Skip to main content

A comparative study of probability estimation methods for reliability analysis

Abstract

In this paper we investigate the performance of probability estimation methods for reliability analysis. The probability estimation methods typically construct the probability density function (PDF) of a system response using estimated statistical moments, and then perform reliability analysis based on the approximate PDF. In recent years, a number of probability estimation methods have been proposed, such as the Pearson system, saddlepoint approximation, Maximum Entropy Principle (MEP), and Johnson system. However, no general guideline to suggest a most appropriate probability estimation method has yet been proposed. In this study, we carry out a comparative study of the four probability estimation methods so as to derive the general guidelines. Several comparison metrics are proposed to quantify the accuracy in the PDF approximation, cumulative density function (CDF) approximation and tail probability estimations (or reliability analysis). This comparative study gives an insightful guidance for selecting the most appropriate probability estimation method for reliability analysis. The four probability estimation methods are extensively tested with one mathematical and two engineering examples, each of which considers eight different combinations of the system response characteristics in terms of response boundness, skewness, and kurtosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Aitchison J, Begg C (1976) Statistical diagnosis when cases are not classified with certainty. Biometrika 63(1):1–12

    Article  MATH  MathSciNet  Google Scholar 

  • Chan KY, Kokkolara M, Papalambros PY, Skerlos SJ, Mourelatos Z (2004) Propagation of uncertainty in optimal design of multilevel systems: piston-ring/cyliner-liner case study. In: Proceedings of the 2004 SAE world congress, 8–11 March, Detroit, Michigan, Paper No 2004-01-1559

  • Chen H, Kamburowska G (2001) Fitting data to the Johnson system. J Stat Comput Simul 70(1):21–32

    Article  MATH  MathSciNet  Google Scholar 

  • Daniels HE (1954) Saddlepoint approximations in statistics. Ann Math Stat 25(4):631–650

    Article  MATH  MathSciNet  Google Scholar 

  • DeBrota DJ, Swain JJ, Roberts SD, Venkataraman S (1988) Input modeling with the Johnson system of distributions. In: Abrams MA, Haigh PL, Comfort JC (eds) Proceedings of the 1988 winter simulation conference. Institute of Electrical and Electronics Engineers, Piscataway, pp 165–179

    Chapter  Google Scholar 

  • Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. ASME J Mech Des 126(2):225–233

    Article  Google Scholar 

  • Du X, Sudjianto A (2004) The first order saddlepoint approximation for reliability analysis. AIAA J 42(6):1199–1207

    Article  Google Scholar 

  • Farnum NR (1997) Using Johnson curves to describe nonnormal process data. Qual Eng 9(2):329–336

    Article  Google Scholar 

  • Ferson S, Oberkampf WL, Ginzburg L (2008) Model validation and predictive capability for the thermal challenge problem. Comput Methods Appl Mech Eng 197(29–32):2408–2430

    Article  MATH  Google Scholar 

  • Fu G, Moses F (1988) Importance sampling in structural system reliability. In: Proceedings of ASCE joint specialty conference on probabilistic methods. Blacksburg, VA, pp 340–343

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  • Goutis C, Casella G (1999) Explaining the saddlepoint approximation. Am Stat 53(3):216–224

    Article  MathSciNet  Google Scholar 

  • Hall AR (2005) Generalized methods of moments. Oxford University Press

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. ASCE J Eng Mech 100(1):111–121

    Google Scholar 

  • Huang B, Du X (2006) Uncertainty analysis by dimension reduction integration and saddlepoint approximations. J Mech Des 128:26–33

    Article  Google Scholar 

  • Huzurbazar S (1999) Practical saddlepoint approximations. Am Stat 53:225–232

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics—I. Phys Rev 106(4):620–630

    Article  MathSciNet  Google Scholar 

  • Johnson NL (1949) Systems of frequency curves generated by methods of translation. Biometrika 36:149–176

    MATH  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MATH  MathSciNet  Google Scholar 

  • McDonald M, Mahadevan S (2008) Reliability-based optimization with discrete and continuous decision and random variables. ASME J Mech Des 130(6):061401

    Article  Google Scholar 

  • Mead LR, Papanicolaou N (1984) Maximum entropy in the problem of moments. J Math Phys 25:2404–2417

    Article  MathSciNet  Google Scholar 

  • Pearson K (1901) Mathematical contributions to the theory of evolution, X: supplement to a memoir on skew variation. Philos Trans R Soc Lond, A Contain Pap Math Phys Character 197:443–459

    MATH  Google Scholar 

  • Pearson K (1916) Mathematical contributions to the theory of evolution, XIX: second supplement to a memoir on skew variation. Philos Trans R Soc Lond A, Contain Pap Math Phys Character 216:429–457

    MATH  Google Scholar 

  • Rabitz H, Alis OF (1999) General foundations of high-dimensional model representations. J Math Chem 25:197–233

    Article  MATH  MathSciNet  Google Scholar 

  • Rabitz H, Alis OF, Shorter J, Shim K (1999) Efficient input–output model representations. Comput Phys Commun 117:11–20

    Article  MATH  Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech 19:393–408

    Article  Google Scholar 

  • Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  • Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math Dokl 4:240–243

    Google Scholar 

  • Soize C (2001) Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J Acoust Soc Am 109(5):1979–1996

    Article  Google Scholar 

  • Straeten EVD, Beck C (2008) Superstatistical distributions from a maximum entropy principle. Phys Rev E 78(5):051101 (1–7)

    Article  Google Scholar 

  • Tvedt L (1984) Two second-order approximations to the failure probability. Section on structural reliability. A/S Vertas Research, Hovik

    Google Scholar 

  • Xie K, Wells L, Camelio JA, Youn BD (2007) Variation propagation analysis on compliant assemblies considering contact interaction. ASME J Manuf Sci Eng 129(5):934–942

    Article  Google Scholar 

  • Xiong F, Greene MS, Chen W, Xiong Y, Yang X (2010) A new sparse grid based method for uncertainty propagation. Struct Multidisc Optim 41(3):335–349

    Article  MathSciNet  Google Scholar 

  • Xiong Y, Chen W, Tsui K (2008) A better understanding of model updating strategies in validating engineering models. In: AIAA-2008–2155, 49th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 7–10 April 2008, Schaumburg, IL

  • Xiu D, Karniadakis GE (2003) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 187:137–167

    MATH  MathSciNet  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int J Numer Methods Eng 61:1992–2019

    Article  MATH  Google Scholar 

  • Youn BD, Xi Z (2009) Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Struct Multidisc Optim 37(5):475–492

    Article  MathSciNet  Google Scholar 

  • Youn BD, Choi KK, Yi K (2005) Performance moment integration (PMI) method for quality assessment in reliability-based robust design optimization. Mech Des Struct Mach 33:185–213

    Article  Google Scholar 

  • Youn BD, Xi Z, Wang P (2008) Eigenvector dimension-reduction (EDR) method for sensitivity-free probability analysis. Struct Multidisc Optim 37(1):13–28

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research is partially supported by the NSF GOALI 07294, the STAS contract (TCN-05122) sponsored by the U.S. Army TARDEC, by the New Faculty Development Program by Seoul National University, and by the SNU-IAMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeng D. Youn.

Appendix

Appendix

Table 12 Random input properties of three examples in case 1
Table 13 Random input properties of three examples in case 2
Table 14 Random input properties of three examples in case 5
Table 15 Random input properties of three examples in case 6
Table 16 Random input properties of three examples in case 7
Table 17 Random input properties of three examples in case 8

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xi, Z., Hu, C. & Youn, B.D. A comparative study of probability estimation methods for reliability analysis. Struct Multidisc Optim 45, 33–52 (2012). https://doi.org/10.1007/s00158-011-0656-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0656-5

Keywords

  • Reliability analysis
  • Pearson system
  • Saddlepoint approximation
  • MEP
  • Johnson system