Mongrard O (2007) The use of multidisciplinary optimization for the design of expendable launchers. In: 2nd European conference for aerospace sciences (EUCASS). Brussels, Belgium

  • DeMiguel A (2001) Two decomposition algorithms for nonconvex optimization problems with global variables. Ph.D. thesis, Stanford University, USA

  • DeMiguel A, Murray W (2000) An analysis of collaborative optimization methods. In: 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. Long Beach, CA, USA

  • Doerner K, Gutjahr W, Hartl W, Strauss R, Stummer C (2001) Ant colony optimization in multiobjective porfolio selection. In: 4th metaheuristics international conference. Porto, Portugal

  • Dorigo M, Süzle T (2004) Ant colony optimization. MIT Press, Cambridge

    MATH  Book  Google Scholar 

  • Du X, Chen W (2002) Efficient uncertainty analysis methods for multidisciplinary robust design. AIAA J 40(3):545–552

    Article  Google Scholar 

  • Duranté N, Dufour A, Pain V (2004) Multidisciplinary analysis and optimisation approach for the design of expendable launchers. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference. Albany, New-York, USA

    Google Scholar 

  • Filatyev A, Golikov A (2008) The complex approach to optimization of STS parameters on the maximum principle basis. In: 59th international astronautical congress (IAC). Glasgow, Scotland

    Google Scholar 

  • Filatyev A, Golikov A, Shanygin A, Voityshen V (2009) The local distributed criteria method for multidisciplinary optimization of launchers parameters. Acta Astron 65:584–590

    Article  Google Scholar 

  • Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Fonseca C, Fleming P (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Forrest S (ed) 5th international conference on genetic algorithms. San Mateo, CA, USA

  • Gang C, Min X, Zi-ming W, Si-Lu C (2005) Multidisciplinary design optimization of RLV reentry trajectory. In: 13th AIAA/CIRA international space planes and hypersonices systems and technologies. Capua, Italy

  • Geethaikrishnan C, Mujumbar P, Sudhakar K, Adimurthy VV (2008) Genetic algorithm guided gradient search for launch vehicle trajectory optimization. In: International conference on aerospace science and technology. Bangalore, India

  • Gill P, Murray W, Wright M (1981) Practical optimization. Academic, New York

    MATH  Google Scholar 

  • Gill P, Murray W, Sainders M, Wright M (1986) Users guide for NPSOL (version 4.0): a Fortran package for nonlinear programming. Technical Report SOL 86-2. Stanford University, USA

  • Han J, Papalambros P (2010) A note on the convergence of analytical target cascading with infinite norms. J Mech Des 132:034502

    Article  Google Scholar 

  • Hargraves C, Paris S (1987) Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn 10(4):338–342

    MATH  Article  Google Scholar 

  • Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Huang C, Bloebaum C (2004) Multi-objective Pareto concurrent subspace optimization for multidisciplinary design. In: 42nd AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Jodei J, Ebrahimi M, Roshanian J (2006) An automated approach to multidisciplinary system design optimization of small solid propellant launch vehicles. In: 1st ISSCAA international symposium on systems and control in aerospace and astronautics. Harbin, China

  • Jodei J, Ebrahimi M, Roshanian J (2009) Multidisciplinary design optimization of a small solid propellant launch vehicle using system sensitivity analysis. Struct Multidisc Optim 38:93–100

    Article  Google Scholar 

  • Kalden O (2007) Multidisciplinary design and trajectory optimization of the reusable launch vehicle concept Hopper. In: 3rd international conference on recent advances in space technologies. Istanbul, Turkey

  • Keane A, Nair P (2005) Computational approaches for aerospace design: the pursuit of excellence. Wiley, New York

    Book  Google Scholar 

  • Kim H (2001) Target cascading in optimal system design. Ph.D. thesis, University of Michigan

  • Kim H, Chen W, Wiecek M (2006) Lagrangian coordination for enhancing the convergence of analytical target cascading. AIAA J 44(10):2197–2207

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi J (1983) Optimization by simulated annealing. Science, New Series 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  • Kodiyalam S (1998) Evaluation of methods for Multidisciplinary Design Optimization (MDO), phase 1. NASA/CR-1998-20716

  • Kodiyalam S (2000) Evaluation of methods for Multidisciplinary Design optimization (MDO), phase 2. NASA/CR-2000-210313

  • Kroo I (2004) Distributed multidisciplinary design and collaborative optimization. In: VKI lecture series on optimization methods and tools for multicriteria/multidisciplinary design

  • Kudryavtsev L (2001) Implicit function. In: Hazewinkel M ed. Encyclopaedia of mathematics. Springer, New York

    Google Scholar 

  • Kuratani N, Suzuki H, Goeklich RA (2005) Multidisciplinary optimization of space transportation systems. In: 56th international astronautical congress of the international astronautical federation. Fukuoka, Japan

  • Laurent-Varin J, Bolanowski O, Cristiani E, Zidani H (2009) Trajectory optimization of launcher with Hamilton–Jacobi–Bellman approach. In: 3rd European conference for aerospace sciences. Versailles, France

  • Ledsinger L, Olds J (2002) Optimized solutions for Kistler K-1 Branching Trajectories using Multidisciplinary Design Optimization techniques. J Spacecr Rockets 39(3):420–429

    Article  Google Scholar 

  • Lee J-W, Choi Y-C, Byun Y-H (2005a). Optimal supersonic air-launching rocket design using multi-disciplinary system optimization approach. J Korean Soc Aeronaut Space Sci 33:12

    Google Scholar 

  • Lee J-W, Jeon K-S, Byun Y-H, Kim S-J (2005b) Optimal space launcher design using a refined response surface method. In: Lecture notes in computer science, vol 3613/2005. Springer, Berlin

    Google Scholar 

  • Liu X, Xiang A, Gang T (1997) A new efficient method of multi-stage solid rocket optimization. In: 33rd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. Seattle, WA, USA

  • Luo Y, Liang Y, Zhou L (2004) Multi-level, multi-objective and multidisciplinary optimization design of a series of launch vehicles. In: 55th international astronautical congress. Vancouver, Canada

  • Martins J, Marriage C (2007) An object-oriented framework for Multidisciplinary Design Optimization. In: 3rd AIAA multidisciplinary design optimization specialist conference. Waikiki, Hawaii, USA

  • Masmoudi M, Parte Y (2006) Discipline Interaction Variable Elimination (DIVE) approach for MDO. In: European conference on computational fluid dynamics (ECCOMAS CFD). Egmond aan Zee, The Netherlands

  • Masmoudi M, Parte Y, Hermetz J, Clement J (2008) DIVE: a new approach for multidisciplinary optimization. In: 5th European congress on computational methods in applied sciences (ECCOMAS). Venice, Italy

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Michelena N, Kim H, Papalambros P (1999) A system partitioning and optimization approach to target cascading. In: Proceedings of the 12th international conference on engineering design. Munich, Germany

  • Michelena N, Park H, Papalambros P (2003) Convergence properties of analytical target cascading. AIAA J 41(5):897–905

    Article  Google Scholar 

  • Moore A, Braun R, Powell R (1995) Optimal technology investment strategies for a reusable launch vehicle. In: AIAA space programs and technologies conference. Huntsville, AL, USA

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Olds J (1992) The suitability of selected multidisciplinary design and optimization techniques to conceptual aerospace vehicle design. In: 4th AIAA/USAF/NASA/OAI symposium on multidisiciplinary analysis and optimization. Cleveland, OH, USA

  • Olds J (1994) System sensitivity analysis applied to the conceptual design of a dual-fuel rocket SSTO. In: 5th AIAA/NASA/USAF/ISSMO symposium on multidisciplinary analysis and optimization. Panama City Beach, FL, USA

  • Olds J, Walberg G (1993) Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods. In: AIAA/AHS/ASEE aerospace design conference. Irvine, CA, USA

  • Pareto V (1971) Manual of political economy. A.M. Kelley, New York

    Google Scholar 

  • Perez V, Renaud J, Watson L (2002) Adaptive experimental design for construction of response surface approximations. AIAA J 40(12):2495–2503

    Article  Google Scholar 

  • Perrot L (2003) Optimisation of reusable launchers by decomposition and coordination of trajectory optimisation problems. In: 5th international conference on launcher technology, space launchers: missions, control and avionics. Madrid , Spain

  • Pontryagin L, Boltyansky V, Gamkrelidze R, Mischenko E (1962) The mathematical theory of optimal processes. Interscience, New York

    MATH  Google Scholar 

  • Qu M, Gage P, Sohn J, Bradford J, Starr B (2004) Generalized vehicle performance closure model for two-stage-to-orbit launch vehicles. In: 42nd AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Rafique A, LinShu H, Zeeshan Q, Nisar K, Xiaowei W (2009a) Hybrid optimization method for multidisciplinary design of air launched satellite launch vehicle. In: 45th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. Denver, Colorado, USA

  • Rafique A, LinShu H, Zeeshan Q, Nisar K, Xiaowei W (2009b) Integrated system design of air launched small space launch vehicle using genetic algorithm. In: 45th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit. Denver, Colorado, USA

  • Rahn M, Schöttle U (1994) Decomposition algorithm for flight performance and system optimization of an airbreathing launch vehicle. In: 45th congress of International Astronautical Federation. Jerusalem, Israel. IAF-94.A.2.018

  • Renaud J, Gabriele G (1993) Improved coordination in nonhierarchic system optimization. AIAA J 31(12):2367–2373

    MATH  Article  Google Scholar 

  • Renaud J, Gabriele G (1994) Approximation in nonhierarchic system optimization. AIAA J 32(1):198–205

    MATH  Article  Google Scholar 

  • Rodriguez J, Renaud J, Watson L (1998) Trust region augmented Lagrangian methods for sequential response surface approximation and optimization. J Mech Des 120:58–66

    Article  Google Scholar 

  • Rodriguez J, Perez V, Padmanabhan D, Renaud J (2001) Sequential approximate optimization using variable fidelity response surface approximations. Struct Multidisc Optim 22(1):24–34

    Article  Google Scholar 

  • Sellar R, Batill S (1996) Concurrent subspace optimization using gradient-enhanced neural network approximations. In: 6th AIAA/NASA/USAF multidisciplinary analysis and optimization symposium. Bellevue, WA, USA

  • Sellar R, Batill S, Renaud J (1996) Response surface based, concurrent subspace optimization for multidisciplinary system design. In: 34th AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Serafini P (1992) Simulated annealing for multiple objective optimization problems. In: 10th international conference on multiple criteria decision making. Taipei, Taiwan

  • Sobieski I (1993) Multidisciplinary design optimization: attempt at definition. In: Industry university workshop on multidisciplinary aircraft design, pp 23–48

  • Sobieski I, Kroo I (2000) Collaborative optimization using response surface estimation. AIAA J 38(10):1931–1938

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J (1988) Optimization by decomposition: a step from hierarchic to non-hierarchic systems. NASA Technical Report CP-3031

  • Sobieszczanski-Sobieski J (1990) Sensitivity of complex internally coupled systems. AIAA J 28(1):153–160

    Article  Google Scholar 

  • Sobieszczanski-Sobieski J, Haftka R (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim (14):1–23

  • Sobieszczanski-Sobieski J, Agte J, Sandusky R (1998) Bi-Level Integrated System Synthesis (BLISS). NASA/TM-1998-208715

  • Sobieszczanski-Sobieski J, Emiley M, Agte J, Sandusky R (2000) Advancement of Bi-Level Integrated System Synthesis (BLISS). NASA/TM-2000-210305

  • Sobieszczanski-Sobieski J, Altus T, Phillips M, Sandusky R (2003) Bi-level Integrated System Synthesis for concurrent and distributed processing. AIAA J 41(10):1996–2003

    Article  Google Scholar 

  • Tava M, Suzuki S (2002) Multidisciplinary Design Optimization of the shape and trajectory of a reentry vehicle. Trans Jpn Soc Aeronaut Space Sci 45(147):10–19

    Article  Google Scholar 

  • Tava M, Suzuki S (2003) Integrated multidisciplinary and multicriteria optimization of a space transportation system and its trajectory. In: 54th international astronautical congress of the International Astronautical Federation. Bremen, Germany

  • Tedford N, Martins J (2010) Benchmarking multidisciplinary design optimization algorithms. Optim Eng 11:159–183

    MathSciNet  Article  Google Scholar 

  • Tosserams S, Etman L, Rooda J (2009) A classification of methods for distributed system optimization based on formulation structure. Struct Multidisc Optim

  • Tosserams S, Kokkolaras M, Etman L, Rooda J (2010) A nonhierarchical formulation of analytical target cascading. J Mech Des 23:051002

    Article  Google Scholar 

  • Tsuchiya T, Mori T (2002) Multidisciplinary Design Optimization to future space transportation vehicles. In: AIAA-2002-5171

  • Tsuchiya T, Mori T (2004) Optimal conceptual design of two-stage reusable rocket vehicles including trajectory optimization. J Spacecr Rockets 41(5):770–778

    Article  Google Scholar 

  • Ulungu E, Teghem J, Fortemps P, Tuyttens D (1999) MOSA method: a tool for solving multi-objective combinatorial optimization problems. J Multi-Crit Decis Anal 8:221–2396

    MATH  Article  Google Scholar 

  • Vanderplaats G (1999) Numerical optimization techniques for engineering and design, 3rd edn. Vanderplaats Research & Development, Inc., Colorado Springs

  • Villeneuve F, Mavris D (2005) A new method of architecture selection for launch vehicles. In: 13th AIAA/CIRA international space planes and hypersonics systems and technologies. Capua, Italy

  • Wujek B, Renaud J, Batill S (1997) A concurrent engineering approach for multidisciplinary design in a distributed computing environment. In: Alexandrov N, Hussaini MY (eds) Multidisciplinary Design Optimization: state-of-the-art. SIAM series: Proceedings in applied mathematics, vol 80, pp 189–208

  • Wujek B, Renaud J, Batill S, Brockman J (1996) Concurrent subspace optimization using design variable sharing in a distributed computing environment. Concurr Eng 4(4):361–377

    Article  Google Scholar 

  • Yokoyama N, Suzuki S, Tsuchiya T, Taguchi H, Kanda T (2005) Multidisciplinary Design Optimization of SSTO space plane considering rigid body characteristics. In: 42nd AIAA aerospace sciences meeting and exhibit. Reno, Nevada, USA

  • Yokoyama N, Suzuki S, Tsuchiya T, Taguchi H, Kanda T (2007) Multidisciplinary Design Optimization of SSTO space plane considering rigid body characteristics. J Spacecr Rockets 44(1):121–131

    Article  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multi-objective optimization: methods and applications. Ph.D. thesis, Department of Computer Science, Swiss Federal Institute of Technology (ETH), Zurich

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Balesdent.

Additional information

The work presented in this paper is part of a CNES/ONERA PhD thesis attached to CNES’s HADES project (Help on Advanced launchers DESign).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balesdent, M., Bérend, N., Dépincé, P. et al. A survey of multidisciplinary design optimization methods in launch vehicle design. Struct Multidisc Optim 45, 619–642 (2012). https://doi.org/10.1007/s00158-011-0701-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0701-4

Keywords

  • Multidisciplinary design optimization
  • Launch vehicle design
  • MDO
  • Multi-objective optimization
  • Distributed optimization
  • Space transport system design
  • Multi-criteria optimization
  • Optimal control